
CS 613200 Advanced Logic Synthesis
Final Project (2023, Spring)

Due Date: Jun.21st, 2023
TOPIC
FSM State Assignment for Low Power Dissipation.

INTRODUCTION
The target of this project is to minimize power consumption of a finite-
state machine (FSM) in multilevel logic implementations. The state coding
will impact switching activity of sequential and combinational circuit of a
FSM because of different number of gates switched during state
transitions. Students are required to develop an automatic design flow to
encode a given FSM for power optimization. Finally, the encoded FSM
will be synthesized and power analyzed by SIS.

PROBLEM DESCRIPTION
Design flow:

1

STG Creation:
State Transition Graph (STG) is a representation of a FSM. The input file,
KISS, describes the translation between each state. A STG of a FSM is
shown in Fig. 1(a). The corresponding input file is shown in Fig. 1(b).

 (a) State Transition Graph. (b) Corresponding KISS 1

Fig. 1
For example, the column “00 st0 st0 0” means that in the current state st0
if the input is 00, the next state will be st0 and the output will be 0. The
detailed description of KISS is shown in [8]. Figure 2 shows an example of
state coding and the corresponding logical circuit.

(a) Corresponding Logical Circuit. (b) State Assignment

Fig. 2

 Note that “-- st1 st1 1” is wrong, the correct is “-- st1 st2 1”1

2

STG Creation [3][4][5]:
By assuming the switching probabilities of all input signals are 0.5. The
state probability can be calculated by the state transition model [3] and
linear programming tool (GLPK) [5],

where PS(Si) is the set of immediately previous states of Si ; Prob(Si) is the
state probability of stae Si, and Prob(Ik,j) is the probability of input pattern
Ik,i. The state and state transition probability will be used as a part of cost
function in your algorithm. Here have some references that you can use to
solve matrix computation [4].

Initial Encoding of FSM [6][7]:
To find an optimized state assignment of a FSM for low power
consumption is a NP-hard problem. By exhaustive search to find the
solution is computationally expensive. Lots of work is approximate
method by a cost function to estimate power consumption before the FSM
synthesized. A good initial solution will reduce the computation time of
searching. You are required to use an existing tool (LEDA) [7] to
implement matching algorithm for an initial solution.

For a given FSM, if there are n states in STG, encoding bit length is
between log2n to n.

Optimizing cost function [3]:
Because of the uneven distribution of state transitions in FSM, state
assignment that states with high transitions are given state codes of short

3

distance will reduce the number of signal’s switching and hence the
dynamic power consumption. The objective is to minimize,

where w(s,t) is the power cost function of the transition between state s and
state t under the encoding, enc(s) and enc(t). In this project, we only
consider dynamic power consumption. Please refer to [5] and [6] for more
detail modeling about cost functions. You can perform simulation
annealing algorithm or other techniques for power optimization in this
phase.

SIS synthesis and power report [8]:

After optimization, an encoded FSM is written out with a specified format,
BLIF. Figure 3 shows an output example of the FSM shown in Figure 1.

Fig. 3 2

 Same as corner mark 1.2

4

A script “opt_map_power.scr” is provided for power report in SIS. There
are 3 phases in the script. The first phase is logic independent optimization
by SIS default script “script”. The second phase is to perform technology
mapping by library “synch.genlib”. The final phase is power report by SIS
internal command “power_estimate”. Here is an example of power report.

Combinational power estimation, with Zero delay model.
Network: jedi_output, Power = 877.6 uW assuming 20 MHz clock and Vdd =
5V

The frequency and Vdd setting is fixed in 20Mhz and 5V respectively. To
use the script, the example is as follow

$> sis

sis> read_blif my_fsm_outputfile #read in the encoded fsm

sis> source opt_map_power.scr #run script

In SIS, the power dissipated in a circuit due to switching activity is
calculated by

P=0.5×Vdd2 ×∑(p ×C)×f

where

pi = expected number of transitions of node i in one clock cycle

Ci = capacitive load of node I

f = 20Mhz

Vdd = 5V

The expected number of transitions of each node per clock cycle is
calculated through symbolic simulation, based on the static probabilities of
the primary inputs (by default prob_one = prob_zero = 0.5). The capacitive
load of a node is obtained by summing the gate capacitances of its fanout
nodes and adding some internal drain capacitance. Gate capacitances are
multiple of a minimum sized transistor (0.01pF), admitting transistor
sizing based on the number of inputs to the node (up to a value
max_input_sizing, default 4). Drain capacitances are calculated from the
number of transistors this node has (multiple of 0.005pF) and this number
can be obtained either from a factored form or sum of products.

5

Requirements

• One page report to summarize your design flow, cost function and result

• Field Demo.

Grading

• Program Functionality Design Flow

• Cost Function

• Power Result

References

[1] Benini, L., De Micheli, G., “State assignment for low power
dissipation” IEEE Journal of Solid-State Circuits, Volume 30, Issue 3,
March 1995, Pages: 258- 268.

[2] Chi-Ying Tsui, Pedram, M. Despain, A.M., “Low-power state
assignment targeting two- and multilevel logic implementations”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems Volume 17, Dec. 1998 Page(s):1281 – 1291.

[3] ALS Chapter7: Low Power Design, pp.12-16.

[4] Gauss Elimination

[5] GNU Linear Programming Kit (GLPK)

[6] ALS Chapter6: Finite State Machine

[7] Library of Efficient Data types and Algorithms (LEDA)

[8] SIS: A System for Sequential Circuit Synthesis

6

http://www.cs.nthu.edu.tw/~tingting/course1.html
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-2-elimination-with-matrices/
https://www.gnu.org/software/glpk/glpk.html
http://www.cs.nthu.edu.tw/~tingting/Als_23/ch6-finite-state-machine-23.ppt
https://www3.cs.stonybrook.edu/~algorith/implement/LEDA/implement.shtml
https://embedded.eecs.berkeley.edu/Alumni/pchong/sis.html

