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Abstract—Carry chains on FPGAs have traditionally been only
used for fast binary arithmetic operations. In this paper, we
propose using the carry chain to implement general logic as a
means of reducing the critical path delay and raising perfor-
mance. To achieve this, we use a Majority-Inverter Graph (MIG)
to represent the application during technology mapping, since
carry functionality directly maps to the majority logic function.
This aligns the subject graph of technology mapping with the
capabilities of the carry chain. We first map an application to
LUTs, then determine a chain of critical LUTs containing paths
of majority “gates” that we deem beneficial for mapping onto the
carry chain. We place such paths onto the carry chains, with the
remaining logic in LUTs. In an experimental study using a suite
of benchmarks, we observe that the proposed approach yields a
post-place-and-route critical path delay that is superior to using
delay-optimized mapping, yet without the significant area penalty.
With carry-chain optimizations, area-delay product is improved
by 9% vs. baseline LUT mappings.

I. INTRODUCTION

Field-programmable gate array (FPGA) architecture has
evolved to include hardened blocks that perform the key opera-
tions deemed important enough to commit silicon area to raise
performance. One hardened block is the carry-chain routing
to speed up arithmetic circuits that are often implemented
on FPGAs. These have traditionally been used for arithmetic
operations only, recognized by the synthesis tool when the
design contains the + or - operators in the HDL. When no
arithmetic operations are present, the adders and dedicated
carry chain routing normally remain unused. The carry-chain
routing is hardwired and provides fast connections for the carry
signal in arithmetic operations, such as ripple-carry addition. In
this paper, we automatically infer the usage of carry chains in
general applications to speed up circuits without area cost.

Majority-Inverter Graphs (MIGs) have recently been shown
to be a promising subject graph versus And-Inverter Graphs
(AIGs) for logic optimization [1], [2]. The majority logic
function, fy;a; = ab + bc + ac, accepts three inputs and
evaluates as true if at least two of the three inputs are true.
This function is equivalent to the carry function in a full adder.
Therefore, given a MIG representation of a circuit, it becomes
much easier to select majority nodes that could benefit from
being mapped to carry chains. In essence, this is because the
subject graph used in logic synthesis is closely aligned with
the carry hardware already present in FPGA logic blocks.
In this work, we explore how a MIG representation can be
used to select paths to map onto the carry chain to improve
performance. If the entire circuit is represented using MIG
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nodes, we can put any path onto the chain; that is, we are
not restricted to solely the arithmetic operations.

We consider using the carry chain to improve performance,
and compare with respect to other optimization techniques
during logic synthesis and technology mapping. We first per-
form standard technology mapping to look-up-tables (LUTs).
Then, we select a chain of critical LUTs that cover a chain
of MIG nodes that can be “hoisted” onto, i.e. mapped onto,
the carry chain. We use two approaches to determine if carry-
chain mapping is possible: a structural approach involving a
rapid exploration of the MIG covered by a LUT, and a formal
approach using quantified Boolean formula (QBF). We estimate
if the carry-chain mapping will provide a delay improvement,
and if so, we perform the mapping. Once LUT and carry-chain
mapping is completed, we place and route using VPR [3]. We
target a Xilinx-style architecture, which allows the carry-output
signal to propagate to the carry-input of the next logic element,
as well as exit through general routing.

Using the carry chains allows us to increase the performance
of the circuit, while avoiding a large area cost, as compared to
delay-optimized technology mapping. We observe that using an
area-optimized technology mapper with carry chain mapping,
we can achieve delay superior to mapping with a delay-
optimized mapper with no area increase over the area-optimized
mapper. We also apply carry-chain mapping to circuits mapped
with a delay-optimized mapper and show a small performance
improvement.

The main contributions of this work are:

¢ MIG-based post-LUT mapping for carry chains via struc-
tural MIG analysis and restructuring, and QBF.

o An experimental study to quantify the performance in-
crease and area consequences. We show that carry op-
timizations, applied to an area-based mapping, provide
superior performance to a baseline delay-based mapping,
yet require 7% less area. In addition, the proposed carry
optimizations improve area-delay product by 9% vs. base-
line mappings.

II. RELATED WORK

Previous work by Frederick et. al [4] presented ChainMap,
an extension to FlowMap [5] to use the dedicated carry chain
routing for chains of LUTs. However, this technique cannot be
applied to more recent FPGAs, as they do not contain such a
routing path within the architecture.

Preusser et al. [6] considered using the carry-chain architec-
ture for general logic by automatically detecting LUTs whose
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functions can take advantage of carry-chain structures. Their
work was not applied post-mapping, but rather, they altered
the cut-selection phase of technology mapping to choose cuts
with desirable properties for carry-chain remapping. Their work
was able to reduce LUT depth by ~20%, at a significant area
penalty. The authors did not place/route the circuits, so the
performance consequences are unclear.

Recently, Chu et al. [7] used MIG-based synthesis for
improving circuit performance. The authors selected a path in
an MIG to map onto the carry chain by estimating the potential
improvement prior to LUT mapping. Once MIG nodes are
selected for the carry chain, the rest of the circuit is mapped in
ABC as an AIG. The final mapping showed an average delay
improvement of 8% with 10% increase in the number of LUTs
and 6% reduction in channel width on small benchmark circuits
having ~500 LUTs or fewer.

In contrast to [7] and [6], our work is applied post technology
mapping to small and large circuits, and provides performance
improvements post-routing, with little to no area penalties.

III. BACKGROUND
A. Majority-Inverter Graph and Mockturtle

A Majority-Inverter Graph (MIG) is a promising circuit
representation for logic synthesis. An MIG is composed of 3-
input majority nodes with potentially inverted edges between
the nodes. The 3-input majority function, fy; 47 = ab+ac+bc,
can also compute 2-input AND and 2-input OR by tying one of
the inputs to O or 1, respectively. As such, any AIG can be
represented by an MIG. AIGs are a commonly used subject
graph for logic optimization using the ABC logic synthesis
framework [8]. An MIG subject graph permits a wider va-
riety of Boolean optimization techniques, leading to a post-
optimization graph that has fewer logic levels [9]. There have
been various logic synthesis techniques proposed for MIGs and
this is an active research area [1], [10], [11].

Mockturtle [12] is an open-source library for logic synthesis
and technology mapping that is designed to support various
subject graphs, such as AIGs, MIGs, or XOR-Majority Graphs
(XMGs) [13]. It allows researchers to apply the same syn-
thesis and mapping algorithms to these graphs. For circuits
represented as an MIG, there are several logic optimization
passes available. We use a combination of algebraic depth-
rewriting [14] for logic-level optimization and Boolean cut-
rewriting and resubstitution [13], [15] for reducing the number
of nodes. The details of these optimizations be found in the
respective papers.

Mockturtle includes a LUT mapper for FPGAs, which uses
a priority-cuts-based mapper as the underlying algorithm [16].
The LUT mapper is similar to the smf LUT mapping im-
plementation in ABC [8]. First, cut enumeration is performed
where IV priority cuts are selected for each node and saved. In
our work, we change the cost of priority cuts to optimize delay
as the primary cost since it results in better delay/area product
for baseline LUT mapping. The Mockturtle mapper uses area
flow as the primary cost and delay as the secondary cost. The
LUT mapper selects cuts that optimize area flow for a few
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iterations and does a final mapping to optimize the estimated
local area. We refer to the existing LUT mapper in Mockturtle
as the area-optimized LUT mapper. We modified and created
another version of the mapper to use delay as the primary cost
for selecting the best cut. We refer to this as delay-optimized
LUT mapper.

B. Quantified Boolean Formula (QBF)

QBF is a generalization of Boolean satisfiability where
variables may have existential (3) or universal quantifiers (V).
For example, a QBF such as: Jz,y Vz : f(z,y,2) is the
decision problem that asks: Does there exist specific Boolean
values for x and y, such that for all Boolean values of z, f(x,,z)
evaluates to true? QBF has previously been applied in FPGA
technology mapping to non-carry-based structures [17].

C. FPGA Carry-Chain Architecture

Logic blocks in modern FPGAs are comprised of multiple
fracturable logic elements (FLEs) as shown in Fig. 1. FLEs
contain fracturable LUTs — LUTs whose constituent sub-LUTs
can be used independently (but possibly requiring some input-
signal sharing), carry circuitry, and optional flip-flops (FFs)
on the outputs. These are connected through intra- and inter-
cluster routing, which we refer to as general routing. There
is dedicated hard-wired routing between the FLEs within a
logic block for fast carry computation for arithmetic operations;
and between vertically adjacent logic blocks, dedicated routing
exists as well. Such hard-wired connections are referred to as
carry-chain routing.

In Xilinx FPGAs, the logic block consists of 2 slices [18].
Each slice contains four fracturable 6-input LUTSs and has hard-
ened circuitry for fast carry propagation. When in arithmetic
mode, the 6-input LUT, configured as two S-input sub-LUTsS,
are used to realize the propagate (p) and generate (g) signals for
the full-adder circuit. The carry signal has dedicated routing to
propagate from one FLE to another. The carry-out and sum-out
bits are both connected to an output multiplexer, allowing the
signals to exit the slice into general interconnect.

IV. TARGET ARCHITECTURE

xbar H

Fig. 1: Target Architecture: 10 Xilinx-Style FLEs within a
Logic Block.
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Fig. 2: FLE configuration in VPR a) 6-LUT mode; b) arithmetic
mode.

cout

lcin

Fig. 3: Xilinx-style FLE configured in arithmetic mode.

We target an architecture with a logic block that contains
10 Xilinx-style FLEs and a 50% depopulated input crossbar
as shown in Fig. 1. Each FLE contains a 6-input fracturable
LUT. Fig. 2(a) shows a portion of an FLE configured in 6-
input LUT mode and Fig. 2(b) shows the FLE configured in
arithmetic mode. When in arithmetic mode, the 5-input LUTs
drive the full adder, whose carry-out is connected to the adder
in its adjacent FLE through dedicated routing.

Observe that our FLE (Fig. 1) contains a full adder, while
Xilinx commercial FPGAs contain a 2-to-1 multiplexer in
that position, shown in Fig. 3, where the select input of the
multiplexer is driven by one of the LUT outputs, and the two
data inputs of the multiplexer are driven by the other LUT
output and cin, respectively. We are using a full adder for
simplicity, as the place and route tool, VPR [3], already has
modelling support for it. However, it is important to realize that
both architectures can be made equivalent by Boolean algebra
manipulation of the functions implemented within the dual-
output LUT. Specifically, in the full-adder case, once we select
a majority node to map to the adder and the cuts to be placed
in the 5-LUTSs, we assign the 3 inputs to the majority node (x1,
x2, x3) to the 3 inputs of the full adder (frur,, fLuT,, Cin) and
set the 5-LUT functionality to the selected cuts of the children.
In the multiplexer case, the two 5-LUTs will determine the
propagate (multiplexer select input) and generate (multiplexer
data input) functions and use that to determine whether c;,
should propagate or not. The resulting carry out function is the
same in both cases.

Mapping to an architecture with full adder, the LUT-mask
and carry-out function would be:

fLUT(L = f(:utml ) fLUTp, = fcutg,-zv
Cout = frut, * frum, + fLum,  Cin + fLUT, - Cin

or for the multiplexer, the LUT-mask and carry-out function
would be:

fLUTa = fcu,tz.l + fc’u,f,wz 5 fLUTb = fcutwl . fz:'u,tm2 )

Cout = frut, - C¢in + fLur, - frum,
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Therefore, one can map a MIG node to the carry element (full
adder or multiplexer) and determine the LUT mask according
to the architecture being targetted.

V. TECHNOLOGY MAPPING

We now describe our extension to the LUT mapper to per-
form post-LUT-mapping carry-chain mapping. We first perform
6-LUT mapping then we select chains of LUTs on the critical
path that can be connected together using the carry-chain
interconnect. The path of MIG nodes from the selected LUT
chain is placed on the carry chain and inverters are removed
to match the underlying hardware (inverter removal preserves
logic functionality, described below). Lastly, we write the LUT
and carry mapping to BLIF for circuit equivalence checking,
and place and route.

Fig. 4 illustrates the desired mapping. The left side of
the figure shows a chain of 3 LUTs, where sigA and sigB
represent the timing-critical signals between the LUTs. The
right side shows the mapping, where sigA and sigB lie on the
fast carry-interconnect, rather than being routed through the
FPGA’s general interconnect.

in[4:0]
H -

SigA sigB
f -
in[4:0] i~
I—. + )_
LUTH LUT2 LUT3 5-LUT
igA
T ’AI’ ’AI’ in[4:0] 5-LUT =
'—. +
in[5] in[4:0] in[4:0] in[4:0] A

in[5]

Fig. 4: Mapping a chain of three critical LUTs to the carry
chain.

A. Carry Chain Selection

Starting from a critical primary output (PO), we recursively
look at the critical driving LUT and create a chain of LUTs
until we reach a LUT that cannot be mapped or a LUT that
only has primary input (PI) as its inputs. We refer to the LUTs
in critical path as critical LUTs and the inputs to a critical LUT
driven by other critical LUTs as critical inputs. We determine
whether the critical LUT and the associated critical input on the
carry chain can be remapped to use the carry chain. Note that
a LUT on the critical path may have multiple critical inputs.
In this case, we aim to check whether one of the signals on
such inputs can be moved to the carry chain. We map as many
chains of critical LUTs as we can starting with those with the
least number of critical inputs.

Given a critical 6-LUT having inputs in[5:0] implementing
a logic function f and assuming, without loss of generality,
that in[5] is the critical input, our aim is to test whether f or
its complement can be remapped into the structure shown in
Fig. 5. The destination structure comprises two 5 LUTs with
shared inputs, and critical LUT input in[5] attached directly
to the majority gate, MAJ. The complemented form of f is
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Fig. 5: Mappability test.
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Fig. 6: Distributive rule in MIG algebra [1].

acceptable owing to inversion properties of majority, discussed
below. The mappability test is conducted in two ways: 1) a fast
structural check using properties of majority; 2) formally using
QBF.

The structural check leverages the distributive
in MIG algebra [1], MAJ(z,y, MAJ(u,v,z))
MAJ(MAJ(z,y,u), MAJ(z,y,v), z), illustrated in Fig. 6.
Observe on the left that z is input to a lower-level majority
gate. The rule allows z to be elevated as input to the higher-
level majority gate, shown on the right. Consider a MIG
subgraph covered by a critical LUT, by iterative application
of the distributive rule it is always possible to elevate the
critical input to the top-most majority gate in the LUT
(the gate driving the LUT output signal). This aligns with
the mappability structure shown on the right of Fig. 5. If,
however, inputs z, y, u, or v also depend on z, then there is
a reconvergent path from z within the LUT’s internal MIG
subgraph, and it may not be possible to eliminate z from also
being required as an input to the LUT. Therefore, the rapid
structural check is as follows: Given a critical LUT and an
associated critical input to that LUT, check whether there is
a reconvergent path from the input to the LUT output in the
MIG subgraph covered by the LUT. If no such reconvergent
path exists, then the mappability test passes.

If the structural check fails, we formulate a QBF decision
problem. Referring to Fig. 5, S is the select input to the multi-
plexer, OUT1 is the true or complemented form of function f,
OUT?2 is the output of the majority gate on the right, and let
me3—o be the 64 SRAM configuration cells contained within
the two 5-LUTs on the right of the figure. The QBF is as

rule
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follows:
35S, mg3—o Vin[5 : 0] IOUT1,0UT2 : OUT1 & OUT2 (1)

Informally, we are testing whether there exists settings for
S and mgz_q for all input combinations in[5:0] there exists
OUT1 and OUT?2 such that OUT1 equals OUT?2. We solve
this using the RAReQS QBF solver [19]. In the experimental
study, we show that the fast structural check is sufficient to
identify the majority of mappable cases.

Although there is no area cost as shown above, there is a
delay cost associated with using the adder. The delay of using
a 5-LUT and adder is 1.26 X more than using a 6-LUT alone
(c.f. Section VI). However, by using the dedicated carry chain,
we avoid the delay of using the general routing. For a scenario
where a LUT has more than 1 critical input and has multiple
fanouts, we would reduce the delay of the path that is placed
on the carry chain (saves routing delay) but increase the delay
to the other LUTs that are not on the carry chain (owing to
the extra adder delay). Critical LUT chains must be at least of
length 2 for remapping onto the carry chain. It is not beneficial
for performance to remap a single critical LUT to use the carry
chain — benefits only arise if some of its neighboring critical
LUTs are also remapped.

B. Inverter Removal and BLIF Generation

Once all paths to be placed on the carry chain have been
decided, we perform inverter removal on these paths. Carry-
chain interconnect on FPGAs does not have optional inverters
so it is necessary to remove any inverters in the MIG node
path that will be placed on the carry chain. We use the method
described in [7] by pushing the bubbles from the MIG path to
the input LUTs. The inverter removal is possible because an
inverted majority function is equal to a non-inverted majority
function with all of its inputs inverted, i.e., ab+ ac + bc
ab+ac+be.

Lastly, we set the LUT configuration for all of the 6-
LUTs that were remapped to use the FLE in arithmetic mode.
Each 5-LUT in front of the adders gets connected to the
dependent inputs from the original 6-LUT. Then, we set the
LUT mask for each 5-LUT. This is then used to generate BLIF
for combinational equivalency checking (CEC) and place and
route. We used ABC’s CEC tool to compare the post-LUT
and carry mapping to the original LUT-only mapping to verify
equivalency.

The BLIF generated for CEC can be used for place and
route, but we cannot guarantee that our FLE will be packed as
expected during packing. To ensure a proper packing of LUTs
and carry, we generate BLIF that groups (pre-packs) the two
5-LUTs and adder together using VPR’s user-specified block
method [3], discussed in the next section. This ensures that the
5-LUTs and the adder stay together during place and route. We
also limit the length of the carry chains to at most 50, which
would be placed across 5 logic blocks. This is because the carry
chains cannot be broken up during place and route, due to a
limitation of the place and route tool.
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cout From To Delay

in[4:0] in[*] out 0.235
ambad sumout in[*] | cout || 0.329
in[*] | sumout 0.329

out cin cout 0.010

5-LUT cin sumout 0.010

ecin EI:A ecin cout 0.020
------------- cin ecin sumout 0.020

Fig. 7: User-specified block TABLE I: 1ut_adder
lut_adder. delays in ns.

VI. ARCHITECTURE MODELLING

We modified one of the existing architecture descriptions
distributed with VPR [3] to reflect our target logic block
architecture. A user-specified block, called lut_adder, is em-
ployed to pack the two 5-LUTs and the adder combination in
a chain. These blocks are packed together by using the chain-
pack pattern [20] during BLIF generation. The block lut_adder,
shown in Fig. 7, has 6 inputs, 5 for the LUTs and 1 for the
adder carry-in signal. It has 3 outputs, 1 carry-out signal (cout),
1 sum-out signal (sumout), and 1 output connected to one of the
5-LUTs (out). There are delay paths from all inputs to cout and
the sumout output, and there is a delay path from the 5 LUT
inputs to the out signal. We specify the delay from any LUT
input to out as 0.235ns and to cout as 0.329ns. Referencing
previous work on carry chains [21], we estimated the delay of
an adder from its input to carry output to be 40% less than the
delay through a 5-LUT. Since we route the carry out signal to
outO from Fig. 2(b) in arithmetic mode, we use the same delay
to sumout as cout. The delays of the paths within the user-
specified block are summarized in Table I. All of the other
delays, such as 6-LUT delay of 0.261ns, remain “as is” from
the available architecture in VPR.

In Xilinx-style FPGAs, each FLE has an additional “bypass”
input that allows a signal to get onto the carry chain at any point
along the chain. To mimic this behaviour, we add an additional
input to our [ut_adder called ecin. This input is only connected
to the routing for the very first FLE of the logic block. We use
this to connect the start of a carry chain only in the case when
we do not have any extra LUT inputs to accommodate the
carry-in signal, i.e. all 5 inputs are being used for the FLE at
the very start of the LUT chain.

VII. EXPERIMENTAL STUDY

In this section, we present the post-place-and-route results
for LUT and carry-mapped circuits compared to baseline LUT-
mapped circuits to evaluate how carry mapping can be used as
a delay improvement strategy.

A. Experimental Setup

We use the EPFL benchmark suite [22] to evaluate our carry
mapping work. We apply logic optimization to reduce the
number of nodes. We generated MIG benchmarks using a logic
synthesis and optimization framework Cirkit [2], which uses
Mockturtle as its back-end library. We used commands
mighty; cut_rewrite; resubstitution;
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cut_rewrite; resubsitution; to first optimize
for delay then reduce area at the cost of delay using cut
rewrite and resubtitution.

We use Mockturtle 0.1 [12] and VPR 7.0 [3] to map and
place-and-route the circuits. We set our mapper to map to
6 LUTs (using 8 stored priority cuts for each internal MIG
node). We first route all of the baseline circuits to find the
minimum channel width for each circuit. Then, we increase
that by 25% for each circuit, and route each circuit with that
specific fixed channel width, reflecting a medium-congestion
routing scenario. We place and route all circuits with 3 different
seeds and report the average.

The columns labelled “6-LUT” in Table II summarizes the
post-mapping area, depth, and post-place-and-route delay of
the baseline implementation. The baseline was generated using
delay-optimized priority cuts enumeration followed by area-
and delay-optimized technology mapping. We observed this
approach led to minimal area increase with considerably lower
LUT depth than using area-optimized cut enumeration.

B. Carry Mapping Results

The columns labelled “6-LUT and Carry” in Table II show
the results for the proposed LUT and carry mapping. On the
left side of the table, we compare carry chain mapping applied
to area-optimized LUT mapping. Comparing to the baseline
results, we observe the change in LUT count is nearly flat,
on average. In terms of LUT depth, there is a ~20% reduction
in depth when the carry-chain mapping optimization is applied.
Note that the depth numbers in the table reflect equivalent LUT
depth, where in the carry-mapping case, depth has been scaled
according to the delay numbers presented in Section IV. We use
the equivalent LUT depth to guide decision making about carry-
chain mapping; specifically, we commit to carry re-mapping
when the equivalent depth is improved by at least 10% over the
baseline. Lowering this threshold, e.g. to 5%, caused the post-
place-and-route critical-path delay of the 10g2 benchmark to
become worse than the baseline. Use of the carry chain creates
a placement scenario where certain LUTs and their associated
carry logic must be kept together in a strict pattern during
placement. We suspect this may lead to a negative impact on
routing delays in some cases.

Post-place-and-route critical-path delay shows a reduction of
9% vs. the baseline. In the best cases, the circuits adder,
arbiter, and square circuits show improvements of 30%,
41%, and 35%, respectively. The delay reductions come from
both logic and routing delay. The reduction in routing delay is
expected when LUTs placed on the carry chain do not fanout
to multiple LUTs.

We also compare the area and delay of area-optimized LUT
and carry mapping to 6-LUT mapping using an alternative
baseline delay-optimized mapper (third group of columns in the
table). The delay-optimized mapper produces solutions with a
geomean of 764 LUTs; a geomean LUT depth of 11.3; and, ge-
omean post-routing critical path delay of 6.89ns. Comparing to
the results in second group of columns of Table II, we observe
that we can achieve circuits with slightly higher performance
(6.75ns vs. 6.89ns) and considerably better area cost (geomean
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Area-opt Delay-opt

6-LUT 6-LUT + carry 6-LUT 6-LUT + carry
Benchmark # of LUT  Total # of LUT  Total # of LUT  Total # of LUT  Total
LUTs Depth Delay | LUTs Depth Delay || LUTs Depth Delay | LUTs Depth Delay
adder 335 17 7.29 335 8 5.08 423 10 543 423 7 4.62
arbiter 2583 10 5.82 2583 4 3.43 2979 8 5.61 2979 4 3.97
bar 512 4 3.26 512 4 3.26 512 4 3.26 512 4 3.26
cavle 131 7 2.93 132 4 2.66 132 5 2.33 132 5 2.33
ctrl 29 2 1.30 29 2 1.30 29 2 1.17 29 2 1.17
dec 273 2 1.95 273 2 1.95 273 2 1.95 273 2 1.95
i2c 354 5 2.72 354 5 2.72 359 5 2.59 359 5 2.59
int2float 53 5 2.31 53 3 2.00 54 5 233 54 3 2.09
log2 9012 106 5241 | 9012 106 52.41 9621 85 50.46 | 9621 85 50.46
max 2267 20 12.16 | 2267 20 12.16 2940 18 12.32 | 2940 16 12.87
mem_ctrl 12266 35 20.40 | 12277 31 19.92 || 13069 28 17.44 | 13069 28 17.44
multiplier 5941 54 26.11 | 5942 37 23.79 6487 37 23.66 | 6487 37 23.66
priority 288 42 19.10 288 42 19.10 365 41 22.88 365 41 22.88
router 76 7 3.09 76 7 3.09 77 7 3.36 77 7 3.36
sin 1688 45 2545 | 1688 45 25.45 1850 38 24.00 | 1850 38 24.00
square 3792 35 15.13 | 3792 17 9.80 3934 21 10.08 | 3934 15 10.35
voter 1550 17 13.63 1550 17 13.63 1590 14 11.59 | 1590 14 11.59
geomean 707.5 13.4 7.45 707.8 10.6 6.75 763.6 11.3 6.89 763.6 10.0 6.67
ratio 1 1 1 1.00 0.79 091 1 1 1 1.00 0.88 0.97

TABLE II: Num of LUTs, LUT depth, and critical delay (in ns) of 6-LUT mapping and 6-LUT and carry mapping using area-

and delay-optimized LUT mappers.

Scenario Area-delay Area-delay product
product normalized to baseline
(LUT-ns) area-opt delay-opt
Area-opt 5271 1 1.001
Area-opt + carry 4778 0.906 0.908
Delay-opt 5261 0.998 1
Delay-opt + carry 5093 0.966 0.968

TABLE III: Geomean area-delay product results.

of 708 LUTSs vs. 764). That is, the carry-chain mapping applied
to an area-optimized LUT mapping achieves better performance
at considerably less area vs. a delay-optimized LUT mapping.

We applied carry optimization to the delay-optimized LUT
mapping and the results are shown on the right side of Table II.
With no change in the number of LUTs, we achieve a 12%
reduction in levels and a 3.2% reduction in post-routing delay.
Below, we discuss why area-optimized LUT mapping solutions
offer more potential for carry-chain optimizations. Table III
gives geomean area-delay product results for the four flows
considered. The area-optimized mapping followed by carry-
chain optimization provides 9% improvement over both the area
and delay-based mapping baselines.

We performed an analysis to determine why some circuits
show significant improvement when mapped to use carry chain.
Table IV shows for the area (left) and delay-based mappings
(right): the number of critical LUTs that pass the structural
check, the QBF check, and the total number of critical LUTs.
The last two rows give geomean results and show the ratios of
LUTs vs. the total number that are critical.

From the last row of the table, we observe that in the
area-based mappings, 81% of critical LUTSs pass the structural
check; 86% pass the QBF check. This implies that the majority
of critical LUTs have at least critical input signal that can be
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Area-opt Delay-opt
Structural QBF  Crit |Structural QBF  Crit
check check LUTs| check check LUTSs
adder 18 18 21 15 15 26
arbiter 1536 1536 1536 1792 1792 1792
bar 512 512 512 512 512 512
cavlc 8 8 8 6 6 6
ctrl 7 8 8 7 8 8
dec 273 273 273 273 273 273
i2¢c 61 62 62 35 35 35
int2float 6 7 7 6 7 7
log2 123 168 203 267 335 396
max 129 135 135 29 33 36
mem_ctrl 163 198 198 394 427 427
multiplier 57 57 67 393 393 1106
priority 123 123 123 192 193 193
router 18 20 25 12 13 17
sin 167 187 308 389 424 611
square 42 42 46 35 38 50
voter 176 187 596 333 333 1355
geomean 71 76 88 83 88 112
ratio 0.81 0.86 1.00 0.74 0.78 1.00

TABLE IV: Number of mappable critical LUTSs using structural
check and QBF check.

elevated onto the carry chain, and that the rapid structural check
is sufficient to determine this. In the delay-based case, fewer
critical LUTs can use the carry chain, and there are more critical
LUTs overall, accounting for the reduced performance benefits
seen in this scenario.

While a preponderance of critical LUTs can be remapped
to use the carry chain, we observed that many of such LUTs
have multiple critical inputs. Moving one critical input signal
to use the carry chain is not helpful to the other critical inputs,
thereby limiting the performance improvement potential.
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VIII. CONCLUSION AND FUTURE WORKS

FPGAs include fast dedicated carry routing for speeding
up traditional arithmetic operations. However, such circuitry
is generally unused in circuits that do not explicitly specify the
operations through + or - in the input HDL. We automatically
select critical paths to map to carry chains as a post-LUT
mapping pass to improve performance. We achieve an area-
delay improvement of 9% vs. baseline mappings. The carry-
chain mapping approach, when applied to an area-optimized
LUT mapping, achieves delay superior to a depth-optimized
LUT mapping, while consuming considerably less area. For
further work, MIG transformations at the pre-mapping stage
may offer further performance improvements.
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