
Post-LUT-Mapping Implementation of General Logic on Carry

Chains Via a MIG-Based Circuit Representation

Jin Hee Kim
University of Toronto

Toronto, Canada

kimjin14@ece.utoronto.ca

Jason Anderson
University of Toronto

Toronto, Canada

janders@ece.utoronto.ca

Abstract—Carry chains on FPGAs have traditionally been only
used for fast binary arithmetic operations. In this paper, we
propose using the carry chain to implement general logic as a
means of reducing the critical path delay and raising perfor-
mance. To achieve this, we use a Majority-Inverter Graph (MIG)
to represent the application during technology mapping, since
carry functionality directly maps to the majority logic function.
This aligns the subject graph of technology mapping with the
capabilities of the carry chain. We first map an application to
LUTs, then determine a chain of critical LUTs containing paths
of majority “gates” that we deem beneficial for mapping onto the
carry chain. We place such paths onto the carry chains, with the
remaining logic in LUTs. In an experimental study using a suite
of benchmarks, we observe that the proposed approach yields a
post-place-and-route critical path delay that is superior to using
delay-optimized mapping, yet without the significant area penalty.
With carry-chain optimizations, area-delay product is improved
by 9% vs. baseline LUT mappings.

I. INTRODUCTION

Field-programmable gate array (FPGA) architecture has

evolved to include hardened blocks that perform the key opera-

tions deemed important enough to commit silicon area to raise

performance. One hardened block is the carry-chain routing

to speed up arithmetic circuits that are often implemented

on FPGAs. These have traditionally been used for arithmetic

operations only, recognized by the synthesis tool when the

design contains the + or - operators in the HDL. When no

arithmetic operations are present, the adders and dedicated

carry chain routing normally remain unused. The carry-chain

routing is hardwired and provides fast connections for the carry

signal in arithmetic operations, such as ripple-carry addition. In

this paper, we automatically infer the usage of carry chains in

general applications to speed up circuits without area cost.

Majority-Inverter Graphs (MIGs) have recently been shown

to be a promising subject graph versus And-Inverter Graphs

(AIGs) for logic optimization [1], [2]. The majority logic

function, fMAJ = ab + bc + ac, accepts three inputs and

evaluates as true if at least two of the three inputs are true.

This function is equivalent to the carry function in a full adder.

Therefore, given a MIG representation of a circuit, it becomes

much easier to select majority nodes that could benefit from

being mapped to carry chains. In essence, this is because the

subject graph used in logic synthesis is closely aligned with

the carry hardware already present in FPGA logic blocks.

In this work, we explore how a MIG representation can be

used to select paths to map onto the carry chain to improve

performance. If the entire circuit is represented using MIG

nodes, we can put any path onto the chain; that is, we are

not restricted to solely the arithmetic operations.
We consider using the carry chain to improve performance,

and compare with respect to other optimization techniques

during logic synthesis and technology mapping. We first per-

form standard technology mapping to look-up-tables (LUTs).

Then, we select a chain of critical LUTs that cover a chain

of MIG nodes that can be “hoisted” onto, i.e. mapped onto,

the carry chain. We use two approaches to determine if carry-

chain mapping is possible: a structural approach involving a

rapid exploration of the MIG covered by a LUT, and a formal
approach using quantified Boolean formula (QBF). We estimate

if the carry-chain mapping will provide a delay improvement,

and if so, we perform the mapping. Once LUT and carry-chain

mapping is completed, we place and route using VPR [3]. We

target a Xilinx-style architecture, which allows the carry-output

signal to propagate to the carry-input of the next logic element,

as well as exit through general routing.
Using the carry chains allows us to increase the performance

of the circuit, while avoiding a large area cost, as compared to

delay-optimized technology mapping. We observe that using an

area-optimized technology mapper with carry chain mapping,

we can achieve delay superior to mapping with a delay-

optimized mapper with no area increase over the area-optimized

mapper. We also apply carry-chain mapping to circuits mapped

with a delay-optimized mapper and show a small performance

improvement.
The main contributions of this work are:

• MIG-based post-LUT mapping for carry chains via struc-

tural MIG analysis and restructuring, and QBF.

• An experimental study to quantify the performance in-

crease and area consequences. We show that carry op-

timizations, applied to an area-based mapping, provide

superior performance to a baseline delay-based mapping,

yet require 7% less area. In addition, the proposed carry

optimizations improve area-delay product by 9% vs. base-

line mappings.

II. RELATED WORK

Previous work by Frederick et. al [4] presented ChainMap,

an extension to FlowMap [5] to use the dedicated carry chain

routing for chains of LUTs. However, this technique cannot be

applied to more recent FPGAs, as they do not contain such a

routing path within the architecture.
Preusser et al. [6] considered using the carry-chain architec-

ture for general logic by automatically detecting LUTs whose

334

2021 31st International Conference on Field-Programmable Logic and Applications (FPL)

978-1-6654-3759-2/21/$31.00 ©2021 IEEE
DOI 10.1109/FPL53798.2021.00065

20
21

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 L

og
ic

 a
nd

 A
pp

lic
at

io
ns

 (F
PL

) |
 9

78
-1

-6
65

4-
37

59
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

FP
L5

37
98

.2
02

1.
00

06
5

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

functions can take advantage of carry-chain structures. Their

work was not applied post-mapping, but rather, they altered

the cut-selection phase of technology mapping to choose cuts

with desirable properties for carry-chain remapping. Their work

was able to reduce LUT depth by ∼20%, at a significant area

penalty. The authors did not place/route the circuits, so the

performance consequences are unclear.

Recently, Chu et al. [7] used MIG-based synthesis for

improving circuit performance. The authors selected a path in

an MIG to map onto the carry chain by estimating the potential

improvement prior to LUT mapping. Once MIG nodes are

selected for the carry chain, the rest of the circuit is mapped in

ABC as an AIG. The final mapping showed an average delay

improvement of 8% with 10% increase in the number of LUTs

and 6% reduction in channel width on small benchmark circuits

having ∼500 LUTs or fewer.

In contrast to [7] and [6], our work is applied post technology

mapping to small and large circuits, and provides performance

improvements post-routing, with little to no area penalties.

III. BACKGROUND

A. Majority-Inverter Graph and Mockturtle

A Majority-Inverter Graph (MIG) is a promising circuit

representation for logic synthesis. An MIG is composed of 3-

input majority nodes with potentially inverted edges between

the nodes. The 3-input majority function, fMAJ = ab+ac+bc,
can also compute 2-input AND and 2-input OR by tying one of

the inputs to 0 or 1, respectively. As such, any AIG can be

represented by an MIG. AIGs are a commonly used subject

graph for logic optimization using the ABC logic synthesis

framework [8]. An MIG subject graph permits a wider va-

riety of Boolean optimization techniques, leading to a post-

optimization graph that has fewer logic levels [9]. There have

been various logic synthesis techniques proposed for MIGs and

this is an active research area [1], [10], [11].

Mockturtle [12] is an open-source library for logic synthesis

and technology mapping that is designed to support various

subject graphs, such as AIGs, MIGs, or XOR-Majority Graphs

(XMGs) [13]. It allows researchers to apply the same syn-

thesis and mapping algorithms to these graphs. For circuits

represented as an MIG, there are several logic optimization

passes available. We use a combination of algebraic depth-

rewriting [14] for logic-level optimization and Boolean cut-

rewriting and resubstitution [13], [15] for reducing the number

of nodes. The details of these optimizations be found in the

respective papers.

Mockturtle includes a LUT mapper for FPGAs, which uses

a priority-cuts-based mapper as the underlying algorithm [16].

The LUT mapper is similar to the &mf LUT mapping im-

plementation in ABC [8]. First, cut enumeration is performed

where N priority cuts are selected for each node and saved. In

our work, we change the cost of priority cuts to optimize delay

as the primary cost since it results in better delay/area product

for baseline LUT mapping. The Mockturtle mapper uses area

flow as the primary cost and delay as the secondary cost. The

LUT mapper selects cuts that optimize area flow for a few

iterations and does a final mapping to optimize the estimated

local area. We refer to the existing LUT mapper in Mockturtle

as the area-optimized LUT mapper. We modified and created

another version of the mapper to use delay as the primary cost

for selecting the best cut. We refer to this as delay-optimized
LUT mapper.

B. Quantified Boolean Formula (QBF)

QBF is a generalization of Boolean satisfiability where

variables may have existential (∃) or universal quantifiers (∀).

For example, a QBF such as: ∃x, y ∀z : f(x, y, z) is the

decision problem that asks: Does there exist specific Boolean
values for x and y, such that for all Boolean values of z, f(x,y,z)
evaluates to true? QBF has previously been applied in FPGA

technology mapping to non-carry-based structures [17].

C. FPGA Carry-Chain Architecture

Logic blocks in modern FPGAs are comprised of multiple

fracturable logic elements (FLEs) as shown in Fig. 1. FLEs

contain fracturable LUTs – LUTs whose constituent sub-LUTs

can be used independently (but possibly requiring some input-

signal sharing), carry circuitry, and optional flip-flops (FFs)

on the outputs. These are connected through intra- and inter-

cluster routing, which we refer to as general routing. There

is dedicated hard-wired routing between the FLEs within a

logic block for fast carry computation for arithmetic operations;

and between vertically adjacent logic blocks, dedicated routing

exists as well. Such hard-wired connections are referred to as

carry-chain routing.

In Xilinx FPGAs, the logic block consists of 2 slices [18].

Each slice contains four fracturable 6-input LUTs and has hard-

ened circuitry for fast carry propagation. When in arithmetic

mode, the 6-input LUT, configured as two 5-input sub-LUTs,

are used to realize the propagate (p) and generate (g) signals for

the full-adder circuit. The carry signal has dedicated routing to

propagate from one FLE to another. The carry-out and sum-out

bits are both connected to an output multiplexer, allowing the

signals to exit the slice into general interconnect.

IV. TARGET ARCHITECTURE

Fig. 1: Target Architecture: 10 Xilinx-Style FLEs within a

Logic Block.

335

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2: FLE configuration in VPR a) 6-LUT mode; b) arithmetic

mode.

Fig. 3: Xilinx-style FLE configured in arithmetic mode.

We target an architecture with a logic block that contains

10 Xilinx-style FLEs and a 50% depopulated input crossbar

as shown in Fig. 1. Each FLE contains a 6-input fracturable

LUT. Fig. 2(a) shows a portion of an FLE configured in 6-

input LUT mode and Fig. 2(b) shows the FLE configured in

arithmetic mode. When in arithmetic mode, the 5-input LUTs

drive the full adder, whose carry-out is connected to the adder

in its adjacent FLE through dedicated routing.

Observe that our FLE (Fig. 1) contains a full adder, while

Xilinx commercial FPGAs contain a 2-to-1 multiplexer in

that position, shown in Fig. 3, where the select input of the

multiplexer is driven by one of the LUT outputs, and the two

data inputs of the multiplexer are driven by the other LUT

output and cin, respectively. We are using a full adder for

simplicity, as the place and route tool, VPR [3], already has

modelling support for it. However, it is important to realize that

both architectures can be made equivalent by Boolean algebra

manipulation of the functions implemented within the dual-

output LUT. Specifically, in the full-adder case, once we select

a majority node to map to the adder and the cuts to be placed

in the 5-LUTs, we assign the 3 inputs to the majority node (x1,

x2, x3) to the 3 inputs of the full adder (fLUTa
, fLUTb

, cin) and

set the 5-LUT functionality to the selected cuts of the children.

In the multiplexer case, the two 5-LUTs will determine the

propagate (multiplexer select input) and generate (multiplexer

data input) functions and use that to determine whether cin
should propagate or not. The resulting carry out function is the

same in both cases.

Mapping to an architecture with full adder, the LUT-mask

and carry-out function would be:

fLUTa
= fcutx1

, fLUTb
= fcutx2

,

cout = fLUTa · fLUTb
+ fLUTb

· cin + fLUTa · cin
or for the multiplexer, the LUT-mask and carry-out function

would be:

fLUTa = fcutx1
+ fcutx2

, fLUTb
= fcutx1

· fcutx2
,

cout = fLUTa · cin + fLUTa
· fLUTb

Therefore, one can map a MIG node to the carry element (full

adder or multiplexer) and determine the LUT mask according

to the architecture being targetted.

V. TECHNOLOGY MAPPING

We now describe our extension to the LUT mapper to per-

form post-LUT-mapping carry-chain mapping. We first perform

6-LUT mapping then we select chains of LUTs on the critical

path that can be connected together using the carry-chain

interconnect. The path of MIG nodes from the selected LUT

chain is placed on the carry chain and inverters are removed

to match the underlying hardware (inverter removal preserves

logic functionality, described below). Lastly, we write the LUT

and carry mapping to BLIF for circuit equivalence checking,

and place and route.

Fig. 4 illustrates the desired mapping. The left side of

the figure shows a chain of 3 LUTs, where sigA and sigB
represent the timing-critical signals between the LUTs. The

right side shows the mapping, where sigA and sigB lie on the

fast carry-interconnect, rather than being routed through the

FPGA’s general interconnect.

Fig. 4: Mapping a chain of three critical LUTs to the carry

chain.

A. Carry Chain Selection

Starting from a critical primary output (PO), we recursively

look at the critical driving LUT and create a chain of LUTs

until we reach a LUT that cannot be mapped or a LUT that

only has primary input (PI) as its inputs. We refer to the LUTs

in critical path as critical LUTs and the inputs to a critical LUT

driven by other critical LUTs as critical inputs. We determine

whether the critical LUT and the associated critical input on the

carry chain can be remapped to use the carry chain. Note that

a LUT on the critical path may have multiple critical inputs.

In this case, we aim to check whether one of the signals on

such inputs can be moved to the carry chain. We map as many

chains of critical LUTs as we can starting with those with the

least number of critical inputs.

Given a critical 6-LUT having inputs in[5:0] implementing

a logic function f and assuming, without loss of generality,

that in[5] is the critical input, our aim is to test whether f or

its complement can be remapped into the structure shown in

Fig. 5. The destination structure comprises two 5 LUTs with

shared inputs, and critical LUT input in[5] attached directly

to the majority gate, MAJ. The complemented form of f is

336

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Mappability test.

Fig. 6: Distributive rule in MIG algebra [1].

acceptable owing to inversion properties of majority, discussed

below. The mappability test is conducted in two ways: 1) a fast

structural check using properties of majority; 2) formally using

QBF.

The structural check leverages the distributive rule

in MIG algebra [1], MAJ(x, y,MAJ(u, v, z)) =
MAJ(MAJ(x, y, u),MAJ(x, y, v), z), illustrated in Fig. 6.

Observe on the left that z is input to a lower-level majority

gate. The rule allows z to be elevated as input to the higher-

level majority gate, shown on the right. Consider a MIG

subgraph covered by a critical LUT, by iterative application

of the distributive rule it is always possible to elevate the

critical input to the top-most majority gate in the LUT

(the gate driving the LUT output signal). This aligns with

the mappability structure shown on the right of Fig. 5. If,

however, inputs x, y, u, or v also depend on z, then there is

a reconvergent path from z within the LUT’s internal MIG

subgraph, and it may not be possible to eliminate z from also

being required as an input to the LUT. Therefore, the rapid

structural check is as follows: Given a critical LUT and an

associated critical input to that LUT, check whether there is

a reconvergent path from the input to the LUT output in the

MIG subgraph covered by the LUT. If no such reconvergent

path exists, then the mappability test passes.

If the structural check fails, we formulate a QBF decision

problem. Referring to Fig. 5, S is the select input to the multi-

plexer, OUT1 is the true or complemented form of function f ,

OUT2 is the output of the majority gate on the right, and let

m63−0 be the 64 SRAM configuration cells contained within

the two 5-LUTs on the right of the figure. The QBF is as

follows:

∃S,m63−0 ∀in[5 : 0] ∃OUT1, OUT2 : OUT1⊕OUT2 (1)

Informally, we are testing whether there exists settings for

S and m63−0 for all input combinations in[5:0] there exists
OUT1 and OUT2 such that OUT1 equals OUT2. We solve

this using the RAReQS QBF solver [19]. In the experimental

study, we show that the fast structural check is sufficient to

identify the majority of mappable cases.

Although there is no area cost as shown above, there is a

delay cost associated with using the adder. The delay of using

a 5-LUT and adder is 1.26× more than using a 6-LUT alone

(c.f. Section VI). However, by using the dedicated carry chain,

we avoid the delay of using the general routing. For a scenario

where a LUT has more than 1 critical input and has multiple

fanouts, we would reduce the delay of the path that is placed

on the carry chain (saves routing delay) but increase the delay

to the other LUTs that are not on the carry chain (owing to

the extra adder delay). Critical LUT chains must be at least of

length 2 for remapping onto the carry chain. It is not beneficial

for performance to remap a single critical LUT to use the carry

chain – benefits only arise if some of its neighboring critical

LUTs are also remapped.

B. Inverter Removal and BLIF Generation

Once all paths to be placed on the carry chain have been

decided, we perform inverter removal on these paths. Carry-

chain interconnect on FPGAs does not have optional inverters

so it is necessary to remove any inverters in the MIG node

path that will be placed on the carry chain. We use the method

described in [7] by pushing the bubbles from the MIG path to

the input LUTs. The inverter removal is possible because an

inverted majority function is equal to a non-inverted majority

function with all of its inputs inverted, i.e., ab+ ac+ bc =
a b+ a c+ b c.

Lastly, we set the LUT configuration for all of the 6-

LUTs that were remapped to use the FLE in arithmetic mode.

Each 5-LUT in front of the adders gets connected to the

dependent inputs from the original 6-LUT. Then, we set the

LUT mask for each 5-LUT. This is then used to generate BLIF

for combinational equivalency checking (CEC) and place and

route. We used ABC’s CEC tool to compare the post-LUT

and carry mapping to the original LUT-only mapping to verify

equivalency.

The BLIF generated for CEC can be used for place and

route, but we cannot guarantee that our FLE will be packed as

expected during packing. To ensure a proper packing of LUTs

and carry, we generate BLIF that groups (pre-packs) the two

5-LUTs and adder together using VPR’s user-specified block

method [3], discussed in the next section. This ensures that the

5-LUTs and the adder stay together during place and route. We

also limit the length of the carry chains to at most 50, which

would be placed across 5 logic blocks. This is because the carry

chains cannot be broken up during place and route, due to a

limitation of the place and route tool.

337

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: User-specified block

lut_adder.

From To Delay
in[*] out 0.235
in[*] cout 0.329
in[*] sumout 0.329
cin cout 0.010
cin sumout 0.010
ecin cout 0.020
ecin sumout 0.020

TABLE I: lut_adder
delays in ns.

VI. ARCHITECTURE MODELLING

We modified one of the existing architecture descriptions

distributed with VPR [3] to reflect our target logic block

architecture. A user-specified block, called lut adder, is em-

ployed to pack the two 5-LUTs and the adder combination in

a chain. These blocks are packed together by using the chain-

pack pattern [20] during BLIF generation. The block lut adder,

shown in Fig. 7, has 6 inputs, 5 for the LUTs and 1 for the

adder carry-in signal. It has 3 outputs, 1 carry-out signal (cout),
1 sum-out signal (sumout), and 1 output connected to one of the

5-LUTs (out). There are delay paths from all inputs to cout and

the sumout output, and there is a delay path from the 5 LUT

inputs to the out signal. We specify the delay from any LUT

input to out as 0.235ns and to cout as 0.329ns. Referencing

previous work on carry chains [21], we estimated the delay of

an adder from its input to carry output to be 40% less than the

delay through a 5-LUT. Since we route the carry out signal to

out0 from Fig. 2(b) in arithmetic mode, we use the same delay

to sumout as cout. The delays of the paths within the user-

specified block are summarized in Table I. All of the other

delays, such as 6-LUT delay of 0.261ns, remain “as is” from

the available architecture in VPR.

In Xilinx-style FPGAs, each FLE has an additional “bypass”

input that allows a signal to get onto the carry chain at any point

along the chain. To mimic this behaviour, we add an additional

input to our lut adder called ecin. This input is only connected

to the routing for the very first FLE of the logic block. We use

this to connect the start of a carry chain only in the case when

we do not have any extra LUT inputs to accommodate the

carry-in signal, i.e. all 5 inputs are being used for the FLE at

the very start of the LUT chain.

VII. EXPERIMENTAL STUDY

In this section, we present the post-place-and-route results

for LUT and carry-mapped circuits compared to baseline LUT-

mapped circuits to evaluate how carry mapping can be used as

a delay improvement strategy.

A. Experimental Setup

We use the EPFL benchmark suite [22] to evaluate our carry

mapping work. We apply logic optimization to reduce the

number of nodes. We generated MIG benchmarks using a logic

synthesis and optimization framework Cirkit [2], which uses

Mockturtle as its back-end library. We used commands

mighty; cut_rewrite; resubstitution;

cut_rewrite; resubsitution; to first optimize

for delay then reduce area at the cost of delay using cut

rewrite and resubtitution.

We use Mockturtle 0.1 [12] and VPR 7.0 [3] to map and

place-and-route the circuits. We set our mapper to map to

6 LUTs (using 8 stored priority cuts for each internal MIG

node). We first route all of the baseline circuits to find the

minimum channel width for each circuit. Then, we increase

that by 25% for each circuit, and route each circuit with that

specific fixed channel width, reflecting a medium-congestion

routing scenario. We place and route all circuits with 3 different

seeds and report the average.

The columns labelled “6-LUT” in Table II summarizes the

post-mapping area, depth, and post-place-and-route delay of

the baseline implementation. The baseline was generated using

delay-optimized priority cuts enumeration followed by area-

and delay-optimized technology mapping. We observed this

approach led to minimal area increase with considerably lower

LUT depth than using area-optimized cut enumeration.

B. Carry Mapping Results

The columns labelled “6-LUT and Carry” in Table II show

the results for the proposed LUT and carry mapping. On the

left side of the table, we compare carry chain mapping applied

to area-optimized LUT mapping. Comparing to the baseline

results, we observe the change in LUT count is nearly flat,

on average. In terms of LUT depth, there is a ∼20% reduction

in depth when the carry-chain mapping optimization is applied.

Note that the depth numbers in the table reflect equivalent LUT

depth, where in the carry-mapping case, depth has been scaled

according to the delay numbers presented in Section IV. We use

the equivalent LUT depth to guide decision making about carry-

chain mapping; specifically, we commit to carry re-mapping

when the equivalent depth is improved by at least 10% over the

baseline. Lowering this threshold, e.g. to 5%, caused the post-

place-and-route critical-path delay of the log2 benchmark to

become worse than the baseline. Use of the carry chain creates

a placement scenario where certain LUTs and their associated

carry logic must be kept together in a strict pattern during

placement. We suspect this may lead to a negative impact on

routing delays in some cases.

Post-place-and-route critical-path delay shows a reduction of

9% vs. the baseline. In the best cases, the circuits adder,

arbiter, and square circuits show improvements of 30%,

41%, and 35%, respectively. The delay reductions come from

both logic and routing delay. The reduction in routing delay is

expected when LUTs placed on the carry chain do not fanout

to multiple LUTs.

We also compare the area and delay of area-optimized LUT

and carry mapping to 6-LUT mapping using an alternative

baseline delay-optimized mapper (third group of columns in the

table). The delay-optimized mapper produces solutions with a

geomean of 764 LUTs; a geomean LUT depth of 11.3; and, ge-

omean post-routing critical path delay of 6.89ns. Comparing to

the results in second group of columns of Table II, we observe

that we can achieve circuits with slightly higher performance

(6.75ns vs. 6.89ns) and considerably better area cost (geomean

338

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

Area-opt Delay-opt
6-LUT 6-LUT + carry 6-LUT 6-LUT + carry

Benchmark # of LUT Total # of LUT Total # of LUT Total # of LUT Total
LUTs Depth Delay LUTs Depth Delay LUTs Depth Delay LUTs Depth Delay

adder 335 17 7.29 335 8 5.08 423 10 5.43 423 7 4.62
arbiter 2583 10 5.82 2583 4 3.43 2979 8 5.61 2979 4 3.97

bar 512 4 3.26 512 4 3.26 512 4 3.26 512 4 3.26
cavlc 131 7 2.93 132 4 2.66 132 5 2.33 132 5 2.33
ctrl 29 2 1.30 29 2 1.30 29 2 1.17 29 2 1.17
dec 273 2 1.95 273 2 1.95 273 2 1.95 273 2 1.95
i2c 354 5 2.72 354 5 2.72 359 5 2.59 359 5 2.59

int2float 53 5 2.31 53 3 2.00 54 5 2.33 54 3 2.09
log2 9012 106 52.41 9012 106 52.41 9621 85 50.46 9621 85 50.46
max 2267 20 12.16 2267 20 12.16 2940 18 12.32 2940 16 12.87

mem ctrl 12266 35 20.40 12277 31 19.92 13069 28 17.44 13069 28 17.44
multiplier 5941 54 26.11 5942 37 23.79 6487 37 23.66 6487 37 23.66
priority 288 42 19.10 288 42 19.10 365 41 22.88 365 41 22.88
router 76 7 3.09 76 7 3.09 77 7 3.36 77 7 3.36

sin 1688 45 25.45 1688 45 25.45 1850 38 24.00 1850 38 24.00
square 3792 35 15.13 3792 17 9.80 3934 21 10.08 3934 15 10.35
voter 1550 17 13.63 1550 17 13.63 1590 14 11.59 1590 14 11.59

geomean 707.5 13.4 7.45 707.8 10.6 6.75 763.6 11.3 6.89 763.6 10.0 6.67
ratio 1 1 1 1.00 0.79 0.91 1 1 1 1.00 0.88 0.97

TABLE II: Num of LUTs, LUT depth, and critical delay (in ns) of 6-LUT mapping and 6-LUT and carry mapping using area-

and delay-optimized LUT mappers.

Scenario Area-delay Area-delay product
product normalized to baseline

(LUT-ns) area-opt delay-opt
Area-opt 5271 1 1.001

Area-opt + carry 4778 0.906 0.908
Delay-opt 5261 0.998 1

Delay-opt + carry 5093 0.966 0.968

TABLE III: Geomean area-delay product results.

of 708 LUTs vs. 764). That is, the carry-chain mapping applied

to an area-optimized LUT mapping achieves better performance

at considerably less area vs. a delay-optimized LUT mapping.

We applied carry optimization to the delay-optimized LUT

mapping and the results are shown on the right side of Table II.

With no change in the number of LUTs, we achieve a 12%

reduction in levels and a 3.2% reduction in post-routing delay.

Below, we discuss why area-optimized LUT mapping solutions

offer more potential for carry-chain optimizations. Table III

gives geomean area-delay product results for the four flows

considered. The area-optimized mapping followed by carry-

chain optimization provides 9% improvement over both the area

and delay-based mapping baselines.

We performed an analysis to determine why some circuits

show significant improvement when mapped to use carry chain.

Table IV shows for the area (left) and delay-based mappings

(right): the number of critical LUTs that pass the structural

check, the QBF check, and the total number of critical LUTs.

The last two rows give geomean results and show the ratios of

LUTs vs. the total number that are critical.

From the last row of the table, we observe that in the

area-based mappings, 81% of critical LUTs pass the structural

check; 86% pass the QBF check. This implies that the majority

of critical LUTs have at least critical input signal that can be

Area-opt Delay-opt
Structural QBF Crit Structural QBF Crit

check check LUTs check check LUTs
adder 18 18 21 15 15 26
arbiter 1536 1536 1536 1792 1792 1792

bar 512 512 512 512 512 512
cavlc 8 8 8 6 6 6
ctrl 7 8 8 7 8 8
dec 273 273 273 273 273 273
i2c 61 62 62 35 35 35

int2float 6 7 7 6 7 7
log2 123 168 203 267 335 396
max 129 135 135 29 33 36

mem ctrl 163 198 198 394 427 427
multiplier 57 57 67 393 393 1106
priority 123 123 123 192 193 193
router 18 20 25 12 13 17

sin 167 187 308 389 424 611
square 42 42 46 35 38 50
voter 176 187 596 333 333 1355

geomean 71 76 88 83 88 112
ratio 0.81 0.86 1.00 0.74 0.78 1.00

TABLE IV: Number of mappable critical LUTs using structural

check and QBF check.

elevated onto the carry chain, and that the rapid structural check

is sufficient to determine this. In the delay-based case, fewer

critical LUTs can use the carry chain, and there are more critical

LUTs overall, accounting for the reduced performance benefits

seen in this scenario.

While a preponderance of critical LUTs can be remapped

to use the carry chain, we observed that many of such LUTs

have multiple critical inputs. Moving one critical input signal

to use the carry chain is not helpful to the other critical inputs,

thereby limiting the performance improvement potential.

339

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

VIII. CONCLUSION AND FUTURE WORKS

FPGAs include fast dedicated carry routing for speeding

up traditional arithmetic operations. However, such circuitry

is generally unused in circuits that do not explicitly specify the

operations through + or - in the input HDL. We automatically

select critical paths to map to carry chains as a post-LUT

mapping pass to improve performance. We achieve an area-

delay improvement of 9% vs. baseline mappings. The carry-

chain mapping approach, when applied to an area-optimized

LUT mapping, achieves delay superior to a depth-optimized

LUT mapping, while consuming considerably less area. For

further work, MIG transformations at the pre-mapping stage

may offer further performance improvements.

REFERENCES

[1] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE TCAD, vol. 35, no. 5, pp.
806–819, 2016.

[2] M. Soeken et al., “Optimizing majority-inverter graphs with functional
hashing,” in DATE, 2016, pp. 1030–1035.

[3] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM TRETS, vol. 7, no. 2, pp. 1–30, 2014.

[4] M. T. Frederick and A. K. Somani, “Beyond the arithmetic con-
straint: depth-optimal mapping of logic chains in LUT-based FPGAs,”
in ACM/SIGDA FPGA, 2008, pp. 37–46.

[5] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE TCAD, vol. 13, no. 1, pp. 1–12, 1994.

[6] T. B. Preußer and R. G. Spallek, “Enhancing FPGA device capabilities
by the automatic logic mapping to additive carry chains,” in FPL, 2010,
pp. 318–325.

[7] Z. Chu et al., “Improving Circuit Mapping Performance Through MIG-
based Synthesis for Carry Chains,” in ACM GVLSI, 2017, pp. 131–136.

[8] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV. Springer, 2010, pp. 24–40.

[9] L. Amarú, P. Gaillardon, and G. De Micheli, “Majority-Inverter Graph:
A novel data-structure and algorithms for efficient logic optimization,” in
DAC, 2014.

[10] W. J. Haaswijk et al., “LUT mapping and optimization for majority-
inverter graphs,” in IWLS, 2016.

[11] L. Amarù et al., “Majority Logic Synthesis,” in ICCAD, 2018.
[12] M. Soeken et al., “The EPFL logic synthesis libraries,” arXiv preprint

arXiv:1805.05121, 2018.
[13] W. Haaswijk et al., “A novel basis for logic rewriting,” in IEEE ASPDAC,

2017, pp. 151–156.
[14] L. Amarú et al., “Majority-inverter graph for FPGA synthesis,” in

SASIMI, 2015, pp. 165–170.
[15] H. Riener et al., “Scalable generic logic synthesis: One approach to rule

them all,” in DAC, 2019, pp. 1–6.
[16] A. Mishchenko et al., “Combinational and sequential mapping with

priority cuts,” in IEEE/ACM ICCAD, 2007, pp. 354–361.
[17] A. C. Ling, D. P. Singh, and S. D. Brown, “FPGA PLB evaluation using

quantified boolean satisfiability,” in FPL, 2005, pp. 19–24.
[18] “7 series FPGAs CLB user guide,”

https://www.xilinx.com/support/documentation
/user guides/ug474 7Series CLB.pdf, version: 1.8.

[19] M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke, “Solving qbf with
counterexample guided refinement,” in SAT, Berlin, Heidelberg, 2012, p.
114–128.

[20] “Verilog-to-Routing: FPGA Architecture Description,”
docs.verilogtorouting.org.

[21] J. Luu et al., “On hard adders and carry chains in FPGAs,” in IEEE
FCCM, 2014, pp. 52–59.

[22] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in IWLS, 2015.

340

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 15:41:34 UTC from IEEE Xplore. Restrictions apply.

