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Stripped Functionality Logic Locking With
Hamming Distance-Based Restore

Unit (SFLL-hd) – Unlocked
Fangfei Yang, Ming Tang , Member, IEEE, and Ozgur Sinanoglu, Senior Member, IEEE

Abstract— Logic locking is a technique that has received
significant attention. It protects a hardware design netlist from a
variety of hardware security threats, such as tampering, reverse-
engineering, and piracy, stemming from untrusted chip foundry
and end-users. This technique adds logic and inputs to a given
design netlist to make sure that the locked design is functional
only when a key is applied from the new inputs; an incorrect key
makes the design produce incorrect outputs. The new inputs,
referred to as the key inputs, are driven by a tamper-proof
memory on the chip, which stores the secret key. Research in this
field has shown that this technique, if not implemented properly,
may be vulnerable to attacks that extract the key of logic locking.
Recently, a logic locking technique called stripped functionality
logic locking (SFLL) has been proposed and shown to withstand
all known attacks in a provably secure manner. SFLL strips some
functionality from the original design by corrupting its output
corresponding to a number of “protected” input patterns. In one
version of SFLL, referred to as SFLL-hd, these protected patterns
are all of a certain hamming distance h to the key. The modified
design is accompanied by additional logic that fixes the output
for each protected input pattern only when the key is in the
tamper-proof memory. In this paper, we present an attack that
breaks SFLL-hd within a minute. Our attack exploits structural
traces left behind in the locked design due to the functionality
strip operation and is capable of identifying some of the protected
patterns. We also present a theoretical framework that helps us
develop two different techniques to complete our attack. In the
first technique, we use the Gaussian elimination technique to
solve a system of equations that we form based on k-identified
protected patterns in O(k3) time in the best case, where k is
the number of key bits in key. The second technique uses one
identified protected pattern to query the oracle k times. In both
techniques, we successfully recover the key from the protected
pattern(s). We show that our attacks work on the SFLL-locked
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microprocessor design (more than 50 K gates) that the authors
of SFLL made available to the public; we extract the 256-bit
key within a minute and reveal it in this paper. We also test our
attacks on a few other SFLL-hd benchmarks provided by SFLL
authors.

Index Terms— Hardware, security, logic gates, hamming
distance, reverse engineering.

I. INTRODUCTION

FABLESS IC companies take the advantage of outsourc-
ing the fabrication of the chips in order to overcome

the growing cost of semiconductor fabrication. However,
the introduction of third-party manufacturers into the IC
supply chain also brings security threats because IC design-
ers must provide GDSII layout or other design files to the
manufacturers. Through reverse engineering, the malicious
manufacturers or attackers can reveal the gate-level netlist
and have further understanding of the design, exposing the
design to the risk of piracy [1], counterfeiting [2] or hardware
trojans [3].

A. Logic Locking

Logic locking is a technique that protects the design against
the untrustworthy IC supply chain. Compared to other tech-
niques such as hardware metering [4], [5] or split manufac-
turing [6], logic locking can cover the entire supply chain
with minor impact to the original design structure, timing or
performance.

Logic locking protects the design by adding some key
related circuitry/gates into the original design, so the circuit
will not work without a correct key and it hides the orig-
inal design functionality [7]–[16]. As a result, unauthorized
foundries are not able to pirate this circuit or analyze the
original design directly. The designer can activate this chip
by loading the key on its tamper-proof memory after manu-
facturing to get functional products.

Currently, this kind of protection is vulnerable to different
attacks such as SAT based attack [17]–[19], sensitization
attack [9] and signal skew analysis/removal attack [20]. All
these attacks aim at recovering the key of logic locking. The
SAT attack is a key search space pruning technique while the
sensitization attack aims at reading the key bits one at a time
from the outputs by using input patterns that can sensitize the
key bits. The signal skew analysis attack exploits the structural
vulnerability of Anti-SAT technique [15].
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The threat model in most of the attacks on logic locking
is that the attacker can get the protected (i.e., locked) gate-
level netlist and have an oracle (i.e., a working chip embedded
with the key) that yields correct output. The attacker can
only exercise the oracle by applying inputs and observing its
outputs but cannot access the key embedded in the oracle; she
controls/observes the I/O pins (scan chains & functional I/Os)
through JTAG. The attacker uses the protected design netlist
to find so-called distinguishing input patterns [17] (DIPs)
by using a SAT solver; a DIP is an input pattern that can
effectively prune the key space. The attacker can verify the
outputs by applying the same DIP to the oracle; all the keys
that lead to a different output for this DIP can be eliminated,
thus reducing the size of possible key space dramatically. This
process is repeated until the key search space contains only
the key.

Some protection structures (SFLL [8], Anti-SAT [15], SAR-
Lock [16]) have been proposed to resist the SAT attack by
adding a specialized logic block which restrains the effective-
ness of key pruning in traditional SAT attack, raising the actual
complexity of SAT solver.

Also, some new attacks have recently been proposed as
well. These are AppSAT [19], Double DIP [18], and Bypass
attacks [21].

Compared with the other logic locking techniques, SFLL
provides a quantifiable and provable resilience trade-off
between all known and anticipated attacks [8]. It modifies
a given circuit into a Functionality Stripped Circuit (FSC)
by flipping the output corresponding a set of input patterns,
which are referred to as the protected patterns; a protected
pattern is an input pattern for which the original circuit and
the FSC produce different outputs. In SFLL-hd, all of these
protected input patterns have a hamming distance of h to the
key. To restore the functionality of the original circuit from the
FSC on the final chip that embeds the key, a restore unit detects
a protected input pattern by checking its hamming distance to
the key and restores the output to its correct value. SFLL-hd
technique is based on a secret key and a set of protected
patterns dictated by the key and the hamming distance h; the
protected patterns are also a secret, but h is not [8]. SFLL-hd
is provably secure against key-pruning attacks such as the SAT
attack [8].

We are interested in targeting SFLL since it is a very recent
technique that thwarts all attacks such as SAT, sensitization
and removal attack. This paper [8] also serves as a valuable
tutorial on logic locking, as it explains the weaknesses of other
logic locking solutions in the literature.

B. Weakness in SFLL-hd and Attack Approach

SFLL threat model assumes that the attacker has access to
a netlist and a working chip while the key and the protected
patterns are secret. In fact, SFLL authors admit that if the
protected patterns were leaked, the secret key can be recovered
as well; however, the paper provides no information as to
how this can be accomplished. Our attack therefore identifies
protected pattern(s) through a structural analysis of the netlist
and then recovers the key from this information. We exploit

a structural vulnerability in the SFLL-hd implementation to
identify a number of protected patterns. This structural vul-
nerability is an end result of the particular way that the
functionality strip operation is implemented. Current design
synthesis tools are all security-oblivious; SFLL-hd too suffers
from this, leaving traces in the circuit about the key (visible
to reverse engineers). Once we identify a number of protected
patterns, we perform one of the two following techniques
to find the key based on these protected patterns. We have
developed these techniques based on the hamming distance
relationship between each protected pattern and the key:

1) We create a system of linear equations from a set of
k protected patterns and utilize Gaussian elimination to
solve for the key. Without querying the oracle, we can
recover the key in O(k3) in the best case.

2) Given a single protected pattern, we apply inputs derived
from this protected pattern to the oracle. Based on
the oracle responses, we classify all these patterns as
protected or non-protected. By analyzing the distribution
of these patterns, we recover the key in O(k).

C. Structure of the Paper

In section II, we briefly introduce SFLL-hd. Next, in
section III, we explain the attack framework. In section IV,
we explain our reverse engineering based structural analy-
sis to identify traces in the netlist that help us obtain the
protected patterns. In section V, we discuss the properties
of the hamming distance function and provide two differ-
ent algorithms to recover the key from a set of protected
patterns. Finally in section VI, we show the application
of the attack to recover the key in less than a minute
from the benchmark circuit provided by the authors of
SFLL on Github [22]. This is the only benchmark cir-
cuit that is publicly available and is a controller that
mainly consists of a ARM Cortex-M0 microprocessor [23]
design locked by SFLL-hd with a configuration of h = 32,
k = 256. We further run our attack and show its success on a
few other SFLL-hd benchmarks that we obtained from SFLL
authors.

D. Novelty and Contribution

We present in this work a vulnerability that we identified
in the state-of-the-art logic locking technique SFLL-hd. This
vulnerability is an end-result of the fact that existing synthesis
tools are security-oblivious. It is clear from the netlists we
analyzed that the SFLL authors indeed resynthesized their
netlists to hide the protected patterns; however, our structural
attack is able to identify the protected pattern(s) in all the
cases, in turn extracting the secret key. Until a truly security-
aware synthesis tool is developed, any defense that relies on
conventional CAD tools will be vulnerable. By eliciting a
vulnerability in a state-of-the-art logic locking technique that
has been unbroken until now, our work emphasizes a major
shortcoming, i.e., the need for the development of a security-
aware synthesis tool, thus identifying a very important research
direction.
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Fig. 1. SFLL-hd protection scheme [8].

II. INTRODUCTION OF SFLL-HD

The SFLL-hd scheme modifies the original circuit into FSC
as shown in figure Figure 1. It focuses on a specific set of k
bits of the n-bit inputs and flips the response of 2n−k

�k
h

�
input

patterns; each one of these protected patterns has a hamming
distance of h to the key, as far as the k bits of the input patterns
are considered. The original circuit with 2n−k

�k
h

�
errors in its

output space now becomes the Functionality Stripped Circuit
(FSC). The restore unit under the FSC calculates the hamming
distance between current input and the key stored in tamper-
proof memory and checks whether this distance is h; if so,
the current input is identified as one of the protected patterns,
and thus, the restore unit flips the FSC output Y f s accordingly
and restores the correct output Y . The restore unit can properly
fix the output for all the protected patters only if the correct
key is loaded on the tamper-proof memory.

The authors of SFLL proved that under this design,
SFLL-hd can thwart the SAT attack, removal attack, and
sensitization attack by adjusting h. Their security analysis
shows that SFLL-hd is

�
k −

�
log2

�k
h

���
− secure against

SAT attack, (2n−k
�k

h

�
) − secure against removal attack, and

k −secure against sensitization attack [8]. For the SAT attack,
λ − securi ty is defined to be the probability of an attacker
success in reconstructing the original circuit for a polynomial
number of queries q(λ)/2λ. For the removal attack, the secu-
rity is defined as the number of protected input patterns.

III. POSSIBLE WEAKNESS IN SFLL

A. The Security Impact of h

The authors of SFLL suggest that h can be adjusted to trade
resilience to one attack for resilience to another [8]. When
h → 0 or h → k this protection has the best resistance toward
SAT and other key-pruning attacks. In contrast, it achieves the
best resistance to removal attacks when h → k

2 .
Hence, when h approaches to k

2 , there would be more
input vectors for which FSC produces incorrect output. In this
scenario, the removal of the restore unit would corrupt the
circuit functionality maximally. However, it is more likely for
the attacker to get an input that causes the FSC to produce
incorrect outputs and reveal some information about the key.
For example, when k = 256, h = 128, the possibility of
getting such an input would be 4.9819%.

When h approaches to 0, there is a low possibility that
FSC generates an incorrect output so the attacker can hardly
learn about the key; the number of protected patterns is very
few. But, by removing the restore unit, the attacker can get
an almost identical-functionality circuit as the original design,
since the restore unit has so little impact on the circuit. For
example, the authors of SFLL used k = 256, h = 32 in their
benchmark and if we remove the restore unit, the FSC would
have a possibility of 5.03 × e−37 to produce an error for any
given input pattern. The possibility is so low that it is almost
impossible for FSC to generate a wrong output.

We believe that it is difficult for a hardly triggered protection
to actually protect a circuit. So it seems that either we need a
relatively large h, or select the key and h carefully so that the
FSC produces an error more frequently. However, can these
tricks really improve security of the protection?

B. Attack Framework

The first step in our attack is to identify the protected
pattern(s). We reverse engineer the netlist and then perform a
connectivity analysis to identify a signal specific to the SFLL-
hd implementation. The activation condition of this signal
provides information about the protected pattern(s); we use
a SAT solver to compute the secret protected pattern(s).

We next rely on the two features of hamming distance to
break the protection of SFLL-hd:

1) The logic expression of hamming distance can be con-
verted to a linear equation and solved by Gaussian
elimination.

2) By manipulating the bits of a protected pattern and
querying the oracle, we can identify the bits of the pro-
tected pattern that contributes to the hamming distance
of h to the key.

This way, we can recover the key of SFLL-hd from its
protected pattern(s).

In a nutshell, we can recover the key as long as we identify
a few protected patterns. We rely on our earlier assumption
that the FSC should create an error frequently enough for the
protection to be meaningful. And for such scenarios, our attack
will break SFLL-hd.

IV. IDENTIFYING PROTECTED PATTERNS IN SFLL-HD

We first analyze the topology structure of the circuit. The
basic structure of SFLL-hd is shown in Figure 1, which
comprises mainly the Functionality Stripped Circuit and the
restore unit. In this section, we use the publicly available
locked microprocessor design as an example to illustrate this
part of the attack; later we show that the same attack is
successful on other SFLL-hd benchmarks provided by the
SFLL authors.

The dfx_sfll_k256_h32.bench [22] contains more than a
simple SFLL-hd. It contains many useless nodes, inputs and
outputs that conceal the restore unit and the FSC. From
Figure 1, we know that only the restore unit receives the key,
which comes from the tamper-proof memory and is marked
with a prefix ‘keyinput’ in the benchmark. We can separate
the restore unit from the rest of the circuit by tracing these
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Fig. 2. Logic cone of two signals; at the top, the signal perturb, and at
the bottom, another arbitrary signal n34544. Green nodes are input, Cyan
nodes are output. These connectivity graphs have been generated from the
implementation in Github [22].

keyinput nodes. Then, we follow keyinputi and figure out
the only output node that is affected by keyinput , which is
N29051 in this benchmark. This is the output protected by
SFLL-hd in the circuit.

Next, we trace back from the protected output (node
N29051) to compute its fan-in logic cone, i.e., the inputs and
gates that feed this output. This way, we can isolate this part
of the circuit from the rest, and obtain the protected logic
cone in Figure 1. Because the restore unit (i.e. the keyinput
related circuit) contains no information about the real key,
we further separate the logic cone into two parts: the restore
unit and the functionality stripped circuit (FSC); we focus on
FSC as the vulnerabilities we are looking for are embedded
there. This way, we can identify signals connecting the two
parts.

We identify a few such signals; for two such signals,
we provide a graph that shows their fan-in cone in Figure 2.
In these graphs, the nodes are gates, primary inputs or outputs
and the edges are nets connecting them. One of these signals
is rather attractive; it’s called perturb in the benchmark and
it has a topologically symmetrical and tree-like structure
(the graph at the top of Figure 2). After comparing other
signals we traced (for example, the other graph for n34544 at
the bottom of Figure 2) we suspect that the functionality
stripping is achieved by this logic cone which is a restore
unit-like circuit synthesized with hardcoded values of key
that generates a flip signal, which we denote as P P , to flip

Fig. 3. Speculated implementation of functionality stripped circuit from the
original circuit.

the output of the original circuit for the protected patterns.
This particular implementation XORs P P with the original
circuit to strip its functionality and produce FSC. We depict
this understanding of the FSC implementation from the origi-
nal circuit in Figure 3. While the logic synthesis steps hide this
exact implementation and the values of the key from us, P P
signal remains as part of the protected netlist to be utilized by
our attack.

With this understanding of FSC structure in mind, the P P
signal must have the following properties:

1) it should be around to the boundary between the restore
unit and FSC, since it flips the output of the original
circuit and passes it to the restore unit.

2) it must be driven by all the relevant inputs, but not by
any keyinput node.

Then, we confirm that this signal is a very low activity
signal; it is likely to be 0 most of the time. We use a SAT
Solver [24] on this logic cone to set this signal to a 1 and
produce one of the protected patterns. To confirm that this
is a valid (protected) pattern, we simulate FSC with this
pattern and expect that it produces a different output than the
oracle.

A previously proposed signal skew analysis/removal
attack [20] identifies a security-critical signal in the Anti-SAT
defense. This attack aims at finding two oppositely skewed
signals that converge at an AND gate. In our attack, on the
other hand, we try to locate a signal P P specific to SFLL.
Our analysis is based on graph connectivity rather than signal
probabilities. Both attacks are defense-specific.

One may also consider a hypothetical enhancement of
SFLL-hd based on the enhancements suggested earlier on
Anti-SAT [25]. However, enhancement of Anti-SAT was
towards fixing its specific vulnerability, i.e., to nullify the
signal probability skew; this is of no use for SFLL-hd, as our
attack is not based on signal probabilities. The other technique
that enhances Anti-SAT increases the connectivity between the
newly added block and the original logic to prevent simple
removal attacks. This enhancement technique is of no use for
SFLL-hd either; our attack expects and searches for traces
stemming from a hamming distance checker embedded into
the original circuit for functionality stripping. Any added
artificial connectivity would not be able to hide information
about the protected patterns.
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TABLE I

TABLE OF NOTATION

V. RECOVERING Key FROM PROTECTED PATTERN(S)
In this paper, we provide two different attacks for a key size

of k:
1) The first attack needs s protected input patterns. By uti-

lizing Gaussian elimination, we can solve the key in
O(k3 +2k−s k). And in the best case, s = k; only O(k3)
of time is needed. The first attack does not need to query
the oracle.

2) The second attack needs only one protected pattern and
also a working oracle. By querying the oracle with
slightly manipulated versions of the protected pattern,
we can identify whether a particular bit of the protected
pattern is contributing to hamming distance h to key.
This way, the attack can recover the key in O(k) and in
the process queries the oracle k times.

A. Recovering Key by Gaussian Elimination

According to the structure of SFLL-hd, we know that a
protected pattern vector a ∈ {0, 1}k will satisfy the Equation 1.

a = key ⊕ r (1)

where r ∈ {0, 1}k is a vector with a hamming weight of h,
in other words, it has exactly h bits of ‘1’s.

Thus, if we test that the key is x, then the hamming distance
between x and every ai would be hd(x, ai ) = h, where

ai means i − th protected pattern vector. Consider these k
equations,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hd(a1, x) = h

hd(ai , x) = h

. . .

hd(ak, x) = h

(2)

We can recover key by solving this system of equations,
which may be hard to accomplish directly; the hamming
distance can be represented as hd(x, y) = �

i x [i ] ⊕ y [i ] =�
i x [i ] (1 − y [i ]) + y [i ] (1 − x [i ]). Equation 2 can be

transformed to a linear system-like equations as in Equation 3,
where Ai, j is the j − th binary bit of i − th input vector,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

j
A1, j (1 − x [ j ]) + (1 − A1, j )x [ j ] = h

�

j
Ai, j (1 − x [ j ]) + (1 − Ai, j )x [ j ] = h

...
�

j
Ak, j (1 − x [ j ]) + (1 − Ak, j )x [ j ] = h

(3)

Considering that Ai, j is constant, Equation 3 is a linear
system and all variables are limited to {0, 1}. It is still hard to
solve, but if we relax the binary constraint on the variables, this
linear system can be solved directly by Gaussian elimination.

We can obtain a unique solution of a linear system of k
variables as long as we have k linearly independent equations,
and we know that the original equations must have a root that
satisfies x ∈ {0, 1}k . Furthermore, based on the uniqueness of
the root in linear system and that the relaxation of the binary
constraint will only add more possible roots for the equations,
this unique root must be the root of the original equations.

Because Ai, j ∈ {0, 1}, each entity in the summation
Ai, j (1 − x [ j ]) + (1 − Ai, j )x [ j ] has only two possible
expansions:

Ai, j (1 − x [ j ]) + (1 − Ai, j )x [ j ]=

−x [ j ]+1 if Ai, j =1

x [ j ] if Ai, j =0

(4)

Also, in Equation 4, x [i ] is multiple by a factor of ±1
based on Ai, j . After putting all these factors into a matrix B
and moving all constant 1s to the right side of the equations
to form a vector g, we have a matrix equation,

Bx = g. (5)

where,

Bi, j =


1 if Ai, j = 0

−1 if Ai, j = 1
(6)

g[i ] = h −
�

j

Ai, j . (7)

As Terence Tao and Van Vu discussed, the upper bound
for a random ±1 matrix to be singular is .939n [26]. So,
in most cases where h is not too small, k different pro-
tected input vectors are enough to solve the equations. When
h = k/2, we can only find k − 1 protected input vectors, but
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by enumerating the free variable, we can find only two roots
that contain only 0 and 1; it must be the two complementary
roots and either one can be used as key.

So, if we assume we can obtain exactly k or k −1 protected
input vectors, the complexity of this attack will be O(k3).

And, in a practical setting, if we can get only s protected
input patterns, we can still enumerate the free variables and
complete this attack with a complexity of O(k3 + 2k−sk); but
we may get more than one possible solution.

B. Recovering Key by Querying the Oracle

The oracle in logic locking is a blackbox that provides the
correct output for a given input. The attacker cannot see the
intermediate process and operations inside the oracle.

The starting point of this attack is a protected pattern a. As
a = r ⊕ key where key is the vector we try to recover and r
is a vector that contains exactly h ‘1’s, we need to find the
location of these h ‘1’s in r, so we recover key.

Because we have such an oracle, we can design a function
J (I N) to check whether the oracle and the FSC produce
the same output, and thus, check whether I N meets the
requirement of the a; i.e., whether I N is a protected pattern.

J (I N) =


0 i f oracle(I N) = lock(I N),

1 i f oracle(I N) �= lock(I N).
(8)

Let a0 be the vector which flips a [0] in a, a0 =�
a [0], a [1] , . . . , a [k − 1]

�
. Because the hamming distance

between a and key is the hamming weight of r, the hamming
distance between a0 and key will be ±1 depending on whether
r[0] is 0 or 1:

hd(a0, key) =


hd(a, key) + 1 r[0] = 0,

hd(a, key) − 1 r[0] = 1.
(9)

In either case, the distance will not be h, so J (a0) = 0.
Then, we flip each bit a0 [i ] , i > 0, in a0 and obtain ai ,

which is different than a in exactly two bits in locations
0 and i . Now, we can split i into two sets based on J (ai ):
eqset = {i |J (ai ) = 0} andneqset = {i |J (ai ) = 1}.

We have two possible cases, depending on r[0]:
1) If r[0] = 0, hd(a0, key) = h + 1. When J (ai ) = 1,

hd(ai , key) = h, if and only if r[i ] = 1. So, neqset
contains all the h positions that r[i ] = 1.

2) If r[0] = 1, hd(a0, key) = h − 1. When J (ai ) = 0,
hd(ai , key) = h − 2, if and only if r[i ] = 1. So, eqset
contains all the h positions that r[i ] = 1.

By querying the oracle, the attacker can learn the value of
J (ai ) and classify i accordingly into neqset and eqset . As h
is public information, so long as h �= k/2, the size of neqset
and eqset will be different in either case. The set that contains
h elements will reveal the bit locations where a and key differ
(locations of ‘1’s in r); by flipping these bits of a, key can
be recovered. h = k/2 can also be handled by repeating the
process above for a second time, this time with another bit in a;
however, as h = k/2 is the maximally SAT attack vulnerable
case for SFLL-hd that would never be implemented, we do
not explain the details of such a procedure.

TABLE II

EXAMPLE OF r[0] = 1, key = 01011000, h = 3

TABLE III

EXAMPLE OF r[0] = 0, key = 01011000, h = 3

Table II gives an example of the attack process where
r[0] = 1, key = 01011000, h = 3 and the protected input
pattern a = 10011010. We show that i is classified into
{0, 1, 6} and {2, 3, 4, 5, 7} by querying the oracle repeatedly.
As we know h = 3, we can figure out r = 11000010 and
recover key by a ⊕ r = 01011000.

Table III provides another example of the attack process
where, this time, r[0] = 0 for another protected input pat-
tern a = 000100010; the key and h are the same as the
previous example. This time, i is classified into {1, 4, 6} and
{0, 2, 3, 5, 7} by querying the oracle repeatedly. By flipping
the bits in positions {1, 4, 6} in a, we obtain the key again.

C. Comparison of the Two Attacks

The first attack requires a larger number of protected
patterns but it can work without an oracle. It is therefore more
effective than the second attack when it is hard to gain access
to a physical working chip, but the attacker can somehow (e.g.,
illegal means) obtain protected patterns from designers.

The second attack, on the other hand, is easier to launch as
it only requires one protected pattern; but at the same time,
it requires a working chip to be repetitively queried as an
oracle. However, almost all the other attacks in the literature
assume access to an oracle.

VI. EXPERIMENTAL RESULTS

We create an automatic analysis tool that performs all these
analyses, including the reverse engineering and tracing of the
locked netlist. The tool will first try to isolate the restore
unit and find keyinput-related nodes and the sub-circuit that
contains information about key. Then it uses a SAT Solver to
compute the protected patterns, which will be used to recover
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TABLE IV

PERFORMANCE OF THE ATTACKS

the key by the Gaussian elimination attack and the oracle based
attack respectively. We make this tool available as a python
script on Github.

A. Results on Publicly Available Locked
Microprocessor Design

The authors of SFLL provided a locked circuit (h = 32,
k = 256) netlist in Github [22]. This is a microcontroller that
uses ARM Cortex-M0 microprocessor [23] and has more than
50K gates. The microcontroller also includes ARM AHB-Lite
as its BUS, UART interface, and 64 KB of SRAM. As they
also provided an oracle (software model for their working
chip), the first step of our analysis is to find a protected
input pattern. We show that we can achieve this by reverse
engineering the given netlist and analyzing its structure; we
then apply our attacks in the previous section to recover key.
To complete our attack, we reorder the bits of key based on the
XOR operation with the inputs. Finally, we acquire keyinput0
to keyinput255:

8ef4d4dd81aa036ab431b8f7ec6c4055a990bd138a77e4f4ec
7187ffd287cffb

We run the attack outlined here on an Intel(R) Core(TM)
i5-5200U CPU @2.20GHz computer. It takes less than a
minute to finish either of the two attacks; the detailed
execution time for each attack is shown in Table IV.

B. Results on Other SFLL-hd Benchmarks

Here we report the results of our attack on the other SFLL-
hd benchmarks provided to us by the SFLL authors; we are
grateful for their help. These benchmarks are different from
the public one. They are synthesized netlists in verilog with a
key size of 128 and varying h values. These benchmarks are
significantly smaller than the public one, and naturally, our
attack also runs much faster.

In Table IV, we report the benchmark, its gate count, and
the SFLL-hd parameters (h value used and the key size).
Regarding our attacks, we report the preprocessing time to
read in the netlist and create data structures, and the attack

times; we report the computational time for the SAT solver to
extract the protected pattern(s), if it can, and the time it takes to
either solve equations through Gaussian Elimination or query
the oracle repeatedly. We show the execution time of each
step individually; we also report the total execution time for
the two attacks.

The performance data of Gaussian elimination in h ≤ 4
cases is unavailable, since in such cases the matrices B might
be singular. Nevertheless, our attack that requires a single
protected pattern runs successfully by querying the oracle in
such cases.

We extract the secret key successfully in all cases and have
confirmed this with SFLL authors as well.

C. Expected Attack Success on Other SFLL Benchmarks

Our attack on SFLL-hd was successful as the functionality
strip operation was implemented in a way that left structural
traces about the key. We expect our attack to be successful on
any other SFLL benchmark with this type of implementation,
which allows us to first identify a protected input pattern, and
then extract the key.

The other version of SFLL is SFLL-flex. In SFLL-flex,
the designer can choose the protected patterns freely
irrespective of any key and hamming distance [8]. For an
attack to be fully successful on this version, there are two
conditions to be met.

First, the functionality strip operation should be imple-
mented by leaving structural traces, so that the protected
patterns can be identified. We expect this to always be the case
unless truly security-aware design synthesis tools are used; we
argue that any post-processing (resynthesis) on the logic will
leave traces, i.e., new nets that can be structurally identified
(e.g., low activity), revealing information about a protected
pattern.

And, second, the attack should identify all protected pat-
terns. Developing an attack that satisfies the second condition
is an open research problem. We expect our attack to be
less successful on SFLL-flex where the protected patterns are
selected judiciously.
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SFLL-fault is the other version of SFLL, where logic is
removed from the design by inserting a fault; the keys are the
test patterns detecting the fault [27]. This defense necessitates
a very different attack, as logic removal does not leave any
structural traces.

VII. CONCLUSION

In this paper, we perform a security analysis of the latest
provably secure logic locking solution SFLL-hd. We identify a
weakness in the structural implementation of the functionality
strip operation in the locked design and exploit it to compute
some of the protected input patterns, which are normally a
secret. We would like to note that the creators of SFLL-
hd utilize the existing design synthesis tools to implement
the functionality strip operation. However, current design
tools/flow are all security-oblivious; SFLL-hd too suffers from
this, leaving traces in the circuit about the key (visible to
reverse engineers). They rely on the transformations of the
logic synthesis tool hoping that these traces will be difficult to
find. Until truly security-aware synthesis tools are developed,
these vulnerabilities will exist, undermining the security of any
methodology that relies on these tools. Our attack highlights
this reality, which we think is a call for a very important line of
research: development of security-aware logic synthesis tools.

Then we present two different techniques that can extract
the SFLL-hd key from the identified protected input pat-
terns. One technique is based on creating a linear system of
equations from the identified k protected input patterns and
solving this system to extract the key. This technique does
not require an oracle access. The other technique requires
only one protected input pattern and queries the oracle with k
manipulated versions of this pattern to extract the key. Finally,
we execute our attack on the SFLL-hd benchmark circuit
made publicly available [8]. This is a microcontroller that
consists of an ARM Cortex-M0 microprocessor, with more
than 50K gates, protected by SFLL-hd with h = 32 and
k = 256. We successfully recover the 256-bit key by two
attacks in 76.32 seconds. We also show that our attack is
consistently successful on various other SFLL-hd benchmarks
as well. Furthermore, we make this attack tool available to
public. We expect our attack to be successful on any design
locked with SFLL-hd, and more so on designs with a larger
number of protected patterns. Our future work is to develop
an attack on SFLL-flex [8] and SFLL-fault [27], if possible.
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