
A Global Optimization Algorithm for Buffer and Splitter Insertion

in AdiabaticQuantum-Flux-Parametron Circuits

Rongliang Fu

The Chinese University of Hong Kong

rlfu@cse.cuhk.edu.hk

Mengmeng Wang

Yokohama National University

wang-mengmeng-kj@ynu.jp

Yirong Kan

Nara Institute of Science and Technology

kan.yirong@is.naist.jp

Nobuyuki Yoshikawa

Yokohama National University

nyoshi@ynu.ac.jp

Tsung-Yi Ho

The Chinese University of Hong Kong

tyho@cse.cuhk.edu.hk

Olivia Chen

Tokyo City University

olivia.chen@ieee.org

ABSTRACT

As a highly energy-efficient application of low-temperature super-

conductivity, the adiabatic quantum-flux-parametron (AQFP) logic

circuit has characteristics of extremely low-power consumption,

making it an attractive candidate for extremely energy-efficient

computing systems. Since logic gates are driven by the alternating

current (AC) serving as the clock signal in AQFP circuits, plenty of

AQFP buffers are required to ensure that the dataflow is synchro-

nized at all logic levels of the circuit. Meanwhile, since the currently

developed AQFP logic gates can only drive a single output, splitters

are required by logic gates to drive multiple fan-outs. These gates

take up a significant amount of the circuit’s area and delay. This pa-

per proposes a global optimization algorithm for buffer and splitter

(B/S) insertion to address the issues above. The B/S insertion is first

identified as a combinational optimization problem, and a dynamic

programming formulation is presented to find the global optimal

solution. Due to the limitation of its impractical search space, an

integer linear programming formulation is proposed to explore the

global optimization of B/S insertion approximately. Experimental

results on the ISCAS’85 and simple arithmetic benchmark circuits

show the effectiveness of the proposed method, with an average

reduction of 8.22% and 7.37% in the number of buffers and splitters

inserted compared to the state-of-the-art methods from ICCAD’21

and DAC’22, respectively.

KEYWORDS

superconducting electronics, AQFP, buffer and splitter insertion

ACM Reference Format:

Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa,
Tsung-Yi Ho, and Olivia Chen. 2023. A Global Optimization Algorithm
for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron

Circuits. In 28th Asia and South Pacific Design Automation Conference (AS-

PDAC ’23), January 16–19, 2023, Tokyo, Japan. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3566097.3567936

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567936

Table 1: The comparison between CMOS and AQFP.

Circuit AQFP CMOS

Active component Josephson junction (JJ) Transistor

Passive component Inductor Capacitor

Information Current pulse Voltage level

Clocking Scheme Synchronize (Clock signal) Asynchronous

Fan-out 1 (Splitter for multiple fan-outs) ≥ 1

Power AC DC

1 INTRODUCTION

Computation speed and power consumption have become the ulti-

mate challenge of semiconductor integrated circuits. As an applica-

tion of low-temperature superconductivity, the superconducting

logic circuit has high speed and low power consumption charac-

teristics, making it an attractive alternative to CMOS for future

computing systems. Josephson junction (JJ), the superconducting

switching device, switches rapidly (∼ 1 ps) with extremely low

energy per switch (< 10−19 J) and communicates information by
voltage pulses that propagate over superconducting transmission

lines almost without loss. As a member of the superconducting logic

families, adiabatic quantum-flux-parametron (AQFP) logic has at-

tractedmuch attention recently due to its extremely energy-efficient

technology, where adiabatic switching operations can significantly

reduce energy dissipation. In AQFP logic, alternating current (AC)

serves as both clock signals and power supplies, lightening power

consumption overhead of direct current (DC) bias while operating

at gigahertz-level frequencies. It has been demonstrated that the

switching energy (energy dissipation per switching event) of an

AQFP gate ranges from 10−20 J to 10−21 J at 5GHz operation [10].

Although AQFP logic has these superior advantages, the un-

derlying differences with conventional CMOS logic, as shown in

Table 1, make electronic design automation (EDA) tools of CMOS

logic not applicable to AQFP logic. Firstly, each AQFP logic gate

requires a clock signal to release its signal to its successors and

reset its state. Thus, numerous buffers must be inserted to ensure

all inputs to each logic gate have the same delay (clock phases),

making the circuit work correctly. In other words, all the input data

paths of a logic gate must have the same number of logic gates,

namely the logic level. Secondly, due to output current limitations,

an AQFP logic gate can only drive one logic gate. To resolve this

issue, a specially designed gate, namely a splitter, must be inserted

to achieve multiple fan-outs. Therefore, buffer and splitter insertion

is critical to satisfying the above two requirements of AQFP circuits.

With the rapid development of physical-level research and the

growth of fabrication capabilities for larger and more complex

769

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Rongliang Fu et al.

�� �� ��

����

��

��

��

��

	

��

	�

�
��������

� � � � �

(a) The input circuit.

�� �� ��

����

��

��

��

��

	

�

� �

�

� �

� �

�

� �

�������	

�
���	
� � � � � �

(b) The result of [5].

�� �� ��

����

��

��

��

��

	

�

�

�

�

�

�

�

�

� � � � � �

(c) The optimal result.

Figure 1: An example of B/S insertion where the maximum fan-out of the splitter is 2. For the B/S insertion of the input circuit

(a), where orange digitals represent the logic level of gates, (b) has greater circuit depth and inserts three more buffers than (c).

circuits, the research on the optimization of buffer and splitter

insertion becomes vital for AQFP logic. Although several related

works [1, 2, 5–7] have been proposed to optimize the buffer and

splitter (B/S) insertion for AQFP circuits, inserted buffers and split-

ters still account for over than half of the JJ number, with the latest

results [7] averaging 52.06%. In [1] and [2], splitters and buffers are

inserted separately after conventional logic synthesis, then timing-

like heuristic algorithms are presented to optimize the number of

buffers and splitters. In [6], a heuristic method is applied to im-

plement irredundant buffer and splitter insertion by scheduling

and moving groups of gates, called chunks, together. Although this

method can reduce the number of buffers and splitters, the process

of chunkedmovementmay be endless due to alternating up or down

moves. Besides, [5] focuses on the buffer and splitter insertion prob-

lem on a single net and presents a dynamic programming-based

algorithm that can provide an optimal buffer and splitter insertion

solution for each net of the input circuit. However, the interaction

among nets can affect the number of buffers and splitters inserted.

As shown in Fig. 1, there are two B/S insertion solutions for the

same input circuit. [5] heuristically determines the logic level of

each logic gate, which may lead to a suboptimal result, that is, three

more buffers are inserted in Fig. 1(b) than the optimal result in

Fig. 1(c). Besides, [7] identifies B/S insertion as a scheduling prob-

lem and proposes an SMT formulation to find the global optimum,

which is impractical for large AQFP circuits. It also provides an

efficient heuristic for B/S insertion, which reduces the number of

inserted B/S by only near 4% compared to [5], although it is faster.

This paper focuses on how to further reduce the cost caused by

B/S insertion after logic optimization. Since the splitter requires a

clock signal, it can also be used to increase the delay of the data path

so that the structure of the splitter tree has a significant impact on

the number of buffers and splitters inserted. This paper identifies

the B/S insertion as a combinational optimization problem and

describes a dynamic programming formulation to find the global

optimum, which is impractical due to the limitation of its enormous

search space. To practically find a high-quality solution for B/S

insertion, the problem is approximately identified as an integer

linear programming formulation. The proposed algorithm divides

the B/S insertion process into three steps: (i) logic level optimization

aiming at globally minimizing the cost of B/S insertion, (ii) splitter

tree generation based on the optimal multi-way search tree, and (iii)

buffer insertion. The proposed algorithm shows effective results on

the ISCAS’85 and arithmetic benchmark circuits, with an average

reduction of 8.22% and 7.37% in the number of buffers and splitters

inserted compared to the methods in ICCAD’21 [5] and DAC’22

[7], respectively. Furthermore, for circuits with a maximum fan-out

number over 30, the proposedmethod can reduce the B/S number by

an average of 10.43% and 12.79% than these two methods, especially

by 15.83% and 22.72% for c7552. Moreover, all generated circuits

generated by the proposed method have less circuit depth.

The rest of the paper is organized as follows. Section 2 introduces

AQFP logic and defines some terminologies. Section 3 presents our

proposed method and describes the logic level optimization and

the splitter tree generation in detail. Section 4 shows experimental

results by comparing the proposed algorithm to the state-of-the-art

methods. The paper is summarized in Section 5.

2 PRELIMINARIES

2.1 AQFP Logic

Adiabatic quantum-flux-parametron logic is a digital logic imple-

mentation technology based on superconducting Josephson junc-

tions. The power consumption of AQFP circuits is relatively low

compared to that of other superconductor logic families. An AQFP

circuit usually consists of buffers, splitters, read-out interfaces, and

other logic gates. As the basic component in AQFP logic, the buffer

consists of two superconductor-inductor loops and can construct

other logic gates. When the AC is supplied for an AQFP buffer, a

single flux quantum is stored in either its left or right loop, and

the direction of its output current can represent its logic state. The

splitter consists of a buffer and a 1-to-𝑛 branch circuit (usually,
2 ≤ 𝑛 ≤ 4) and is clocked. In an AQFP circuit, if the output signal
of one logic gate needs to be transmitted to multiple logic gates,

splitters must be inserted into its output to realize multiple fan-outs.

In AQFP logic, the multi-phase clocking scheme is usually ap-

plied, such as the 4-phase clocking scheme [9]. Both Fig.2(a) and

Fig.2(b) use the 4-phase clocking scheme, where 𝐼𝑥1 and 𝐼𝑥2 are
AC-based clock signals with a phase separation of 90◦, and 𝐼𝑑 is
a DC input, which applies an offset flux of half single flux quan-

tum to each gate. Fig. 2 shows the necessity of buffer insertion for

correct operation in an AQFP circuit with the function 𝑞 = 𝑎&𝑏&𝑐 .
Compared to Fig. 2(a), all inputs to each logic gate in Fig. 2(b) are

in the same clock phase by the buffer insertion, i.e., they have an

equal delay. According to the timing schematic in Fig. 2(c), when

the data input 𝑎 arrives at the logic gate 𝑔2, the signal of𝑤1 does
not arrive, making that the logic gate 𝑔2 has no output when the
clock signal 𝐼𝑥2 arrives. At the next clock phase, the signal of 𝑤1
arrives at 𝑔2, then 𝑔2 has the output 0 after 𝐼𝑥2 arrives. By contrast,
the circuit in Fig. 2(b) can correctly present the function 𝑞 = 𝑎&𝑏&𝑐

770

A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

��

��

� � �

�

	�

���

���

��

(a)

��

��

��

� � �

�

��

��		
�
���

���

��

(b)

��������

��������

�

�

�

�	

	 �

(c)

�

�

�

��

�

��

� 	

����
���

��������

(d)

Figure 2: An example shows the necessity of buffer insertion

for correct operation in anAQFPwith the function𝑞 = 𝑎&𝑏&𝑐,
where a 4-phase clocking scheme [9] is applied. (a) and (b)

are gate-level schematics before and after buffer insertion,

respectively, where 𝐼𝑥1 and 𝐼𝑥2 are AC-based clock signals
with a phase separation of 90◦, and 𝐼𝑑 is the DC input, which
applies an offset flux to each logic gate. Besides, 𝑎, 𝑏, and 𝑐
are three data inputs, and 𝑞 is a data output; (c) and (d) are
timing schematics of (a) and (b), respectively.

due to all inputs to each gate with the same logic level by the buffer

insertion, whose timing schematic is shown in Fig. 2(d).

Meanwhile, all logic gates of an AQFP circuit are divided into

multiple levels as the arrival order of input data. All primary inputs

(PIs) are usually aligned at the first level, and all primary outputs

(POs) are usually aligned at the last level. Therefore, the logic level

of all PIs is set to 0, and the logic level of all POs is the maximum

logic level, equal to the circuit depth. To reduce the circuit depth,

the logic level of POs should be as small as possible.

2.2 Terminology

An AQFP circuit can be represented by a network 𝑁 (𝑉 , 𝐸), where
𝑉 is the set of logic gates, and 𝐸 is the set of nets. The node set
𝑉 = 𝐼 ∪ 𝑂 ∪ 𝐺 consists of the set 𝐼 of PIs, the set 𝑂 of POs, and
the set 𝐺 of logic gates. For a node 𝑣 ∈ 𝑉 , 𝐸𝑖 (𝑣) is the set of its
input edges, and 𝐸𝑜 (𝑣) is the set of its output edges. The edge set
𝐸 = 𝐸𝑢 ∪ 𝐸𝑚 consists of the set 𝐸𝑢 of 2-pin nets and the set 𝐸𝑚 of
over-2-pin nets. For a edge 𝑒 ∈ 𝐸, 𝑒𝑠 is the source of the edge 𝑒 , and
𝑒𝑡 is the set of sinks of the edge 𝑒 . If the edge 𝑒 is a 2-pin net, i.e.,
𝑒 ∈ 𝐸𝑢 , then |𝑒𝑡 | = 1, otherwise |𝑒𝑡 | > 1, 𝑒 ∈ 𝐸𝑚 . After buffer and
splitter insertion, an extended network 𝑁 ′(𝑉 ′, 𝐸 ′) can be obtained,
and 𝑉 ′ = 𝑉 ∪ 𝐵 ∪ 𝑆 , where 𝐵 and 𝑆 represent the set of buffers
and the set of splitters, respectively. The maximum fan-out of the

splitter is denoted as 𝑋 . For a node 𝑣 ∈ 𝑉 , FI(𝑣), FO(𝑣), and L(𝑣)
represent the set of its fan-in nodes, the set of its fan-out nodes,

and its logic level, respectively.

2.3 Problem Formulation

To meet the delay and fan-out requirements, buffers and splitters

must be inserted into the AQFP circuit, dramatically impacting the

circuit’s area and delay. This paper focuses on the buffer and splitter

insertion problem for AQFP gate-level circuits after logic synthesis,

formulated as follows:

• Input:

(1) A given circuit network 𝑁 (𝑉 , 𝐸).
(2) The maximum fan-out 𝑋 of the splitter.
• Output:

An extended network 𝑁 ′(𝑉 ′, 𝐸 ′) with an equal delay for all
inputs to any gate and a single fan-out for all gate outputs.

• Constraints:

(1) Fan-out constraint: ∀𝑒 ∈ 𝐸 ′, |𝑒𝑡 | = 1.
(2) Delay constraint: ∀𝑎, 𝑏 ∈ FI(𝑣), L(𝑎) = L(𝑏).
(3) PI alignment: ∀𝑖 ∈ 𝐼 , L(𝑖) = 0.
(4) PO alignment: ∀𝑜 ∈ 𝑂, L(𝑜) = max

𝑣∈𝑉 ′
𝐿(𝑜).

• Goal:

Minimize the number of buffers and splitters inserted with-

out changing the functional structure of the original network

𝑁 , formulated as follows:

min
𝑆,𝐵∈𝐺′

|𝑆 ∪ 𝐵 | (1)

3 A GLOBAL OPTIMIZATION ALGORITHM
FOR BUFFER AND SPLITTER INSERTION

For buffer insertion, the number of inserted buffers depends on

the clock phase difference of all inputs to the logic gate, which can

be calculated as the logic level difference between the source and

the sink of the net. Splitter insertion is actually to solve the multi-

fan-out of the net, and the number of inserted splitters depends on

the fan-out number of the net. Therefore, the objective function in

Equation 1 can be reformulated as:

min
𝑒∈𝐸

𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑇𝑟𝑒𝑒𝐶𝑜𝑠𝑡 (𝑒) (2)

where the function 𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑇𝑟𝑒𝑒𝐶𝑜𝑠𝑡 can calculate the number of
buffers and splitters inserted in the net 𝑒 in terms of the logic level of
the source and sinks of the net 𝑒 . Buffer and splitter insertion for an
over-2-pin net can be converted into an optimal multi-way search

tree generation problem, as specifically described in Section 3.2.

After assigning logic levels to all nodes, the number of buffers and

splitters inserted can be obtained. Since the upper boundary 𝑢𝑏
and the lower boundary 𝑙𝑏 of the logic level of each node can be
obtained by topological sorting, an optimal logic level assignment

can be found to obtain the global optimal solution of buffer and

splitter insertion. Therefore, the buffer and splitter insertion can be

regarded as a combinational optimization problem, formulated as:

min
𝐿

𝑣∈𝑉 ,𝑙𝑏 (𝑣) ≤𝐿 (𝑣) ≤𝑢𝑏 (𝑣)
∀𝑢∈𝐹𝐼 (𝑣),𝐿 (𝑣)−𝐿 (𝑢) ≥1

𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑇𝑟𝑒𝑒𝑠𝐶𝑜𝑠𝑡 (𝐿) (3)

where the function 𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑇𝑟𝑒𝑒𝑠𝐶𝑜𝑠𝑡 can calculate the number of
buffers and splitters inserted in the circuit in terms of the set 𝐿.
Now the key to the buffer and splitter insertion problem is how to

determine the logic level of each node. Actually, it can be converted

to the shortest path problem. Firstly, all nodes are divided into𝑚
groups 𝐺 by the topological sorting from PIs to POs, where the
distance 𝐷 (·) between two groups is the number of buffers and

splitters inserted between nodes from these two groups. So, for 𝑘𝑡ℎ

771

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Rongliang Fu et al.

�

���

��

��

�

� ��

�����

	�

�

�
��
��
�����
������������

��� ���

� 	

� �

�
��������
����
�����������
	�����
���������

��
��

���

� � � � � � � � � ! � " ����

Figure 3: Flow of the proposed method contained logic level

optimization, splitter tree generation, and buffer insertion.

group, its minimum cost 𝐵𝑆 (𝐿(𝐺𝑘)) under a logic level assignment

𝐿 (𝐺𝑘) can be calculated as:

𝐵𝑆 (𝐿(𝐺𝑘)) =𝑚𝑖𝑛

{
𝐵𝑆 (𝐿(𝐺𝑘)) ,

𝐵𝑆 (𝐿(𝐺𝑘−1)) + 𝐷 (𝐿(𝐺𝑘), 𝐿(𝐺𝑘−1))
(4)

However, it is impractical due to the very large search space whose

size is
|𝐺 |∑
𝑘=1

∏
𝑣∈𝐺𝑘

{𝑢𝑏 (𝑣) − 𝑙𝑏 (𝑣) + 1}. Hence, to reduce the com-

plexity and shrink the search space, a global optimization algorithm

for B/S insertion is proposed, as shown in Fig. 3. Firstly, the com-

plete multi-way tree is used to approximately evaluate the cost of an

over-2-pin net’s B/S insertion, which makes the problem converted

into an integer linear programming problem to further determine

the logic level of each gate. Then, optimal splitter trees are gener-

ated for each over-2-pin net via the optimal multi-way search tree

generation method. Finally, buffers are inserted for all 2-pin nets.

3.1 Logic Level Optimization

The logic level of each gate can be calculated by minimizing the

number of all buffers and splitters required by the circuit. The delay

between two connected gates can be calculated from their logic

level difference. So, the total delay of a net 𝑒 can be calculated as
𝑝 (𝑒) =

∑
𝑡 ∈𝑒𝑡 (L(𝑡) − L(𝑒𝑠) − 1). For a 2-pin net, the number of

buffers inserted is equal to its delay, while for an over-2-pin net, the

number of buffers inserted is less than its delay due to the delay of

the splitter. To evaluate the number of buffers and splitters required

by an over-2-pin net 𝑒 , the complete multi-way tree is applied in
the logic level optimization. Firstly, according to the sink number

|𝑒𝑡 | of the net 𝑒 , a complete multi-way tree with |𝑒𝑡 | leaves is built,
whose all path sum 𝑓 (|𝑒𝑡 |) can be calculated. Then the remained
delay can be fulfilled by a buffer chain. Therefore, the number of

buffers and splitters required by the circuit can be formulated as:

min
∑
𝑒∈𝐸𝑢

𝑝 (𝑒) +
∑
𝑒∈𝐸𝑚

(
𝑝 (𝑒) − 𝑓 (|𝑒𝑡 |)

|𝑒𝑡 |
+ 𝛽 (|𝑒𝑡 |)

)
(5)

s.t. ∀𝑣 ∈ 𝐼 , L(𝑣) = 0 (6)

∀𝑣,𝑢 ∈ 𝑂, L(𝑣) = L(𝑢) (7)

∀𝑣 ∈ 𝑂 ∪𝐺,∀𝑢 ∈ FI(𝑣), L(𝑣) ≥ L(𝑢) + 1 (8)

∀𝑒 ∈ 𝐸𝑚,
∑
𝑡 ∈𝐶

∀𝐶⊆𝑒𝑡 ,𝐶≠∅

(L(𝑡) − L(𝑒𝑠) − 1) ≥ 𝑓 (|𝐶 |) (9)

where 𝑓 (𝑥) and 𝛽 (𝑥) are all path sum and the number of non-
leaf nodes of the complete 𝑋 -way tree with 𝑥 leaves, respectively.

Since 𝑓 (|𝑒𝑡 |) and 𝛽 (|𝑒𝑡 |) are constants for an edge 𝑒 , the problem
of minimizing the number of splitters and buffers can be abstracted

as an integer linear programming problem as follows:

min
∑
𝑣∈𝑉

�	

∑

𝑒∈𝐸𝑖 (𝑣)

1

|𝑒𝑡 |
−

∑
𝑒∈𝐸𝑜 (𝑣)

1

|𝑒𝑡 |
��
 ∗ L(𝑣) (10)

s.t. 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 6 − 9 (11)

Equation 6 and Equation 7 align PIs and POs so that all PIs and

all POs are on the first and last levels, respectively. To limit the

fan-out of the node, as shown in Equation 9, all path sum of the

multi-way tree constructed from any subset 𝐶 of its sinks 𝑒𝑡 for
any edge 𝑒 must be greater than or equal to that of the complete
multi-way tree with |𝐶 | leaves, that is because the complete multi-
way tree has the smallest all path sum and can meet the fan-out

requirement. In Equation 9, all subsets of sinks of each edge need

to be enumerated. To list all subsets of sinks 𝑒𝑡 =
{
𝑠1, 𝑠2, ..., 𝑠 |𝑒𝑡 |

}
of

the edge 𝑒 , a characteristic function 𝜒𝐴 (𝑥) is used to identify each
subset 𝐴 of 𝑒𝑡 .

𝜒𝐴 (𝑥) =

{
1 if 𝑥 ∈ 𝐴

0 if 𝑥 ∉ 𝐴
(12)

𝜒𝐴 (𝑥) can be represented by a 0-1 sequence. For example, for 𝑒𝑡 =
{𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4},

{𝑠4} 00001

{𝑠2, 𝑠4} 00101

{𝑠0, 𝑠1, 𝑠3} 11010

{𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4} 11111

So all combinations of sinks 𝑒𝑡 , i.e., all subsets of sinks 𝑒𝑡 , can be
generated by full permutations of the 0-1 sequence of length |𝐸 |.
Then the sinks corresponding to the index of the ‘1’ element in

each permutation form a subset. However, there are 2 |𝑒𝑡 | subsets

for the edge 𝑒 , which makes enumerating all subsets infeasible for
the edge with a large number of sinks. So, for the edge with over

30 sinks, 𝑛 sequences are first generated by the random shuffle
algorithm. Then, (|𝑒𝑡 | − 1) ∗ (|𝑒𝑡 | − 2)/2 subsets of the length from
3 to |𝑒𝑡 | are selected starting from the left side. In this way, there
are 𝑛 ∗ (|𝑒𝑡 | − 1) ∗ (|𝑒𝑡 | − 2)/2 subsets selected to constrain the
maximum number of subsets of nodes in the multi-way tree. Finally,

due to numerous decision variables and constraints, making the

range of decision variables not easy to judge, an integer linear

programming solver using a linear programming-based branch-and-

bound algorithm is used to solve the integer linear programming

problem in Equation 10 to obtain the logic level of each gate.

3.2 Splitter Tree Generation

After obtaining the logic level of each gate, the delay between any

two connected gates can be determined. To satisfy the delay and

fan-out requirements, buffers and splitters must be inserted. For a

2-pin net, 𝑑 buffers can directly be inserted according to its delay
𝑑 . For an over-2-pin net, a splitter tree composed of buffers and
splitters needs to be generated, minimizing the number of buffers

and splitters inserted.

To solve the splitter tree generation problem of the (𝑛 + 1)-pin
net 𝑒 , several terms need to be defined.

• The nodes of the splitter tree: The leaf nodes of the splitter

tree is the sinks 𝑒𝑡 of the net 𝑒 , where 𝑛 = |𝑒𝑡 | , 𝑛 ≥ 1. The

772

A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Algorithm 1: Optimal splitter tree generation algorithm

Input: An over-2-pin net 𝑒 with a source 𝑠 and 𝑛 sinks 𝑡𝑡𝑡 ,
and the maximum fan-out 𝑋 of the splitter

Output: A generated split tree

1 Calculate the delay: 𝑡𝑡𝑡𝑖 .𝑑𝑒𝑙𝑎𝑦 = L (𝑡𝑡𝑡𝑖) − L(𝑠) − 1, 𝑖 ∈ [1, 𝑛]
2 Reorder sinks 𝑡𝑡𝑡 in ascending order in terms of their delays

3 𝐷 = max
𝑖∈[1,𝑛]

𝑡𝑖 .𝑑𝑒𝑙𝑎𝑦 +
log𝑋 𝑛� + 1

4 dp[𝑛] [𝑛] [𝑋] [𝐷 + 1] = {+∞, +∞, +∞}
5 pt[𝑛] [𝑛] [𝑋] [𝐷 + 1] = {−1,−1}
6 // Initialization

7 for 𝑠 ∈ [1,min {𝑛,𝑋 }]; 𝑙 ∈ [1, 𝑛 − 𝑠 + 1] do
8 𝑟 = 𝑙 + 𝑠
9 if 𝑠 == 1 then
10 for 𝑑 = 0 to 𝐷 do
11 Δ = |𝑑 − 𝑡𝑡𝑡𝑙 .𝑑𝑒𝑙𝑎𝑦 |
12 dp𝑙,𝑙,1,𝑑 = 𝑑 > 𝑡𝑡𝑡𝑙 .𝑑𝑒𝑙𝑎𝑦? {Δ,Δ, 0} : {0, 0,Δ}

13 else

14 dp𝑙,𝑟 ,𝑠,𝐷 = dp𝑙,𝑟−1,𝑠−1,𝐷 + dp𝑟,𝑟,1,𝐷

15 // Calculate the minimum cost

16 for 𝑙𝑒𝑛 ∈ [2, 𝑛]; 𝑙 ∈ [1, 𝑛 − 𝑙𝑒𝑛 + 1] do
17 𝑟 = 𝑙 + 𝑙𝑒𝑛
18 for 𝑑 = 𝐷 − 1 to 0; 𝑠 ∈ [1,min {𝑙𝑒𝑛, 𝑋 }] do
19 if 𝑠 == 1 then
20 dp𝑙,𝑟 ,𝑠,𝑑 = min

𝑘∈[1,min (𝑙𝑒𝑛,𝑋)]
dp𝑙,𝑟 ,𝑘,𝑑+1 + {0, 0, 1}

21 pt𝑙,𝑟 ,𝑠,𝑑 = {−1, 𝑘}

22 else

23 dp𝑙,𝑟 ,𝑠,𝑑 = min
𝑘∈[𝑙+𝑢,𝑟−𝑣)

𝑠=𝑢+𝑣

dp𝑙,𝑘,𝑢,𝑑 + dp𝑘+1,𝑟 ,𝑣,𝑑

24 pt𝑙,𝑟 ,𝑠,𝑑 = {𝑘,𝑢}

25 return a splitter tree built by backtracking method using pt

out-degree of each non-leaf node must be in the range [1, 𝑋].
The non-leaf node is a buffer if its out-degree equals one,

and a splitter otherwise. Besides, the depth of each node 𝑣
in the splitter tree is denoted as 𝑑 (𝑣), and the delay of the
leaf node 𝑣 is denoted as 𝑣 .𝑑𝑒𝑙𝑎𝑦.

• The cost of generated splitter tree: For a generated splitter

tree, its cost [5] consists of three parts, including maximum

extra delay 𝑒𝑑 = max
𝑡 ∈𝑒𝑡

{𝑑 (𝑡) − 𝑡 .𝑑𝑒𝑙𝑎𝑦} of leaf nodes, total

extra delay 𝑡𝑒𝑑 =
∑
𝑡 ∈𝑒𝑡

{𝑑 (𝑡) − 𝑡 .𝑑𝑒𝑙𝑎𝑦} of leaf nodes, and the

number 𝑛𝑛 of non-leaf nodes of the generated tree. Besides,
the addition of the two costs {𝑒𝑑1, 𝑡𝑒𝑑1, 𝑛𝑛1} , {𝑒𝑑2, 𝑡𝑒𝑑2, 𝑛𝑛2}
is defined as {max {𝑒𝑑1, 𝑒𝑑2} , 𝑡𝑒𝑑1 + 𝑡𝑒𝑑2, 𝑛𝑛1 + 𝑛𝑛2}.

Referring to the optimal multi-way search tree [4], an optimal

splitter tree generation algorithm based on dynamic programming

is proposed, as shown in Algorithm 1. Firstly, the delay of each

leaf node is calculated (line 1). Then, leaf nodes are reordered in

ascending order in terms of their delays, and the maximum depth is

calculated. Since the complete X-way tree with |𝑒𝑡 | leaf nodes has

the minimum depth 𝑑𝑚𝑖𝑛 =
log𝑋 |𝑒𝑡 |� + 1, there is a splitter tree
with |𝑒𝑡 | leaf nodes, where the extra delay of its leaf node with the
maximum delay is 𝑑𝑚𝑖𝑛 , meaning that the 𝑒𝑑 of the optimal splitter
tree is not greater than 𝑑𝑚𝑖𝑛 . dp𝑙,𝑟 ,𝑠,𝑑 records the cost of 𝑠 splitter
trees with leaf nodes 𝑒𝑙 , 𝑒𝑙+1, ..., 𝑒𝑟 , whose root nodes’ depth is 𝑑 .
pt𝑙,𝑟 ,𝑠,𝑑 = {𝑚, 𝑠 ′} records two splitters: one with 𝑠 ′ fan-outs and
leaf nodes 𝑒𝑙 , 𝑒𝑙+1, ..., 𝑒𝑚 , and another one with 𝑠 − 𝑠

′ fan-outs and

leaf nodes 𝑒𝑚+1, 𝑒𝑚+2, ..., 𝑒𝑟 . Lines 4-14 initialize dp and pt. When
the fan-out of the root node of the substructure {𝑙, 𝑟 , 𝑠, 𝑑} with leaf
nodes 𝑒𝑙 , 𝑒𝑙+1, ..., 𝑒𝑟 is 𝑠 = 1 in the depth, a buffer is inserted, oth-
erwise it is divided into two parts, and a splitter is inserted (line

19-24). After obtaining the cost {1, 𝑛, 1, 0} of the root node, the opti-
mal splitter tree can be constructed by the backtracking algorithm

in terms of pt. The time complexity and the space complexity of

Algorithm 1 are 𝑂 (𝑋𝑛3
log𝑋 𝑛�), 𝑂 (𝑋𝑛
2
log𝑋 𝑛�), respectively.

4 EXPERIMENTAL RESULTS

The proposed global optimization algorithm for buffer and splitter

insertion is implemented in C++-17 language. The experiments

were executed on Intel(R) Xeon(R) W-2223 3.60GHz CPU machine

with 32 GB memory. The Gurobi [8] is selected as the integer linear

programming solver due to its significant performance. The intrin-

sic logic gate in AQFP logic is the 3-input majority (MAJ) gate. A

2-input AND gate can be obtained from a 3-input MAJ gate, one of

which data input is a constant ‘0’. A 2-input OR gate can be obtained

from a 3-input MAJ gate, one of which data input is a constant ‘1’.

In current AQFP circuits, buffers, splitters, and inverters all have 2

JJs, 3-input MAJ, 2-input AND, and 2-input OR all have 6 JJs. The

maximum fan-out of the splitter is 4.

The performance of the proposed algorithm was evaluated with

ISCAS’85 and simple arithmetic benchmark circuits without any

splitters and buffers obtained from [3]. To obtain the experimental

results more accurately, several modifications have been made to

the benchmark circuits. Since the inverter can be integrated into

the input of its connected gate, inverters connected to POs are

transmitted to the input ports of the predecessors of inverters, such

as < 𝑥,𝑦, 𝑧 > =< 𝑥,𝑦, 𝑧 > for a MAJ gate, 𝑥&𝑦 = 𝑥 |𝑦 for an AND
gate, and 𝑥 |𝑦 = 𝑥&𝑦 for an OR gate. If the inverter is directly
connected to both the PI and the PO, it can be reserved. In this way,

the number of inverters (INV), other logic gates, JJs, and maximum

fan-out (MaxFO) are counted in Table 2.

The proposed method was compared with two methods pro-

posed in ICCAD’21 [5] and DAC’22 [7], respectively, in terms of

the number (BS) of inserted B/S, the circuit’s JJ number (JJs) and

the circuit depth (Depth), as shown in Table 2. Since the JJ amount

directly determines the area and power consumption of the AQFP

circuit, it is an important metric in the AQFP circuit. The circuit

depth denotes the maximum logic level of POs in the circuits. Be-

sides, to ensure consistency in the delay and fan-out processing for

PIs and POs of the circuit by each experimental method, PIs and

POs also require buffer and splitter insertion so that all PIs have a

logic level of 0 and all POs have the same logic level.

Compared with ICCAD’21, the proposed method has an average

of 8.22% and 4.54% reduction in the number of inserted B/S and the

JJ number, respectively. Due to the incomplete data of the global

optimum method from DAC’22, the proposed method is compared

773

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Rongliang Fu et al.

Table 2: The experimental result comparing the proposed method with the state-of-the-art methods

Testcase
Original Circuit ICCAD’21 DAC’22 Ours

INV Gates JJs Depth MaxFO BS JJs Depth BS JJs Depth BS JJs Depth

alu32 0 1513 9078 100 128 15087 39252 171 15040 39158 173 13976 37030 169

mult8 0 439 2634 35 9 1836 6306 70 1869 6372 71 1681 5996 70

counter16 0 29 174 9 4 82 338 17 65 304 17 66 306 17

counter32 0 82 492 13 4 178 848 23 155 802 23 156 804 23

counter64 0 195 1170 17 4 382 1934 30 352 1874 30 351 1872 30

counter128 0 428 2568 22 4 798 4164 38 760 4088 38 755 4078 38

c432 0 121 726 26 10 852 2430 37 874 2474 38 829 2384 37

c499 0 387 2322 18 8 1210 4742 29 1275 4872 31 1173 4668 29

c880 0 306 1836 27 9 1661 5158 40 1703 5242 41 1536 4908 40

c1355 0 389 2334 18 9 1203 4740 29 1290 4914 31 1186 4706 29

c1908 0 289 1734 21 14 1332 4398 34 1298 4330 35 1253 4240 34

c2670 1 369 2216 21 32 1988 6192 28 2131 6478 30 1869 5954 28

c3540 0 794 4764 32 38 2303 9370 53 2266 9296 55 1963 8690 52

c5315 15 1317 7932 26 41 5997 19926 40 6014 19960 42 5505 18942 40

c6288 0 1870 11220 89 17 9297 29814 179 9893 31006 180 8832 28884 179

c7552 1 1395 8372 33 170 8041 24454 58 8758 25888 66 6768 21908 58

Average 1.0928 1.0484 1.0019 1.0844 1.0498 1.0362 1 1 1

with the DAC’22 heuristic method. Compared with the results of

DAC’22, the proposed method can obtain 7.37% fewer buffers and

splitters and 4.58% fewer JJs on average. In addition, it is seen that

the proposed algorithm has better results than the state-of-the-art

methods on the circuits with large fan-out. For instance, for circuits

with a maximum fan-out number over 30, the proposed method

has 10.43% and 12.79% fewer B/S on average than the state-of-the-

art methods. In the c7552 circuit with a maximum fan-out of 170,

the proposed algorithm has a significant improvement over other

methods, up to 15.83% and 22.72%. In addition, the depth of each

generated circuit is less than or equal to that of the ICCAD’21

method and the DAC’22 method.

5 CONCLUSION

This paper introduces the buffer and splitter insertion method to

make the circuit satisfy the delay requirement and fan-out limitation

of AQFP logic, which is a vital step in the design flow of AQFP

circuits. For the buffer and splitter insertion problem, the interaction

among nets makes it challenging to find an optimal solution. To

minimize the number of buffers and splitters inserted, a global

optimization algorithm for buffer and splitter insertion is proposed.

Firstly, an integer linear programming model is built to obtain the

logic level of each gate so that the delay between connected gates

can be determined. Then, the sinks of each net are sorted in non-

decreasing order according to the delay of its sinks. Finally, the

optimal splitter tree can be generated for each net by the optimal

multi-way search tree method based on dynamic programming.

On the ISCAS’85 and simple arithmetic benchmark circuits, the

proposed method achieves an 8.22% and 7.37% reduction in the

inserted B/S number compared with the methods in ICCAD’21

and DAC’22, respectively. Furthermore, the proposed method can

reduce the inserted B/S number by 10.43% and 12.79% on average

for circuits with a maximum fan-out number over 30. Experimental

results also show our improvements in the circuit depth.

ACKNOWLEDGMENTS

The research work described in this paper was conducted in the In-

telligent Design Automation Lab funded by The Hong Kong Jockey

Club Charities Trust.

REFERENCES
[1] Christopher L Ayala, Ro Saito, Tomoyuki Tanaka, Olivia Chen, Naoki Takeuchi,

Yuxing He, and Nobuyuki Yoshikawa. 2020. A semi-custom design methodology
and environment for implementing superconductor adiabatic quantum-flux-
parametron microprocessors. Superconductor Science and Technology 33, 5 (Mar.
2020), 054006. https://doi.org/10.1088/1361-6668/ab7ec3

[2] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Nobuyuki Yoshikawa, and Yanzhi
Wang. 2019. A Buffer and Splitter Insertion Framework for Adiabatic Quantum-
Flux-Parametron Superconducting Circuits. In 2019 IEEE 37th International Con-

ference on Computer Design (ICCD). 429–436. https://doi.org/10.1109/ICCD46524.
2019.00067

[3] EPFL. 2021. ISCAS’85 and simple arithmetic benchmarks. https://github.com/
lsils/SCE-benchmarks/tree/main/ISCAS

[4] L. Gotlieb. 1981. Optimal Multi-Way Search Trees. SIAM J. Comput. 10, 3 (1981),
422–433. https://doi.org/10.1137/0210031

[5] Chao-Yuan Huang, Yi-Chen Chang, Ming-Jer Tsai, and Tsung-Yi Ho. 2021. An
Optimal Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-
Parametron Circuits. In 2021 IEEE/ACM International Conference On Computer

Aided Design (ICCAD). 1–8. https://doi.org/10.1109/ICCAD51958.2021.9643456
[6] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. 2021. Irredundant Buffer

and Splitter Insertion and Scheduling-Based Optimization for AQFP Circuits.
https://doi.org/10.48550/ARXIV.2109.00291

[7] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. 2022. Beyond Local
Optimality of Buffer and Splitter Insertion for AQFP Circuits. In Proceedings of
the 59th ACM/IEEE Design Automation Conference (DAC ’22). 445–450. https:
//doi.org/10.1145/3489517.3530661

[8] Gurobi Optimization LLC. 2022. Gurobi - The Fastest Solver - Gurobi. https:
//www.gurobi.com/

[9] Naoki Takeuchi, Shuichi Nagasawa, Fumihiro China, Takumi Ando, Mutsuo
Hidaka, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2017. Adiabatic quantum-

flux-parametron cell library designed using a 10 kA cm−2 niobium fabrication
process. Superconductor Science and Technology 30, 3 (Jan. 2017), 035002. https:
//doi.org/10.1088/1361-6668/aa52f3

[10] Naoki Takeuchi, Taiki Yamae, Christopher L. Ayala, Hideo Suzuki, and Nobuyuki
Yoshikawa. 2019. An adiabatic superconductor 8-bit adder with 24kBT energy
dissipation per junction. Applied Physics Letters 114, 4 (2019), 042602. https:
//doi.org/10.1063/1.5080753 arXiv:https://doi.org/10.1063/1.5080753

774

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

