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ABSTRACT

Technology mapping based on DAG-covering suffers from
the problem of structural bias: the structure of the mapped
netlist depends strongly on the subject graph. In this pa-
per we present a new mapper aimed at mitigating structural
bias. It is based on a simplified cut-based boolean matching
algorithm, and using the speed afforded by this simplifica-
tion we explore two ideas to reduce structural bias. The
first, called lossless synthesis, leverages recent advances in
structure-based combinational equivalence checking to com-
bine the different networks seen during technology indepen-
dent synthesis into a single network with choices in a scalable
manner. We show how cut-based mapping extends naturally
to handle such networks with choices. The second idea is to
combine several library gates into a single gate (called a
supergate) in order to make the matching process less lo-
cal. We show how supergates help address the structural
bias problem, and how they fit naturally into the cut-based
boolean matching scheme. An implementation based on
these ideas significantly outperforms state-of-the-art map-
pers in terms of delay, area and run-time on academic and
industrial benchmarks.

1. INTRODUCTION
The task of technology mapping in standard-cell logic syn-

thesis is to express a given Boolean function as a network
of gates chosen from a given standard-cell library to opti-
mize some objective function such as total area or delay.
In these general terms, technology mapping is intractable.
The problem is usually simplified by first representing the
Boolean function as a good initial multi-level network of
simple gates called the subject graph. The subject graph is
then transformed into a multilevel network of library gates
by means of local substitutions. This simplification means
that the structure of the subject graph dictates to a large
extent the structure of the mapped network; this is known
as structural bias.

In this work we present a new Boolean technology map-
per aimed at mitigating the effects of structural bias. At the
core of the mapper is a simplified Boolean matching algo-
rithm that is faster than structural matching and produces
better results. With the speed afforded by this matching
technique, we propose two complementary techniques to re-
duce structural bias: lossless synthesis and supergates.

Lossless Synthesis. To obtain a good structure for the
subject graph a number of technology independent synthesis
steps are usually performed. An example of this is the SIS
rugged script shown in Figure 1(a). Each individual syn-
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Figure 1: In lossless synthesis intermediate networks
are combined to create a choice network which is
then used for mapping.

thesis step in that script is heuristic, and the subject graph
produced at the end of the script is not necessarily optimal;
indeed it is possible that an intermediate network is better
in some respects than the final network. We explore the idea
of combining these intermediate networks into a single sub-
ject graph with choices and using that to derive the mapped
netlist. This is shown schematically in Figure 1(b). The
mapper is not constrained to use any one network, but can
pick and choose the best parts of each network. We call this
lossless synthesis since no network seen during the synthesis
process is ever lost. By including the initial network in the
choice network, we can be sure that the heuristic logic syn-
thesis operations never make things worse. We can also use
multiple scripts and repeatedly go through each accumulat-
ing more choices.

The challenging part of this proposal is the efficient cre-
ation of the choice network. Towards this end we pro-
pose to leverage recent advances in combinational equiva-
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(a) The subject graph. (b) An easy match to find. (c) A hard match to find.
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Figure 2: Simple example illustrating the utility of supergates. Given the subject graph in (a), the match in
(b) is easy to find since both inputs of the XOR are present in the subject graph. In contrast the match in
(c) is hard to find, since the MUX input labelled x is not present in the subject graph. The match in (c) can
be found by combining some of the gates into a supergate. Note that all the inputs of the supergate are still
required to be present in the subject graph.

lence. State-of-the-art equivalence checkers depend on find-
ing functionally equivalent internals points in the networks
being checked in order to reduce the complexity of the deci-
sion procedure. By using a combination of random simula-
tion and SAT it is possible to quickly determine equivalent
points in two circuits. These equivalent points provide the
choices for mapping in our proposal.

Supergates. A supergate is a single output combina-
tional network of a few library gates which is treated as
a single library gate by our algorithms. The advantage of
doing this may not be immediately obvious: after all, if a su-
pergate matches at a node, wouldn’t the mapping algorithm
just return the same result, except it would match library
gate by library gate rather than all the gates at once? The
answer to this question is “no,” and Figure 2 provides a
simple counter-example.

The subject graph is shown in Figure 2(a). Conventional
mapping would find the mapping consisting of the XOR and
AOI gates as shown in Figure 2(b), but would fail to find
the mapping with the MUX as shown in Figure 2(c). To see
this, observe that one of the inputs of the MUX (labelled
x in Figure 2(c)) is not present in the subject graph. Con-
sequently, the MUX by itself is not a valid match for f. In
contrast, the inputs of the XOR (nets p and ¬d) in Fig-
ure 2(b) are both present in the subject graph; thus making
the XOR a valid match at f.

Now if we connect the MUX, the XOR, and the inverter
together to form a new gate (in the manner shown in Fig-
ure 2(c)), it is easily verified that this new gate is a match
at f in the subject graph. This new gate is a supergate built
from the library gates expressly for the purpose of finding
better matches.

This example illustrates the main idea behind supergates:
Using bigger gates allows the matching procedure to be less
local, and thus less affected by the structure of the subject

graph. Furthermore, as this example illustrates, supergates
are useful even with standard cell libraries that are func-
tionally rich.

The three ideas presented in this paper – the faster match-
ing algorithm, lossless synthesis, and supergates – are logi-
cally independent. However, one of the contributions of this
paper is to show how these ideas come together naturally in
the context of cut-based Boolean mapping.

In Section 2 we present related work. Section 3 has an
overview of the mapper and details of the matching algo-
rithm. In Section 4 we present practical techniques to con-
struct the choice network for lossless synthesis and extend
the basic mapping to handle choices. In Section 5 we present
details of supergate construction. In Section 6 we present
the results of experiments designed to determine the run-
time–quality tradeoff of the techniques presented in this pa-
per. We also present comparisons with other industrial and
academic mappers. We conclude in Section 7 by pointing
out some limitations of these techniques and suggesting fu-
ture work.

Finally, we note that the focus of this paper is on miti-
gating structural bias, that is, on the logical aspects of the
technology mapping problem. Therefore to simplify expo-
sition we present the algorithms in the context of a simple
gain-based delay model which does not take capacitive load-
ing into account. Such a model is useful in practice in a flow
that uses technology mapping for topology selection, and
does sizing and buffering iteratively with placement. Fur-
thermore, the techniques in this paper continue to be appli-
cable in a more traditional load-based flow, since essentially
they are techniques to increase the number of topologies
considered during mapping, and are orthogonal to the usual
techniques of considering loads during technology mapping.

2. RELATED WORK
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The literature on technology mapping provides a spec-
trum of techniques that trade structural bias for computa-
tional complexity. The classical structural approaches, such
as tree- and DAG-covering [8, 12], lie at one end of this
spectrum. They have relatively short run-times but provide
sub-optimal results since their mapping choices are com-
pletely constrained by the given subject graph. Construc-
tive Boolean approaches [9, 19] lie closer to the other end of
the spectrum. Although they do not depend as much on the
structure of the subject graph, they are limited by the choice
of their (heuristic) decomposition schemes. This limitation
combined with long run-time makes them useful mostly in a
re-synthesis flow after a mapped network has been obtained
by some other means.

The approach described by Lehman et al. [13] lies between
these two extremes: a number of different local algebraic
decompositions are encoded into the given subject graph as
choices. This leads to less dependence on the original sub-
ject graph, but this method suffers from longer run-times.
Wavefront mapping [21] is a practical enhancement of this
approach that maps the circuit in stages, thus reducing the
amount of match data that is stored at one time, though at
the cost of optimality. An extension of this algorithm allows
for dynamic decomposition based on a partially mapped cir-
cuit. Compared to the approach of Lehman et al. it reduces
the number of decompositions that need to be explored.

In this paper, with lossless synthesis, we propose a differ-
ent set of choices, than the ones in [13, 21]. Instead of being
based on local decompositions, these choices are based on
finding equivalent points in different networks, leading to
more global choices. The idea of wavefront can be used in
conjunction with the techniques in this paper to reduce the
amount of match data that needs to be stored in memory
at one time.

In addition, this paper puts forth the idea of combining li-
brary gates into supergates to obtain a more Boolean match-
ing. By squinting a little, one can view supergates as being
an alternate source of choices. The choices induced by su-
pergates come from the library rather than the network. In
the literature similar combinations of gates have been used
for other purposes such as constructive decomposition [19]
and rewiring [2].

We discuss the work related to the simplified Boolean
matching in Section 3.2.

3. BOOLEAN MATCHING
We introduce the simplified, Boolean matching algorithm

in the context of the overall Boolean matching procedure.
We start by describing the overall Boolean mapping proce-
dure. It is a cut-based boolean mapping [4, 6, 7] on a DAG
using dynamic programming [3, 12] to guarantee delay op-
timality.

3.1 Overview of Boolean Mapping
The input to the mapping procedure is an And-Inverter

graph (AIG) [11]. An AIG is a DAG whose nodes repre-
sent either AND gates or primary inputs(PIs). Its edges
represent wires. Inverters are represented by bubbles on the
edges. Given an AIG, the mapping is done in 5 steps.

Step 1. Compute k-feasible cuts. A feasible cut of a
node N in the AIG is a set of nodes {Xi} in the transitive
fan-in cone of N such that an arbitrary assignment of values
to Xi completely determines the value of N . A feasible cut

is redundant if the value of a node in the cut is completely
determined by an assignment of values to the other nodes
in the cut. A k-feasible cut is a feasible cut of size at most
k that is not redundant. The cut {N} is always a k-feasible
cut of node N (for any k) and is called the trivial cut.

Let Φ(N) denote the set of k-feasible cuts of node N . If
N is a PI, then Φ(N) = {{N}}. If N is a AND node with
children A and B, then Φ(N) =

{{N}} ∪ {u ∪ v | u ∈ Φ(A), v ∈ Φ(B), |u ∪ v| ≤ k}

We compute all 5-feasible cuts of every node in the net-
work by the simple bottom-up traversal based on the above
recursion. Although in general a graph may have O(n5) 5-
feasible cuts, we found that most test-cases have between 20
and 30 5-feasible cuts per node. We restrict our attention
to 5-feasible cuts since our experiments show that the total
number of cuts increases very quickly with k. Pruning tech-
niques have to be applied, and the mapping results are not
significantly better (since the pruning is quite arbitrary).

Step 2. Compute truth-tables of cuts. The next step
is to compute the local function of a node in terms of its cut.
This is done for every non-trivial k-feasible cut of every node
in the network. Given a node N , and a cut {Xi} of that
node, formal variables are assigned to the each cut node (in
no particular order). Using these variables, the functional-
ity of the node is computed symbolically. Since usually only
5-feasible cuts are considered, this symbolic function com-
putation can be performed efficiently using 32-bit integers
to represent the truth-tables. In what follows we use the
words “function” and “truth-table” interchangeably.

Step 3. Boolean Matching. For each node in the
network, for every cut, an appropriate gate (if one exists) is
chosen from the library. Each gate thus chosen is called a
match for the node. Our matching procedure differs from
the traditional approach and we present this in greater detail
in the following section.

Step 4. Compute best arrival time at each node.
Starting from the PIs and working in topological order to-
wards the outputs, the best arrival time is computed for
each node from amongst all its matches.

Step 5. Choose the best cover. In the reverse topo-
logical order, the best gate for each primary output is cho-
sen. Next, the best gates implementing the inputs of these
gates are chosen and so on until all primary inputs have
been reached.

3.2 Simplified Boolean Matching
In the matching step we wish to choose the appropriate

library gate to implement a given function. The traditional
solution is to use NPN-equivalence classes. (Two Boolean
functions are NPN-equivalent if one can be transformed into
the other by permuting or negating the inputs or negat-
ing the output.) First the NPN-canonical representatives of
the library gates are computed. The gates are stored in a
hash table indexed by the representatives. During matching
the NPN-canonical representative is computed for every cut
function. It is used to look up the hash table to find the
appropriate gate.

However this approach is slow since it requires the com-
putation of the NPN-representative for every cut function.
Furthermore, once the appropriate gate is found, the appro-
priate variable correspondence must be found between the
library gate and the cut function. Since these computations
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are done in the inner body of the mapper, there has been a
lot of research on speeding them up [1, 5, 7, 22].

Our simplified matching procedure is motivated by the
fact that in the mapping procedure described above, the
functions have only 5 variables. It is therefore advantageous
to precompute all functions obtained by permuting the in-
puts to library gates and to add those to the hash table.
Thus during the actual matching, there is no need to com-
pute a canonical representative. The cut function can be
used directly to look up the hash table. In addition to avoid-
ing the NPN-equivalence checking, it also avoids the need to
establish input correspondence after the gate is found.

Example. For an AOI gate having the function ¬(x1 ·
x2+x3), we precompute all permutations i.e. ¬(x1 ·x3+x2),
¬(x2 · x1 + x3), ¬(x2 · x3 + x1) etc. Note that both ¬(x2 ·
x1 + x3) and ¬(x1 · x2 + x3) are kept although they are the
same function. This is because in industrial libraries, the
input-to-output delays are often different even for function-
ally symmetric pins.

Once again, all functional computations are done with
truth tables. In Section 5.2 on supergate generation we de-
scribe this precomputation procedure in more detail. (The
precomputation can be thought of as generation of super-
gates consisting of single library gates.)

So far we have not considered the phase assignment at the
inputs. This is because the mapping is done “dual rail” as
explained in the following section on optimal phase selection.

The problem with this simplified matching procedure is
that it is not scalable. Indeed, this would not work if the
functions we were interested in had, say, 10 variables. But in
the framework of Boolean mapping it suffices since we deal
with functions having only a few variables.1 This means that
in the worst case (a library gate with 5 inputs) 120 functions
are added to the hash table (instead of 1 as in the NPN-
representative case). However since each match is now only
a hash table lookup (versus an NPN-representative com-
putation, lookup, and input correspondence), the matching
procedure runs faster.

3.3 Optimal Phase Selection
The mapping quality can be improved by exploiting the

additional flexibility of mapping each node in both polari-
ties: positive (as above) and negative. When the final map-
ping is selected (in step 5 of Section 3.1) the appropriate
polarity is chosen to guarantee the shortest delay on each
path. This may lead to an increase in area since the same
node may be required in both polarities, and may have to
be duplicated.

Example. Consider the AIG fragment in Figure 3. Node
x is required in both polarities. If it is mapped in only one
polarity then the arrival time at either p or q increases by
an additional inverter delay.

Observe that this “dual rail” mapping means that the in-
puts of a cut are available in both polarities. Consequently
the function of a cut is not precisely determined: it belongs
to a class of functions which differ only by complementa-
tion of inputs. This class is called the N-equivalence class.
There is greater flexibility since any gate belonging to the
N-equivalence class may be used to implement the cut.

The simplified matching procedure above is extended to

1In Boolean mapping, as more variables are used, the cut
computation becomes a bottleneck before the matching
does.

a x b

p q

Figure 3: In order to map p and q optimally for
delay, the node x must be mapped in both polarities.

work with N-equivalence classes. During library preprocess-
ing, for every permutation of a gate, the N-equivalence rep-
resentative is computed. This is defined as the function with
the lexicographically smallest truth table. Similarly during
matching, for every node function the N-equivalence repre-
sentative is computed and used for looking up in the hash
table.

The alert reader would have noticed that this extension
negates some speed benefit of the simplified matching pro-
cedure presented in Section 3.2. However this may be jus-
tified with the following arguments. First, computing the
N-equivalence representative is less expensive than comput-
ing the NPN-equivalence representative since the class is
smaller (2n versus 2n+1n!). Second, this is a necessary price
to pay for exploring this larger search space of decomposi-
tions (c.f. the inverter transform in Lehman et al. [13]). In
structural mappers this search space is explored by adding
a pair of inverters between two nodes, and by adding a wire
(with zero cost) to the library. That technique is not well
suited for Boolean mapping since it significantly increases
the number of cuts in the network.

4. LOSSLESS LOGIC SYNTHESIS
The idea behind lossless logic synthesis is to “remem-

ber” every network seen during a synthesis flow (or a set
of flows) and to select the best parts of each network dur-
ing technology mapping. This is useful for two reasons.
First, technology-independent synthesis algorithms are usu-
ally heuristic, and so there is no guarantee that the final
network is optimal. By mapping using only the final net-
work, we might miss out on a better result that could be
obtained from an intermediate network in the optimization
flow.

Second, synthesis operations usually apply to the network
as a whole. So a flow to optimize delay might significantly
increase area, since the whole network is optimized for delay.
By combining such a delay optimized network with another
network that has been optimized for area, it is possible to
get the best of both. On the critical path, the mapper can
choose from the delay-optimized network, whereas off the
critical path, the mapper chooses from the area-optimized
network.

The main problem is constructing the choice network ef-
ficiently. In Section 4.1 we give an overview of how this is
done. In Section 4.2 we extend the Boolean mapping proce-
dure of Section 3.1 to handle choices.

4.1 Constructing the choice network
The choice network is constructed from a collection of

networks that are functionally equivalent. The key idea is
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to use recent advances in equivalence checking that are based
on identifying functionally equivalent internal points in the
networks being checked.

Conceptually the procedure is as follows: one can imagine
each network to be decomposed into AND gates and invert-
ers to form an AIG. Now for every node in the network the
global function is computed, say by building BDDs. All
those nodes which have the same global function are col-
lected in equivalence classes. Thus, the choice network is
an AIG which has multiple functionally equivalent points
collected in equivalence classes.

However for large circuits computing global BDDs is not
feasible. Note that in the procedure outlined above, it is not
necessary to actually compute BDDs. One can use random
simulation to identify potentially equivalent nodes, and then
use a SAT engine to verify equivalence and construct the
equivalence classes. We have implemented a package called
FRAIG (functionally reduced and-inverter graphs) that ex-
poses the same API as a BDD package but internally uses
simulation and SAT. (The details of this package are in the
technical report [18]. A discussion of the issues involved can
also be found in recent work on structure-based equivalence
checking [10, 11, 14, 15].)

Local re-writing. A different way to generate choices
is by iteratively applying the Λ- and ∆-transformations de-
scribed by Lehman et al. [13] Given an AIG, we use the
associativity of AND to locally re-write the graph (the Λ-
transformation), i.e. whenever the structure AND(AND(x1,
x2), x3) is seen in the AIG, it is replaced by the equivalent
structures AND(AND(x1, x3), x2) and AND(x1, AND(x2,
x3)). If this process is done until no new AND nodes are
created, it is equivalent to identifying the maximal multi-
input AND-gates in the AIG and adding all possible tree-
decompositions. Similarly, the distributivity of AND over
OR (the ∆-transformation) provides another source of choices.
In Section 6 we present experimental results that compare
the flexibility provided by these choices with those from loss-
less synthesis.

Note that this leads to a new way of thinking about logic
synthesis: one can use arbitrary transformations to re-write
the network and create choices. The best combination of
these choices is selected during mapping.

4.2 Mapping with choices
The cut-based Boolean mapping procedure of Section 3.1

can be extended naturally to handle equivalence classes of
nodes. Only the cut computation step needs modification.
Given a node N , let N' denote the equivalence class it be-
longs to. Let Φ'(N ) denote the set of cuts of the equivalence
class N . Then,

Φ'(N ) =
[

N∈N

Φ(N)

where, if A and B are the two inputs of N , Φ(N) is given
by

{{N}} ∪ {u ∪ v | u ∈ Φ'(A'), v ∈ Φ'(B'), |u ∪ v| ≤ k}

This expression for Φ(N) is a slight modification of the
one in Section 3.1: The cuts of N are obtained from the
cuts of the equivalence classes of its inputs (instead of the
cuts of just its inputs).

As before, the cut computation can be done in a bottom-
up manner from PIs to outputs in a single pass.

The subsequent steps of the mapping process (steps 2–5 of
Section 3.1) remain unchanged, except now the operations
are done for equivalence classes of nodes, rather than for
individual nodes.

5. SUPERGATES
A supergate is a single output combinational network of a

few library gates which is treated as a single library gate by
the mapping procedure. As the example in the introduction
shows (see Figure 2), supergates match larger portions of the
subject graph than library gates. This makes the matching
more Boolean and less dependent on the structure of the
subject graph. This greatly increases the number of matches
seen by the mapper, and leads to better results.

In what follows we use the term simple gates to mean the
gates in the original library.

5.1 Use in Mapping
Supergates require no change to the mapping procedure

since they are no different from simple gates for the map-
per. Supergates are generated in a pre-processing step as
described in Section 5.2. The supergate library is generated
once, stored compactly in a file, and used when technology
mapping is invoked. The supergates are recomputed only if
changes are made to the original library. This is why super-
gate generation has an additional advantage of reducing the
total run-time of mapping by pre-computing and re-using
the mapping information, which depends on the library but
not on the network to be mapped.

After the network is mapped using supergates, each su-
pergate in the mapped netlist is replaced by its constituent
simple gates; thus the final netlist consists of only the library
gates.

5.2 Supergate Generation
Supergates are generated recursively in a number of rounds.

In each round we generate a new set of supergates and com-
pute their functions. These supergates are used in subse-
quent rounds to generate new supergates. As usual we rep-
resent functions by truth tables.

Let k be the maximum number of inputs in the support
of the supergates we consider. For example when mapping
with 5-feasible cuts, k would be 5.

Let Gi be the set of supergates at round i. Let L be the
set of simple library gates. Let Jk denote {1 .. k}, π(X) the
set of permutations of a set X, and |g| the number of inputs
of a simple gate g ∈ L.

The supergate generation is as follows. Initially, G0 =
{xi|i ∈ Jk} where xi are elementary functions. Each Gi+1

is the union of Gi and an additional set of functions of the
form g(xi1

, xi2
, .. xin

) where g ∈ Gi and (i1, i2, .. in) ∈ π(Y ),
Y being a subset of Jk of cardinality n = |g|.

The total number of rounds corresponds to the maximum
number of logic levels in a supergate, and is an user-specified
parameter. If the generation is stopped after the first round
(i.e. at G1), then the set of supergates contains only the
library gates with all permutations of input variables (c.f.
Section 3.2).

Example. Let k = 3, i.e. we are interested in supergates
with at most 3 inputs. Let L = {AND, OR}.

G0 = {x1, x2, x3} where the truth table of x1 is 0101 0101,
x2 is 0011 0011 and x3 is 0000 1111.

Each Gi+1 contains in addition to the functions in Gi,

522

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 24,2023 at 08:51:09 UTC from IEEE Xplore.  Restrictions apply. 



functions of the form AND(y1, y2) and OR(y1, y2) where
y1, y2 are functions in Gi.

Thus x1, AND(x1, x2) (whose truth table is 0001 0001),
AND(x2, x1), AND(x1, x3), etc. are some functions in
G1. Similarly, AND(AND(x1, x2), x3), AND(OR(x2, x1),
AND(x1, x3)), AND(AND(x1, x2), AND(x1, x3)), are some
functions in G2.

5.3 Pruning by Dominance
Since the above procedure is exhaustive, a large number

of supergates is generated. However, some of the supergates
generated above are sub-optimal, i.e. they are dominated
by other gates.

Example. Consider the gate AND(AND(x1, x2), AND(x1,
x3)) from the example above. It has worse delay and area
than the supergate AND(AND(x1, x2), x3).

Whenever a new supergate is created, it is checked against
existing supergates that implement the same function (by
means of a hash table). If the new supergate is worse in
terms of area and delay than an existing one, then it is not
added to the set of supergates.

Also note that usually in industrial libraries functional
symmetry of the underlying gate is not very useful. For
example both AND(x1, x2) and AND(x2, x1) have to be
retained since the pin-to-pin delays are different in the two
cases.

5.4 Pruning by Resource Limits
Another technique to reduce the number of supergates

is by pruning based on resource limits. This is important
because of a combinatorial explosion inherent in the above
formulation.

Example. If at one point there are 1000 supergates, and
a 4-input Nand is used as a root gate, there would be 10004

supergates to consider. Many of these would be added (since
the pin-to-pin delays are different) and the number of super-
gates would increase significantly, making the next round
impossible to complete.

We experimented with a number of heuristics to reduce
the combinatorial explosion. The simplest heuristic is to
use only small support gates (say ≤ 3) as root gates. A sec-
ond heuristic to set area and delay limits on the supergates.
These limits can be handled efficiently by sorting the super-
gates and using only those supergates as inputs to the root
gate such that the resulting supergate would be within the
area and delay limits.

The supergate generation technique presented above is
rather basic and inefficient because of the bottom-up na-
ture of the generation process. Improving the generation
process is an interesting research problem. One idea is to
study the cut functions actually encountered during map-
ping, and then to employ constructive decomposition tech-
niques to generate good supergates for the commonly oc-
curring functions. This leads to the exciting possibility of a
mapper that learns from the circuits it processes!

6. EXPERIMENTAL RESULTS
The techniques described in this paper have been imple-

mented in the MVSIS logic synthesis system [17]. The imple-
mentation is freely available. We performed a large number
of experiments to characterize the performance of the map-
per in its various modes, and to benchmark it against other
state-of-the-art mappers. In this paper, we present only four

Mode Delay Area Run-time
Baseline 1.00 1.00 1.00
Local rewriting (L) 0.91 0.96 39.45
Supergates (S) 0.84 1.13 20.26
Lossless (C) 0.79 0.97 12.02
L-S 0.80 1.07 200
L-C 0.75 1.09 90.08
S-C 0.71 1.11 87.16
L-S-C 0.69 1.22 > 200

Table 1: Comparison of various mapper modes.

sets of data due to space limitations. In all the experiments
reported here, delay is the parameter of interest, and area
is not directly controlled during mapping. However, after
mapping, area is recovered off the critical path using the
area-flow algorithm for FPGAs [16] (modified for standard
cells).

6.1 Basic Evaluation
The first two experiments were done in an academic set-

ting, using the MCNC library with a simple load indepen-
dent delay model, and a set of large publicly available bench-
marks. The benchmarks were preprocessed with the script
shown in Figure 1(a) followed by balancing for delay. For
lossless synthesis, the choices were generated using the scheme
shown in Figure 1(b).

Characterizing the quality–run-time tradeoff. Ta-
ble 1 summarizes the relative delay, area and run-times of
the mapper in its various modes. As might be expected,
the fastest run-time is obtained when no local re-writing,
supergates, or lossless synthesis is used (this mode is called
baseline), and the best quality (31% improvement in delay)
is obtained when all three are used (the mode is called L-S-

C ).
In addition to these extreme cases, Table 1 also shows the

intermediate situations when subsets of these techniques are
used, giving us a range of quality–run-time tradeoffs. Using
any one technique causes an order of magnitude increase in
run-time over baseline. Using a combination of two causes
an additional order of magnitude increase. Since the ab-
solute run-time of the baseline mapper is very small (less
than 3 seconds for the largest public benchmarks), an order
of magnitude increase in run-time is acceptable for better
quality.

Furthermore, whenever choices are used, the run-times
include the time spent in equivalence checking for detecting
choices. Arguably, this time could be excluded from the
run-time of the mapper.

In the subsequent experiments we use the baseline mode
and the S-C mode (supergates and lossless synthesis) for
comparisons with other mappers.

Comparison with SIS. Table 2 shows the performance
of the mapper on the benchmark circuits in comparison with
the mapper in SIS. In the baseline mode the mapper runs 5
times faster than the tree mapper in SIS [20] and produces
33% better delay without degrading area. In the S-C mode,
the mapper produces the best results with 30% reduction in
delay over baseline, and 54% over SIS.

6.2 Comparison with Industrial Mappers
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Name Delay Area Run-time
SIS Baseline C-S SIS Baseline C-S SIS Baseline C-S

C5315 1.51 26 0.76 1.02 3423 1.00 4.67 0.3 104.17
C7552 1.45 24.6 0.69 0.98 4668 1.00 3.16 0.57 62.77
dsip 1.39 9.2 0.75 1.26 5010 1.53 6.83 0.41 13.20
pj2 1.71 14.9 0.77 1.20 5151 1.15 4.44 0.63 55.52
bigkey 1.39 11.4 0.64 1.12 6149 1.26 8.11 0.37 88.32
s15850 1.48 32.9 0.80 1.12 6617 1.02 8.25 0.4 74.03
C6288 1.96 82.6 0.67 0.74 8590 1.21 2.92 0.96 79.60
b14 1.90 69.8 0.49 1.09 13775 0.83 3.64 1.62 109.57
b15 1.58 74.2 0.53 1.14 17646 1.01 4.97 1.57 110.13
s35932 1.49 9.2 0.83 1.12 17713 0.98 10.00 1.21 50.60
pj3 1.71 28.3 0.70 1.06 18700 1.15 3.40 2.56 134.39
s38417 1.58 22.2 0.71 1.09 20904 0.96 4.27 2.39 65.38
clmb 1.35 34.2 0.81 1.04 23886 1.15 4.51 2.53 135.92
clma 1.38 36.6 0.76 1.04 23937 1.11 6.65 1.67 337.02
pj1 1.68 41.1 0.62 1.10 29088 1.06 5.00 2.86 153.69
Ratio 1.57 1.00 0.70 1.07 1.00 1.10 5.39 1.00 104.95

Table 2: Comparison with SIS on public benchmarks. The numbers for Baseline are absolute; those for SIS
and C-S are relative to Baseline. Runtime is in seconds on a 3GHz Intel PC with 1GB RAM.

The next set of experiments are conducted in an indus-
trial setting. The examples are timing-critical combinational
blocks extracted from a high-performance microprocessor
design which were optimized for delay during technology
independent synthesis. After technology mapping, buffering
and sizing is done separately in accordance with a gain-based
flow. As part of the mapping, an attempt is made to pre-
fer those gates that can drive the estimated fanout loads.
(This is done iteratively like area-recovery using fanout-
estimation techniques similar to those used in the area-flow
algorithm [16]).

Table 3 shows a comparison of the mapper with two other
state-of-the art mappers: the DAG mapper [12] and Graph-
Map which is an independent implementation of the Lehman-
Watanabe mapper [13]. Using supergates and choices, the
mapper outperforms both Graph Map and DAG mapper in
delay and area and has a significantly shorter run-time.

Finally, Table 4 shows the performance of the mapper on
some larger blocks from the microprocessor, in comparison
with DAG mapper. Delay reduces by 12% while area re-
duces by 24%. Thus, with larger blocks, the improvement
in area is greater. It was pointed in [12] that DAG map-
per can produce significantly faster circuits compared to the
traditional tree mapping approach [8]. However, the area
increase for DAG mapper sometimes can be quite signifi-
cant. The significant area reduction by the new mapper
makes DAG mapping approach much more practical, espe-
cially when power consumption is becoming an increasingly
important consideration in high-performance designs.

7. CONCLUSIONS AND FUTURE WORK
Our experiments demonstrate that Boolean mapping based

on the simplified matching algorithm and optimal phase se-
lection is a better alternative to structural matching since it
produces superior results with shorter run-time. Supergates
and choices fit nicely into this framework and greatly im-
prove the quality of mapping by mitigating structural bias.
Furthermore, the intermediate networks seen during tech-

nology independent synthesis are a useful source of choices
for the final mapping. Supergates, though generated by
brute-force enumeration, improve the quality of mapping,
even with industrial libraries.

To give a balanced view of the techniques presented, we
should point out their limitations. The exhaustive cut com-
putation which works well in baseline mode (when no choices
are used) becomes a computational bottleneck when many
choices are present. More research into pruning heuristics
along the lines of [4] would be useful.

A general limitation of cut-based matching methods is
that library gates with many inputs cannot be handled. In
practice this is solved by using a structural matcher just
for those gates during the matching phase (as is done in the
IBM system [21]). We are currently exploring more seamless
techniques to extend boolean matching to gates with many
inputs.

The exhaustive nature of supergate generation (as pre-
sented in Section 5.2) is inefficient since (i) the generated
functions may not correlate well with the actual cut func-
tions in the circuits, and (ii) the same function may be gen-
erated multiple times. It would be interesting to explore
methods for guided supergate generation where more com-
putational effort is invested in finding the supergates for the
frequently occurring cut functions. This suggests the possi-
bility of a mapping procedure that learns from the previous
runs how to guide supergate generation.

For our current prototype within a gain-based methodol-
ogy, sizing and buffering are performed after mapping during
physical synthesis. We plan to extend our mapper for use
in a flow that combines logical and physical synthesis.
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Name DAG Mapper GraphMap C-S
Area Delay Area Delay Area Delay

ex1 42.00 124.90 49.00 115.18 40.00 89.74
ex2 51.00 92.64 59.00 76.06 55.00 75.03
ex3 53.00 92.44 61.00 78.03 54.00 72.71
ex4 177.00 177.89 208.00 131.92 171.00 123.45
ex5 118.00 162.49 156.00 132.92 102.00 129.81
ex6 103.00 123.02 103.00 101.37 88.00 93.16
ex7 41.00 56.45 47.00 53.42 47.00 53.96
ex8 41.00 56.45 47.00 53.42 47.00 53.96
ex9 96.00 146.78 154.00 133.96 98.00 111.62
ex10 102.00 48.11 92.00 44.65 105.00 44.55
ex11 91.00 74.80 85.00 60.16 72.00 60.89
ex12 239.00 225.11 323.00 189.73 205.00 209.11
avg 1.00 1.00 1.20 0.85 0.94 0.81

Table 3: Comparison with the other mappers on industrial benchmarks.

DAG Mapper Baseline
Area Delay Run-time Area Delay Run-time

ex13 1148 252.15 99.40 601 203.52 2.66
ex14 4530 344.63 105.70 2294 272.17 3.80
ex15 8500 296.64 26.80 6159 272.78 3.14
ex16 22576 89.70 283.30 17868 90.92 5.69
ex17 25412 171.11 406.30 18440 162.29 5.99
ex18 28550 167.27 600.10 23284 159.33 7.29
avg 1.00 1.00 1.00 0.76 0.88 0.04

Table 4: Comparison on large industrial circuits.
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