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Abstract—Cyclic logic locking is a new type of SAT-resistant
techniques in hardware security. Recently, LOOPLock 2.0 was
proposed, which is a cyclic logic locking method creating cycles
deliberately in the locked circuit to resist SAT Attack, CycSAT,
BeSAT, and Removal Attack simultaneously. The key idea of
LOOPLock 2.0 is that the resultant circuit is still cyclic no matter
the key vector is correct or not. This property refuses attackers
and demonstrates its success on defending against attackers. In
this paper, we propose an unlocking approach to LOOPLock
2.0 based on structure analysis and SAT solvers. Specifically,
we identify and remove non-combinational cycles in the locked
circuit before running SAT solvers. The experimental results
show that the proposed unlocking approach is promising.

Index Terms—Hardware security, logic unlocking, SAT Attack,
CycSAT, BeSAT, LOOPLock 2.0.

I. INTRODUCTION

In today’s global Integrated Circuits (ICs) supply chain,

design companies may purchase intellectual property (IP) from

IP vendors and integrate them into their designs for saving

the development effort. To reduce the fabrication cost, they

outsource the fabrication to third-party foundries. However, the

offshore foundries may be untrusted and pose some threats to

IP piracy, counterfeiting, and IC overproduction. Hence, many

protection techniques have been proposed recently to deal with

the hardware security issues [3] [6] [7] [8] [11] [12] [13] [14]

[15] [18] [19] [21] [28] [29] [30] [31] [32].

Logic locking [15] is a useful technique to protect IC

designs from potential attackers. Its main idea is to use

additional key-controlled gates, key inputs, and an on-chip

memory connected to the key inputs to hide the original

design. The functionality of the locked IC is correct only when

the correct key vector is set in the on-chip memory. As a

result, attackers cannot pirate the design directly. However,

many unlocking techniques [1] [9] [10] [17] [20] [22] [23]

[24] [25] [26] [27] [33] [34] [35] have been proposed to attack

different kinds of logic locking methods.

Even though there is a variety of logic locking methods,

most of them are vulnerable to the Boolean Satisfiability-

based (SAT) Attack [27]. Unlike a brute-force approach,
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requires exponential time to find the correct key vector, SAT

Attack can effectively and efficiently unlock the traditional

logic locking techniques. SAT Attack assumes that attackers

can get the locked circuit and a functional correct IC, and it

uses SAT solvers to rule out incorrect key vectors iteratively

by finding the distinguishing input patterns (DIPs). A DIP is

an input pattern that generates different outputs Oa and Ob

under two different key vectors Ka and Kb. To find DIPs, SAT

Attack constructs a miter-like circuit and then transforms it

into a Conjunctive Normal Form (CNF) formula. After finding

a DIP, the correct I/O pair obtained from the functionally

correct IC will be added into the CNF formula as a constraint

for excluding at least one incorrect key vector. When no DIP

can be found, the remaining key vectors are considered as the

correct key vectors.

To defend against SAT Attack, point-function-based logic

locking methods, such as SARLock [31] and Anti-SAT [28]

[29], have been proposed. They tried to reduce the number

of incorrect key vectors that can be pruned in each iteration

to increase the SAT solving time exponentially. However,

these methods are vulnerable to approximate attacks [20]

[23] [25] and removal attacks [33] [34]. Approximate attacks,

e.g., AppSAT [20] and Double DIP [25], target at getting

an approximate key vector to the locked circuit. AppSAT

terminates the SAT solving process when the error rate is

smaller than the threshold set by the attacker. Double DIP

uses 2DIP (doubly differentiating input pattern) to rule out two

wrong key vectors in each iteration. Removal attacks aim at

identifying locking structures and then removing or bypassing

them to recover the functionality of the design.

Cyclic logic locking [19] is another method that can resist

SAT Attack. It inserts key gates with feedback edges to cyclify

the locked circuit and presents observable non-combinational

effects in the primary outputs (POs) under incorrect key

vectors. For the cyclic logic locking approaches, SAT Attack

cannot obtain the correct key vectors in two situations. The

first situration is called statefulness, where the locked circuit

may have different outputs with a fixed key vector and a fixed

input pattern. If this input pattern is found as a DIP by the

SAT solver, the incorrect key vector causing the statefulness

cannot be pruned. Hence, the SAT solver will keep finding

the same DIP and cannot be terminated. The other situation

is called oscillation, where the values of some POs in the



2

locked circuit oscillate between 0 and 1 with incorrect key

vectors. The SAT solver may not detect the oscillation such

that a wrong key vector is returned. The root cause of these

two situations is non-combinational cycles.

However, CycSAT [35] has been shown to decrypt cyclic

logic locking successfully. CycSAT first pre-analyzes the

locked netlist to find the non-cyclic (NC) condition and then

adds the condition to the CNF formula before running the

SAT Attack. There are two types of CycSAT, CycSAT-I

and CycSAT-II, using different constraints to break cycles.

CycSAT-I assumes that the original circuit is acyclic, and the

NC condition rules out key vectors that make the locked circuit

structurally cyclic. CycSAT-II computes the NC condition

to break sensitizable cycles and allows the existence of

combinational cycles.

When CycSAT captures all the cycles, it can obtain the

correct key vector. However, some cycles may be missed

during analysis in CycSAT. Behavioral SAT-based attack

(BeSAT) [22] extends CycSAT to overcome this drawback.

To deal with statefulness, BeSAT records the found DIP in

each iteration and checks whether this DIP is a repeated

one or not. If it is a repeated DIP, BeSAT will use this

DIP to find the wrong key vector causing statefulness and

then adds a constraint to ban this key vector. After the DIP

generation process, it uses a ternary-based SAT method to test

the remaining key vectors and finds out the correct key vector

without causing oscillation.

After that, some CycSAT-resistant techniques were also

proposed. SRCLock [13] [14] introduces feedbacks that

enlarge the number of cycles to degrade the performance of

the pre-processing step in CycSAT and BeSAT. A. Rezaei et

al. then proposed two cyclic locking methods [11] [12]. The

first method [11] creates hard cycles in the circuit, which is

a structure that makes attacks miss cycles while traversing

nodes. The second method [12] defends against CycSAT using

unreachable states. There exist non-combinational cycles in

the locked circuit, but the non-combinational behavior occurs

only in the unreachable states. As a result, when CycSAT adds

constraints to exclude key vectors with non-combinational

cycles, it will prune out the correct key vector though.

LOOPLock 2.0 [30] was recently proposed by Yang et al.,

which is an improved version of LOOPLock [6]. There are

two similar structures called Type-I cycle pair and Type-II
cycle pair in the locked circuit, which defend against SAT

Attack, CycSAT, BeSAT, and Removal Attack simultaneously.

Each cycle pair embeds a non-combinational cycle and a

combinational cycle. When the correct key vector is fed,

the resultant circuit is still structurally cyclic but behaves

combinationally as the original circuit.

In this paper, we analyze the structures of LOOPLock 2.0

and propose an unlocking approach. The proposed approach

breaks the non-combinational cycles in both Type-I and Type-

II cycle pairs during the pre-analysis process, then it obtains a

correct key vector by running SAT solving. The experimental

results also demonstrate that the proposed approach is effective

to unlock LOOPLock 2.0.

The rest of this paper is organized as follows. Section II

introduces the techniques for generating combinational cycles

in the circuits in the prior works. We discuss the security issue

about LOOPLock 2.0 and propose our unlocking approach in

Section III. The experimental results are shown in Section IV.

Finally, Section V concludes this work.

II. PRELIMINARIES

A. NM-based cycle generation

[4] [5] proposed a Node Merging (NM) approach, which

merges a target node nt with a substitute node ns without

changing the circuit’s functionality for circuit optimization.

In [4] [5], the substitute nodes in the fanout cone of nt are

not allowed to merge nt. The reason is that cycles will be

created by merging and may cause non-combinational effects

in a combinational circuit. NM-based cycle generation [2]

is a technique to find cyclic substitute nodes (CSNs) for

nt, which forms combinational cycles only. Theorem 1 was

proposed in [2] for describing the requirement of forming such

combinational cycles.

Theorem 1 [2]: Let nt denote a target node and ns denote
a substitute node in the transitive fanout cone of nt. Replacing
nt with ns forms a set of cycles C. If the value changes on nt

are never propagated to ns, which means all the side inputs
of C do not have input-noncontrolling values simultaneously,
C is combinational.

According to Theorem 1, we need to check that the value

change on nt is not propagated to ns under each input pattern.

If this is the case, the ns is a CSN to nt, and the formed cycle

is combinational. However, the process for finding all CSNs

is computation-intensive. To find candidate CSNs efficiently,

Condition 1 was proposed in [2]. After finding a candidate

CSN, a SAT-based algorithm is then used to verify whether it

is a CSN or not.

Condition 1 [2]: Let nt denote a target node, and ns denote
a substitute node in the transitive fanout cone of nt. Replacing
nt with ns forms a set of cycles C. If ns = 1 and nt = D
are MAs for the stuck-at 0 fault test on nt, and ns = 0 and
nt = D are MAs for the stuck-at 1 fault test on nt, ns is a
candidate CSN.

The MAs, abbreviation for mandatory assignments, for a

stuck-at 1 (0) fault test on a node n in Condition 1 are the

unique value assignments to detect this fault. A set of MAs

includes the value assignments to activate the fault effect and

the value assignments to propagate the fault effect. Using logic

implications on these assignments forward or backward can

derive more MAs. The D and D symbols are to model the

stuck-at fault effects. D (D) represents the value of 1/0 (0/1),

where 1 (0) is the fault-free value, and 0 (1) is the faulty value.

B. LOOPLock

LOOPLock [6] is a cyclic logic locking method using NM-

based techniques [2] [4] [5]. Two locking structures, Type-I

and Type-II cycle pairs, are used to protect the design. Each

cycle pair deliberately contains a combinational cycle and a

non-combinational cycle.

According to Theorem 1, C is combinational as the value

changes are never propagated from nt to ns. In other words, a

blocking node nb exists between nt and ns, which blocks the
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Figure 1. An example for LOOPLock. (a) The original circuit. (b) The Type-I
cycle pair. (c) The Type-II cycle pair.

effect of the value changes on nt. Hence, replacing nt with a

node after nb can form a combinational cycle. Replacing nt

with a node between nt and nb can form a non-combinational

cycle though. nb can be identified by examining the fault effect

propagation from nt.

We use Fig. 1 to illustrate the locking structures of

LOOPLock. Fig. 1(a) is a circuit represented in an And-

Inverter Graph (AIG). Nodes n1 ∼ n18 are two-input AND

gates, and the dots on the edges are inverters. x1 ∼ x6 are

primary inputs (PIs), and y1 ∼ y6 are POs.

The Type-I cycle pair is shown in Fig. 1(b). Two key gates

M1 and M2, which are MUXes, are controlled by the same

key input K1. The correct key value is K1 = 1. M1 connects

to two cycles, where the red one is a non-combinational cycle

L1, which affects PO y1 while K1 = 0, and the green one is

a functionally correct combinational cycle L2 while K1 = 1.

Let us explain the construction of the Type-I cycle pair. Let n1
be the nt in the original circuit. We can use the NM techniques

and fault effect propagation to identify CSN and nb, which

are n7 and n4, respectively. Then, we can create M1 with L1
and L2 using the obtained information. M2 is used to confuse

attackers such that the Type-I cycle pair is very similar to the

Type-II cycle pair. Since there exists at least one path from a

node between nt and nb to any PO in the Type-I cycle pair,

the Type-I cycle pair can defend against SAT Attack due to

the observable non-combinational effect.

The Type-II cycle pair is shown in Fig. 1(c). The key input

K2 also controls two key gates M3 and M4, and the correct

key value of K2 is 1. The red cycle L3 connected to M3 is

combinational while K2 = 0, and the green cycle L4 is non-

combinational while K2 = 1. Let us explain the construction

of the Type-II cycle pair. Let n9 be the nt in the original

circuit. Different from the Type-I cycle pair, to create M3,

we find n12 as nb and ensure that there exists no path from

any node between nt and nb to any PO. Hence, choosing

either L3 or L4 does not affect the functionality of the circuit.

However, K2 = 0 is a wrong key value due to choosing the

wrong path for M4. The purpose of the Type-II cycle pair

is to invalidate CycSAT and BeSAT. While constructing the

NC condition in the pre-processing step of CycSAT or BeSAT,

the non-combinational cycles will be ruled out. Therefore, the

correct key vector cannot be obtained by the attackers.

The target nodes have been removed in the locked circuit

when constructing the Type-I and Type-II cycle pairs. Thus,

even if Removal Attack can identify the locking structures,

restoring the functionality of the original circuit is still a

challenging task due to the absence of target nodes.

C. LOOPLock 2.0

LOOPLock is an effective cyclic logic locking method,

which invalidates SAT Attack, CycSAT, BeSAT, and Removal

Attack. However, the authors in [30] proposed an attacking

method to unlock LOOPLock. The main idea is to distinguish

the Type-I and Type-II cycle pairs by identifying the structural

difference. That is, there exists at least a path from a node

between nt and nb to any PO in a Type-I cycle pair, but no

such path exists in a Type-II cycle pair. For ease of discussion,

the MUX with two feedback edges in a cycle pair, which is

located at the left side, is denoted as pre-MUX, and the other

one controlled by the same key input, which is located at the

right side, is denoted as post-MUX.

The first step of the unlocking method is to find the

positions of nt and nb. Since nt has been replaced by the

pre-MUX, its position can be recognized easily. Then nb is

identified by a Blocking Node Identification method. After

finding the positions of nt and nb, the locking structure can

be distinguished as a Type-I or a Type-II cycle pair by finding

any PO existing between nt and nb.

The authors in [30] then proposed LOOPLock 2.0, which

is an enhanced version of LOOPLock. Its main idea is to hide

the structural difference between the Type-I and Type-II cycle

pairs. We use Fig. 2 to introduce the structures of LOOPLock

2.0. The Type-I cycle pair is shown in Fig. 2(a). A node n17 in

the original circuit of Fig. 1(a) is selected to insert a key gate

M5, which hides the connection between n3 and y1. On the

other hand, the Type-II cycle pair, as shown in Fig. 2(b), also

needs to be modified. A PO y6 and its fanin node n18 are first

selected. Then M6 is inserted with a wrong path connecting

to the node n11, which is between the pre-MUX and nb. The

structures of Type-I and Type-II cycle pairs in LOOPLock 2.0

are very similar to each other and cannot be distinguished by

the unlocking method against LOOPLock.

Furthermore, the authors in [30] proposed the Subcircuit
Duplication method for increasing the number of Type-II cycle

pairs in a circuit. This is because the target node for a Type-II
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Figure 2. An example for LOOPLock 2.0. (a) The Type-I cycle pair. (b) The
Type-II cycle pair.

cycle pair has to be a redundant node in the original circuit,

which may be rare in practice. To overcome this difficulty, the

Subcircuit Duplication method duplicates the nodes between

nt and nb if necessary, and transfers the connections of their

fanouts that have paths to POs from the original nodes to the

duplicated nodes. Then the original nt becomes redundant and

can be used to create a Type-II cycle pair.

III. OUR APPROACH

In Section II-C, we have introduced the locking structures

in LOOPLock 2.0 and explained why they can effectively

defend against different kinds of attacking methods. However,

LOOPLock 2.0 still has some security concerns after analyzing

the locking structures. We will discuss these security concerns

and then propose an unlocking approach against LOOPLock

2.0 in this section.

A. Shortcomings of LOOPLock 2.0

In this subsection, we discuss three shortcomings of

LOOPLock 2.0 that affect the security of the locked circuit.

1) The post-MUX in the Type-I cycle pair lowers the

encryption strength.

2) The shared key input in the Type-II cycle pair is used

to defend against CycSAT and BeSAT. However, the

locking structure may malfunction while the shared key

input is split into two individual key inputs.

3) The positions of the blocking nodes nb is revealed after a

comprehensive examination, which means that the non-

combinational cycles and combinational ones can be

distinguished.

For the first shortcoming, in fact, having the pre-MUX only

in the Type-I cycle pair is enough to invalidate SAT Attack.

The post-MUX in the Type-I cycle pair is used to adjust

its structure such that the structure of the Type-I cycle pair

is more similar to that of the Type-II cycle pair. However,

inserting the post-MUX in the Type-I cycle pair may create a

weakness in the locked circuit when facing SAT Attack. We

use an example to demonstrate this situation. In Fig. 2(a), the

wrong path of the post-MUX M2 is connected to n3, which

is a suitable node for trapping SAT Attack into an infinite

loop. Since the nodes for creating wrong paths of the post-

MUXes are randomly selected in LOOPLock 2.0, when the

wrong path of the post-MUX M2 is connected to n2 instead

of n3 in this example, the DIP (x1, x2, x3, x4) = (1, 1, 0, 1)
can be found. This DIP blocks the non-combinational effect

and causes different values on y2 under different key vectors.

Thus, K1 = 0 will be pruned and the attack is successful.

For the second shortcoming, we can first modify the locked

circuit by replacing the shared key input Kn in each cycle

pair with two key inputs Kn1 and Kn2 controlling the pre-

MUX and post-MUX, respectively. Next, we apply CycSAT-

II, which allows having combinational cycles in the circuit,

on the modified circuit to get a correct key vector. We use

the example in Fig. 2 to explain the reason. The Type-I cycle

pair is vulnerable to CycSAT-II because the correct key value

selects the combinational cycle. On the other hand, the Type-II

cycle pair invalidates CycSAT-II because the correct key value

selecting the non-combinational cycle from the pre-MUX and

the correct path from the post-MUX will be ruled out while

constructing the NC condition. If K2 in Fig. 2(b) is replaced

by K21 and K22, which control M3 and M4, respectively,

(K21,K22,K4) = (1, 1, 1) and (0, 1, 1) are both correct key

vectors to the modified circuit. The key vector (0, 1, 1) can

be solved by CycSAT-II, which allows having combinational

cycles in the circuit. Hence, using shared key inputs to defend

against CycSAT-II is not secure enough due to the method of

key-splitting.

For the last shortcoming, the enhanced structures in

LOOPLock 2.0 only make two cycle pairs similar, but do not

hide the positions of the blocking nodes nb. Thus, we still can

use this information to unlock LOOPLock 2.0. The detailed

process of our unlocking approach will be presented in Section

III-B.

B. Our Unlocking Approach

In the previous sections, we know that LOOPLock 2.0

can invalidate SAT Attack due to the observable non-

combinational effects at POs under incorrect key vectors. If

we can remove these non-combinational cycles, the resultant

circuit will be vulnerable to SAT Attack.

The proposed unlocking approach consists of two steps:

preprocessing step and SAT solving step. The preprocessing
step analyzes the locked circuit and modifies the cyclic

structures. The SAT solving step applies SAT solvers. First,

we identify the non-combinational cycle in each cycle pair.

According to the last shortcoming of LOOPLock 2.0, we can

distinguish the non-combinational and combinational cycles

when the position of the blocking node nb is identified. We

propagate the fault effects from the pre-MUX, which is at the

same position as the removed target node nt. To avoid cycles,

we do not propagate the fault effects through the feedback

paths to the pre-MUX. As a result, the node that can block

the fault effects is nb. We then either identify a cycle as a

non-combinational cycle when the feedback path is from a
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Figure 3. The modified circuit after removing non-combinational cycles. (a) The Type-I cycle pair without the non-combinational cycle. (b) The Type-II cycle
pair without the non-combinational cycle.

node between the pre-MUX and nb, or identify a cycle as a

combinational cycle when the feedback path is from a node

in the fanout cone of nb.

Next, we replace the feedback paths of the non-

combinational cycles with an arbitrary constant value (0 or

1) to break these cycles, which may either cause statefulness

or oscillation. In the Type-I cycle pair, the correct key

vector will select the combinational cycle instead of the non-

combinational one. On the other hand, the non-combinational

cycle in the Type-II cycle pair is unobservable at POs under

the correct key vector. Hence, replacing the feedback paths

of the non-combinational cycles with either 0 or 1 will not

change the functionality of the circuit under the correct key

vector. An example of the modified circuit with the constant

replacement for Fig. 2 is shown in Fig. 3. The feedback paths

of L1 and L4 are replaced by constant values. As a result,

there is no non-combinational cycle in the modified circuit.

In the SAT solving step, we use the modified circuit to build

a miter-like circuit and apply SAT solvers to have the correct

key vector as SAT Attack. Algorithm 1 shows the pseudo-code

of the proposed unlocking approach.

Algorithm 1 Our Unlocking Approach

Input: A locked netlist Ce(x, k) and an activated IC f(x).
Output: The correct key vector k∗.

1: for each key input ki in Ce do // preprocessing step

2: Find the cycle pair CP with ki;
3: Find the pre-MUX Mpre in CP ;

4: Propagate the fault effects D and D from Mpre;

5: Find the blocking node nb;

6: for each feedback path Li connecting to Mpre do
7: if Li forms a non-combinational cycle then
8: replace Li with constant 0 or 1;

9: end if
10: end for
11: end for
12: k∗ = SAT-ATTACK(Ce(x, k));
13: return k∗;

C. Cycle Groups in LOOPLock 2.0

In LOOPLock 2.0, each cycle pair only contains a

combinational cycle and a non-combinational cycle. However,

when the locking structures are enhanced with more cycles,

they are still vulnerable to our unlocking approach since

our unlocking approach is based on removing all the non-

combinational cycles. We illustrate the cycle group structure,

which contains more cycles than a cycle pair, in the example of

Fig. 4 for explaining the strength of our unlocking approach.

In Fig. 4(a), there are two non-combinational cycles (L1 and

L2) and two combinational cycles (L3 and L4) in the Type-I

cycle group. Similarly, there are two non-combinational cycles

(L5 and L6) and two combinational cycles (L7 and L8) in the

Type-II cycle group in Fig. 4(b). The green cycles (L4 and L5)

will be selected under the correct key vector.

When applying the proposed unlocking approach on the

locked circuit with cycle groups, the blocking nodes n4,

n12, and the non-combinational cycles are identified. Then

the feedback paths of non-combinational cycles L1, L2, L5,

and L6, which are inputs of the pre-MUXes, are replaced

by arbitrary constant values, either 0 or 1. Finally, we can

obtain the correct key vector by applying the SAT solver to

the modified circuit. This example shows that our unlocking

approach works successfully even when the number of cycles

increases in LOOPLock 2.0 for elevating the security level.

IV. EXPERIMENTAL RESULTS

We implemented the proposed unlocking approach against

LOOPLock 2.0 in C++ language. The experiment was

conducted on an Intel Core i3-8100 3.60GHz Ubuntu 16.04

platform with 5.2GBytes memory. The benchmarks are IWLS

2005 suite [36], and are represented in AIG format. These

benchmarks are the locked circuits by LOOPLock 2.0 and

shared by the authors of [30]. The experiment is to apply the

unlocking approach on these locked circuits. We compared

our results with that obtained by SAT Attack, CycSAT, and

BeSAT. SAT Attack, CycSAT are available publicly, but for

BeSAT, we re-implemented it to prune out key vectors that
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Figure 4. An example for LOOPLock 2.0 with a cycle group. (a) The Type-I cycle group. (b) The Type-II cycle group.

Table I
THE COMPARISON AMONG THE PROPOSED UNLOCKING APPROACH AGAINST SAT ATTACK, CYCSAT, AND BESAT ON THE CIRCUITS LOCKED BY

LOOPLOCK 2.0.

Benchmark Information Ours SAT Attack CycSAT BeSAT
Benchmark |Type-I| |Type-II| Preprocessing SAT solving Time (s) Result Time (s) Result Time (s) Result Time (s) Result

b20 1 1 0.063 2.479 2.542 Correct Key Inf. loop No Result 1.978 Wrong Key 2.193 Wrong Key

b21 1 1 0.074 3.789 3.863 Correct Key Inf. loop No Result 4.177 Wrong Key 2.175 Wrong Key

b22 1 1 0.170 5.837 6.007 Correct Key Inf. loop No Result 3.682 Correct Key 3.707 Correct Key

C1908 1 1 0.007 0.049 0.056 Correct Key Inf. loop No Result 0.032 No Result 0.054 No Result

C432 1 1 0.005 0.026 0.031 Correct Key Inf. loop No Result 0.035 Correct Key 0.053 Correct Key

i10 1 1 2.153 0.191 2.344 Correct Key Inf. loop No Result 0.226 Correct Key 0.269 Correct Key

i2c 1 1 0.007 0.116 0.123 Correct Key Inf. loop No Result 0.139 No Result 0.159 No Result

pci brdge32 1 1 1.355 109.136 110.491 Correct Key Inf. loop No Result 1.512 No Result 1.996 No Result

rot 1 1 0.007 0.072 0.079 Correct Key Inf. loop No Result 0.052 No Result 0.076 No Result

sasc 1 1 0.005 0.072 0.077 Correct Key 0.055 No Result 0.052 No Result 0.045 No Result

systemcaes 1 1 0.107 22.143 22.250 Correct Key Inf. loop No Result 20.314 Wrong Key 21.022 Wrong Key

wb conmax 1 1 2.396 42.027 44.423 Correct Key Inf. loop No Result 39.548 Wrong Key 39.109 Wrong Key

cause statefulness. The comparison of results are summarized

in Table I. Columns 1∼3 list the information of benchmarks.

Each circuit is locked with only one Type-I cycle pair and one

Type-II cycle pair. This is because LOOPLock 2.0 claimed that

only one Type-I and Type-II cycle pair can defend against the

attacks. Columns 4 and 5 show the corresponding CPU time of

preprocessing step (including identifying and removing non-

combinational cycles) and SAT solving step in the unlocking

approach. For most benchmarks, our approach spent less CPU

time for the preprocessing than the SAT solving. However, if

the node count in a cycle is large, the preprocessing required

more time on identifying the position of nb, e.g., benchmark

i10. Columns 6 and 7 show the total CPU time and the results

after applying the unlocking approach. The results show that

the proposed unlocking approach can remove all the non-

combinational cycles in the locked circuits, and then obtain the

correct key vectors. Columns 8∼13 show the CPU time and

the results after applying SAT Attack, CycSAT, and BeSAT,

respectively. SAT Attack was trapped into an infinite loop (Inf.

loop) in most benchmarks and returned “No Result” due to the

observable non-combinational effect at POs. For CycSAT and

BeSAT, the constructed NC conditions ruled out the correct

key vectors and returned wrong key vectors or “No Result”

for most benchmarks. The results show that the CycSAT and

BeSAT were not trapped into an infinite loop but returned “No

Result” for some benchmarks. There are two possible reasons.

One is that there exists a contradiction in the constructed CNF

formula with NC conditions so that no key vector can satisfy

the CNF formula. The other is that the correct key vector was

excluded by the NC conditions, and the remaining wrong key

vectors were pruned out during the DIP generation process.

For certain benchmarks, CycSAT and BeSAT also returned

correct keys. This is because the circuit is locked with only

one Type-I and Type-II cycle pair. This is just a lucky outcome.

According to Table I, we can see that the proposed unlocking

approach is effective to unlock LOOPLock 2.0.

V. CONCLUSION

In this work, we propose a SAT-based unlocking approach

to attack LOOPLock 2.0, which is the state-of-the-art cyclic

logic locking method. The experimental results show the

effectiveness of the proposed unlocking approach attacking

the state-of-the-art, LOOPLock 2.0.
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