A Near Optimal Algorithm for Technology Mapping Minimizing
Area under Delay Constraints

Kamal Chaudhary
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Massoud Pedram
Department of Electrical Engineering — Systems
University of Southern California, Los Angeles, CA 90089

Abstract

We examine the problem of mapping a Boolean network us-
ing gates from a finite size cell library. The objective is to
minimize the total gate area subject to constraints on sig-
nal arrival time at the primary outputs. Our approach con-
sists of two steps: In the first step, we compute delay func-
tions (which capture arrival time — gate area tradeoffs) at all
nodes in the network, and in the second step we generate
the mapping solution based on the computed delay functions
and the required times at the primary outputs. For a NAND-
decomposed tree, subject to load calculation errors, this two
step approach finds the minimum area mapping satisfying all
delay constraints if such solution exists. The algorithm has
polynomial run time on a node-balanced tree and is easily
extended to mapping a directed acyclic graph (DAG). Our
results compare favorably with those of MIS2.2 mapper.

1 Introduction

The goal of logic synthesis is to produce a circuit which satis-
fies a set of logic equations, occupies minimal area and meets
the timing constraints. Most logic synthesis systems cur-
rently available split this task into two phases — a technology
independent phase and a technology dependent phase. In the
first phase, transformations are applied on a Boolean network
to find a representation with the least number of literals in the
factored form. Additional timing optimization transforma-
tions are applied on this minimal area network to improve
circuit performance. The role of the technology-dependent
phase is to finish the synthesis of the circuit by performing
the final gate selection from a target library.

1.1 Problem Definition

The technology mapping problem can be stated as follows:
Given a Boolean network representing a combinational logic
circuit optimized by technology independent synthesis pro-
cedures and a target library, we bind nodes in the network
to gates in the library such that area of the final implementa-
tion is minimized and timing constraints are satisfied. A suc-
cessful and efficient solution to the minimum area mapping
problem was suggested in [3] and implemented in programs
such as DAGON and MIS. The idea is to reduce technology
mapping to DAG covering and to approximate DAG cover-
ing by a sequence of tree coverings which can be performed
optimally using dynamic programming. [9] extended this ap-
proach to solve the technology mapping problem minimizing
delay (subject to error due to unknown load values during
mapping) and the technology mapping problem minimizing
area under delay constraints. The solution to the latter prob-
lem, however, is not satisfactory.

The procedure for converting an optimized Boolean net-
work into a two-input NAND and inverter decomposed (for
short, NAND-decomposed) DAG is not unique and it is
an open problem to determine which of the possible sub-
ject DAGs yields an optimum solution when an optimum
covering algorithm is applied [2). Different decomposition
schemes for minimizing area [6), minimizing delay [11], or
reducing routing complexity [S] have been introduced by
various authors. In this paper, we assume that the DAG has
already been decomposed into two-input NAND and inverter
gates.

1.2 Prior Work

In [1], the author gives a pseudo-polynomial time algorithm
for computing the min-max slacks (given the minimum and
maximum required times at the primary outouts) at all inter-
nal nodes of a trec. The technique, however, can be used
only for gate sizing (i.c., the tree has already been mapped,
the problem is to assign the optimal size to each gate from a

29th ACM/IEEE Design Automation Conference®

Paper 30.4

492

0738-100X/92 $3.00 © 1992 IEEE

discrete number of sizes in the target library while satisfying
the timing constraints).

In [9], the authors first compute a range of “interesting”
values for the required times at each node (by finding the
minimum area and the minimum delay mapping solutions)
and then divide this range into equal intervals. The best map-
ping solution for each of the required times are generated and
stored at the node during a postorder traversal (from primary
inputs to primary outputs) of the tree. The final mapping so-
lution is generated during a preorder traversal (from primary
outputs toward primary inputs) of the tree. In order to obtain
high-quality mapping solutions, this method requires a small
time step resulting in large number of delay-area points. In
contrast, our method works with the arrival times (as op-
posed to the required times), keeps all (and only) non-inferior
delay-area points, and does not need an a priori range of in-
terest for arrival times.

1.3 Overview and Organization of the Paper

In this paper, we present an efficient algorithm for generat-
ing a technology mapping solution with minimum gate area
subject to given delay constraints. Our approach consists
of two steps: In the first step, we compute delay functions
(which capture arrival time - gate area tradeoffs) at all nodes
of a NAND-decomposed network, and in the second step we
generate the mapping solution based on the computed delay
functions and the required times at the primary outputs.

The paper is organized as follows. In Section 2, we intro-
duce some terminology and describe the timing model. Sec-
tion 3 presents details of our algorithm. Sections 4 and 5 are
devoted to the extension from trees to general DAGs and the
complexity analysis. We present our results and concluding
remarks in Sections 6 and 7.

2 Terminology and Timing Model

Consider a match g at node n of a NAND-decomposed tree.
The inputs to node n consist of nodes n; which fanout to
node n (that is, n = n/ + n} if n has two inputs or n = nj
if n has a single input). The nodes which are covered by
match g are denoted by merged(n,g). The nodes which
are not in merged(n, g) but fanin to merged(n, g) are de-
noted by inputs(n,g). The mapped-parent(n;) is some
node n for which there exists a matching gate g such that
n; € inputs(n, g). Note that given node n and gate g match-
ing at n, inputs(n, g) are uniquely determined. However, n;
may have many distinct mapped parents (Figure 2.1).

With each node in the network we store a delay curve. A
point on the curve represents the arrival time at the output of
the node and the total gate area which is required to map its
transitive fanin cone up to (and including) the node. In addi-
tion to the area and delay value, the matching gate and input
bindings for the maich are also stored with each point on the

493

merged(ng) = (ne.f})
inputs(n,g) = {ab,c.d}
mapped-parent(c) = (np}

Figure 2.1: Terminology

curve. Points on the curve represent various mapping solu-
tions with different tradeoffs between area and speed. We are
interested in a mapping with minimum area satisfying delay
requirements. Consequently, we can drop point P, on the
curve if there exists another point P; on the curve with lower
area but equal or lower delay. This is possible because the
solution associated with P; is superior to the solution asso-
ciated with P, in terms of area, delay or both. By dropping
points, the delay curve can always be made monotonically
non-increasing without loss of optimality. We would refer to
P, as an inferior point. Point P* = (t*,a*) is a non-inferior
point if and only if there does not exist a point P = (t,a)
such that either ¢ < t*,a < a*ort < t*,a < a*.

Lemma 2.1 The delay functionfor a node contains the set of
all non-inferior points and is monotonically non-increasing.

In addition, if the difference in delay among two points
is small (according to some user-specified parameter ¢), we
drop the point with higherarea without any noticeable impact
on the quality of the result. Similarly, points which are close
in terms of their areas are merged together.

We have adopted the pin-dependent MIS library delay
model as follows. Suppose that gate g has matched at node
n, then the output arrival time at n is given by:

arrival(n,g,Cpn) =

MATn,cinputs(n,g)(Ti,g + RigCn + arrival(n;, g, Ci))

where 7; , is the intrinsic gate delay from input i to output
of g, R; 4 is the drive resistance of g corresponding to a sig-
nal transition at input i, C,, is the load capacitance seen at n,
arrival(n;, g;, C;) is the arrival time at input ¢ correspond-
ing to load C; seen at that input, and g; is the best maich
found at input :.

Paper 30.4

3 Tree Mapping

In this section, we focus on tree mapping. Later, we shall
describe extensions to DAG mapping. In particular, we
describe two tree-traversal operations which are applied to
a NAND-decomposed tree in order to obtain a technology
mapping solution which minimizes the total gate area while
satisfying the timing constraints.

First, a postorder traversal is used to determine a set of
possible arrival times at the root of the tree. Once the user
specifies a single required time, a second, preorder traversal
is performed to determine a specific technology mapping so-
lution. This scheme is similar to that proposed in [8] in order
to solve the optimal orientation problem for a slicing tree of
macro-cells.

We begin by stating that the possible accumulated gate ar-
eas at each node can be described as a function of the arrival
times at the node. The accumulated gate area is the total area
used by the gates which have matched nodes in the transitive
fanin cone of the node. The arrival time is the earliest time
at which the signal at the output of the node settles within
50% of its final value (due to a signal transition at some pri-
mary input). The delay function is therefore represented by
a set of ordered pairs of real positive numbers (¢, a), where a
piecewise linear function a = f(t) can be constructed which
describes the graph of all possible accumulated gate areas.
This function describes all possible arrival time-area trade-
offs at a given node. The delay function at an input node of
the NAND-decomposed tree consists of ordered pairs (t, a)
where ¢ and a have been specified by the user (in case of pri-
mary inputs of the network) or have been previously com-
puted (in case that inputs to this tree are outputs of other
trees).

3.1 Postorder Traversal

On the first traversal, we begin at the leaf nodes of the
NAND-decomposed tree. Since each leaf node possesses a
set of possible arrival time-area points which are reflected
in its delay function, the delay function at any mapped-
parent(n) must also reflect these possible arrival time-area
tradeoffs. A postorder traversal of the NAND-decomposed
tree is performed, where for each node n and for each gate
g maiching at n, a new delay function is produced by ap-
propriately merging the delay functions at the inputs(n, g).
Merging must occur in the common region in order to en-
sure that the resulting function reflects feasible matches at
the inputs(n, g). The delay functions for successive gates
g matching at n are then merged by applying a lower-bound
merge operation on the corresponding delay functions. At a
given node n, the resulting delay function will describe the
arrival time-area tradeoffs in propagating a signal from the
tree inputs to the output of n.

To illustrate the delay function computation procedure,
consider example in Figure 3.1. It shows the computation

Paper 30.4

494

-~

et SRR

.,

Figure 3.1: Generating the delay curve for a given match

of delay function for match g at node D. The inputs to the
match are nodes 4 and B. The delay functions for A and B
are known at this time. To compute a point on the delay func-
tion for node D, we select a point from delay function of in-
puts, say pointa on delay curve of node A. The delay of point
a is 3 units. So, we look for a point on the delay function of
node B with delay less than 3 which has the minimum area.
In this example, d is the desired point. We therefore combine
points a and d to generate point ¢’ on delay-curve(D), with

arrival(a’) = arrival(a) + delay(yg)

area(a’) = area(a) + area(d) + area(gate).

Similarly, we generate all other points on the curve. Note,
that there is no point on delay-curve(D) corresponding to
the point e on delay-curve(B), as there is no point on delay-
curve(A) which has delay less than or equal to delay(e).

To illustrate the lower bound merging procedure, consider
example in Figure 3.2. Here, we have already generated the
delay-curves for the matching gates ¢; and g, at node n.
In order to obtain the composite delay curve at n, we must
merge the two delay curves intoone. This operation is simple
since we only need to keep the non-inferior points on either
curve. The minimum of the two delay-curves is computed,
and information is attached to each point on the resulting de-
lay curve indicating which gate alternative yields that point.

The delay function computation and merging are per-
formed recursively until the root of the tree is reached. The
resulting function is saved in the tree at its corresponding
node. Thus, each node of the tree will have an associated
delay function. The set of (¢, a) pairs corresponding to the
composite delay function at the root node will define a set of
arrival time-area tradeoffs for the user to choose from.

T

area | .
[* point ¢ b
inferior point */. |
delay
merged delay curve for gl & g2

area

Figure 3.2: Lower bound merging of delay curves

3.2 Preorder Traversal

The user is allowed to select the arrival time-area tradeoff
which is most suitable for his application. Given the re-
quired time ¢ at the root of the tree, a suitable (¢,a) point
on the delay function for the root node is chosen. The gate
g matching at the root which corresponds to this point and
inputs(root, g) are, thus, identified. The required times ¢;
at inputs(root, g) are computed from ¢, g, and the observa-
tion that inputs(root, g) must now drive gate g. The pre-
order traversal resumes at inputs(root, g) where t; is the
constraining factor and a matching gate g; with minimum a;
satisfying ¢; is sought.

3.3 Timing Recalculation

The gate delay is a function of the load it is driving. During
the postorder tree traversal, the output of current node n;, is
not mapped hence the load capacitance is unknown (unless,
all the gates in the library have identical pin capacitances). At
this time the load value is assumed to be that offered by the
smallest two-input NAND gate in the library. When we come
to a node n =mapped-parent(n;) with matching gate g, we
know the exact load seen by n;. This load is equal to the input
capacitance of g and is, in general, different from the default
load. Therefore, in order to calculate the arrival time at node
n, the output arrival times for all nodes in inputs(n, g) must
be adjusted to account for the change in the load capacitance
[4]. Similarly, during the preorder tree traversal, when a gate
g is selected to match at n, the load seen by inputs(n, g)
must be recalculated.

In order to account for this load change (;), the delay

495

curves at the inputs have to be appropriately shifted. In
particular, since the drive resistance of gate matching at
n; and giving rise to a point p; on delay-curve of n; is
stored with that point, the delay shift is computed as ; x
p;j-gate.drive. (See pseudo-code for compute_delay_curve
and assign_best_gate algorithms. Details of timing recalcu-
lation are given for compute_delay_curve.)

function compute_delay_curve(n)
begin
for each candidate match g at the node n do
for each input ¢ of match g do
Ti = g.intrinsic; + g.drive; X n.load
A = calculate change in load
end
for each input ¢ of match g do
for each point p; on the delay curve of input ¢ do
np.delay = pj.delay 4d; x p;.gate.drive 4T;
feasible-flag = true
for each input k of match g do
if k = 1, continue
find p} where p}.area is minimum and
pi.delay < np.delay —
if no such p} found
feasible-flag = false

break;
end
end
if feasible-flag = true
np.gate = g

np.binding = inputs(n, g)
np.area = g.area + Ek pf.area
insert np to the delay-curve(n)
end
end
end

end

sort delay curve of n based on the delay

delete the inferior points on the curve

reduce the non-inferior points by merging

end

function assign_best_gate(n, t)
begin
calculate the current load based on the partial mapping
shift delay-curve(n) to reflect the change in load
find a point p* on delay-curve(n) which satisfies the
required time ¢ and has minimum area
n.best_gate = p*.gate
n.best_binding = p*.binding
for each input i € inputs(p*.gate,n) do
i = g.intrinsic; + g.drive; x n.load
assign best_gate(ni, t — ;)
end
end

Paper 30.4

3.4 Taking the Load Values into Account

The shift in delay for a point is a function of change in the
load and the matching gate’s driving resistance at the point.
Different points on a curve may shift by different amounts
depending on the matching gate. Differential shift may make
the curve non-monotonic. In the worst case, a previously
inferior point on the curve might have become non-inferior,
had it not been dropped earlier. This may cause an optimal
mapping being rejected. A possible solution is not to drop
inferior points from the delay curves till we reach the output
node. This will require a large number of points being stored
for each curve without much gain.

Theorem 3.1 Let Ry..r and R, be the maximum and
minimum driving resistances, Cmqz and Criy the maximum
and minimum loads among gates in the library, and ¢ the er-
ror tolerance. If (Rmaz — Rmin) X (Cmaz — Cmin) < €,
then no optimal solution is dropped.

Proof Maximum delay shift among the points on the curve
is given by (Rma:r: - R1nin) X (Cma: - Cmin). Ifitis S €,
then no significant loss of optimality. »

Corollary 3.2 If all the gates have the same pin capaci-
tances then the tree traversals will produce the optimum so-
lution.

Corollary 3.3 If all the gates have the same drive resis-
tances then the tree traversals will produce the optimum so-
lution.

The other possible solution is to use a load bin method
similar to that of MIS2.2. For each load bin, we store a
delay curve. If the load bins are separated by less than
€/(Rmaz — Rmin), then the timing error will be less than e.
In practice, most of the libraries have a small number of gate
series (e.g., performance- versus area-optimized, low-power
versus high-power series). Within each series, the gates tend
to have almost the same pin capacitances. Therefore, use of
one load bin per gate series should be sufficient.

Note that during delay estimation we ignore the wire load
(or alternatively, approximate it based on the fanout count,
the expected average interconnect length and capacitance per
unit length of interconnect). In fact, wire load can vary by a
large amount (compared to the variance in pin capacitance)
depending on the placement and routing. Therefore, it does
not pay much to improve the accuracy of computing gate
loads while ignoring (or only roughly capturing) the wire
loads.

4 DAG Mapping

Most of the real circuits are not trees, but general DAGs.
The problem of mapping a DAG even for the constant load

Paper 30.4

496

model is NP-hard [2]. Therefore, we resort to heuristics. One
heuristic is to decompose the DAG into a number of trees
such that the inputs for each tree come from other tree out-
puts or the primary inputs. During the delay curve compu-
tation step, entire trees are processed in postorder and delay
curves are computed for each primary output of the DAG.
During the gate assignment step, entire trees are mapped
in er. This heuristic which does not allow mapping
across tree boundaries is similar to that used by DAGON.

Alternatively, we could avoid decomposing the DAG into
trees as follows. During the delay curve computation step,
nodes are visited in postorder. For each node, we compute
the delay curve as in case of trees. However, if the input
for a candidate match at the node is coming from a multiple
fanout node we divide the area contribution of that input by
the fanout count of the input node. By reducing the area con-
tribution we tend to favor a solution in which multiple fanout
nodes are preserved after mapping, which reduces logic du-
plication and improve the final mapped area. This heuristic
which permits tree boundary crossing only for nodes with
relatively few fanouts was also adopted by the MIS mapper.
During the gate selection step, if we come to a node which
has already been mapped, we check if the mapped solution
at the node satisfies the timing requirement. If so, we keep
the mapping; otherwise, we replace it with another solution
from the delay curve which satisfies the current timing re-
quirement and has minimum area. The new solution may
have higher area compared to the previous solution. Note
that satisfying the current timing can only decrease the delay
for the previous cones, although it may increase the total gate
area.

The solution for circuits with multiple outputs also de-
pends on the order in which the output cones are processed.
During the delay curve generation step, when we are com-
puting the signal arrival time for a match g at node n, we
need to recalculate the load seen at inputs(n,g). Forn; €
inputs(n, g), some of the fanouts of node n; (other than g)
may have already been mapped (because they are part of a
logic cone which has been processed), and hence, the con-
tribution of these fanouts to the load can be calculated ex-
actly. This incremental load recalculation will result in more
accurate arrival time calculation at the output of n. Simi-
lar incremental load recalculation is applied during the gate
assignment step.

5 Complexity Analysis

Consider a gate g (with k inputs) matching at node n where
input 7 has N; points on its delay curve. The delay curve
corresponding to match g at node n has N = Y5 o N;
points in the worst case. The time required to generate each
point, assuming that delay curve for each input is sorted, is
O(klog(Npaz)) (time for binary search) where Ny, is the
maximum N;. It will require another Nlog(N) to sort the

N points. Thus, the total time for generating delay curve per
candidate match is O(N2log(N)klog(N,,)). A more effi-
cient implementation based on merging of sorted lists will
have O(N') run time.

For a finite size library, the maximum number of gates that
can match at a node n is bounded which means that the num-
ber of points on the delay-curve(n) will remain linear in the
total number of points on the delay-curve of inputs(n, g) for
various matching gates. Therefore, the number of points in-
creases linearly from one level to another. Despite this, the
number of points could still grow exponentially in terms of
the number of levels in the tree. However, if the tree is node-
balanced (its height is logarithmic in the number of its leaf
nodes), then the number of points will remain polynomial. In
practice, the increase in number of points is even lower due
to the fact that a large number of points generated are infe-
rior points which are dropped and not propagated to higher
levels.

It is observed that the range of areas generated for vari-
ous solutions varies only by a factor of two, which means
that if we use only 50 points at each node, the solutions pro-
duced will be at most 2% poorer in the area compared to the
case where unbounded number of points are allowed. With
a fixed upper bound P on the number of points the time to
generate delay curve becomes O(k2P2log(kP)log(P)) or
O(k?log(k)), which is a constant since the number of inputs
for any gate in the library is bounded.

6 Experimental Results

The procedure has been implemented in a computer program
named ADIEU. We have run the MCNC benchmarks using
ADIEU and compared the results to the MIS2.2 technology
mapper [9]. The same technology independent optimized blif
files were used as input in both cases. The circuits were first
optimized using script.rugged (7] and then delay optimized
using the MIS2.2 new delay script [10]. Finally, they were
decomposed into NAND gates. We mapped the circuits us-
ing the MIS2.2 and ADIEU mappers (without fanout opti-
mization). We used the lib2 library of the MIS2.2 package.

Table 1 presents the total gate area and the longest path
delay through the circuit in the area mode of ADIEU. In Ta-
bles 2 and 3, all numbers have been normalized to the area
mode of ADIEU. On average, ADIEU’s area mode produces
circuits which are faster by 6%, but larger by 3% (compared
to MIS2.2’s area mode); ADIEU’s timing mode produces cir-
cuits as fast as MIS2.2’s timing mode, but with 17% less area.

The graph in Figure 7.1 shows a range of mapped solutions
produced for C432 benchmark when using with different cy-
cle times. These plots serve to illustrate the universality of
our method in obtaining a range of solutions with different
tradeoffs under user control. Our algorithm subsumes tech-
nology mapping techniques for minimum area or maximum
performance.

497

Example ADIEU
Area mode

arca *10° u° | delay (ns)
9symml 15.5 18.8
apex6 76.4 37.0
apex7 25.5 16.2
Y] 12.8 8.7
des 329.7 66.5
rot 68.9 234
z4ml 4.1 11.0
C1908 61.8 36.2
C1355 55.4 23.8
C432 25.9 33.7
C880 434 36.4
C3540 1185 49.2
C5315 168.1 39.6
C7552 247.8 86.9

Table 1: Technology mapping results

7 Concluding Remarks

We have presented a powerful technique for technology
mapping which generates solutions with different area/delay
tradeoffs. Our technique unifies techniques for technology
mapping with different objectives (minimum area, maximum
performance, and minimum area under delay constraints)
and is based on principles of dynamic programming and
computation of delay curves. For a node-balanced NAND-
decomposed tree, our algorithm finds the optimum area solu-
tion under delay constraints (subject to error due to unknown
loads during delay computation step) in polynomial time and
space. For the general problem of mapping DAGs, the algo-
rithm retains its efficiency and produces results which are
superior to those produced by other mappers.

We plan to combine this technique with the layout driven
mapping technique of [4] in order to include and improve
the wire load and routing area estimation during generation
of the delay curve and gate selection.

Acknowledgements

The authors would like to thank Professor Emest S. Kuh for his
support and encouragement and Narasimha Bhat for valuable dis-
cussions. This research was supported in part by the National Sci-
ence Foundation under grant number MIP 88-03711 and by the De-
fense Advanced Research Projects Agency under contract number
JFBI90092.

References
[1] P. K. Chan, *“Algorithms for library-specific sizing of com-

binational logic,” Proc. 27th ACM/IEEE Design Automation
Conference, pp. 352-356, 1990.

Paper 30.4

Example MIS2.2
Areamode | Timing mode
area | delay | area | delay
9symml | 1.00 | 099 | 135 | 091
apex6 094} 092} 135| 090
apex7 097 | 097} 126 | 088
b9 096 | 093 | 1.06 | 078
des 098 | 219|143 | 124
rot 099] 098 | 1.18 | 1.02
z4ml 093 | 101 | 124 { 087
C1908 093 | 116 | 127 113
C1355 097 | 092 | 1.18 | 086
C432 100 | 100|126 | 081
C880 098 | 0991|117 | 083
C3540 099 | 100] 127 | 096
C5315 098 | 0891128 | 0.84
C7552 097 | 103|131 | 074
average | 097 | 106 | 126 | 091

Table 2: Normalized mapping results for MIS2.2

Example ADIEU
Areamode | Timing mode
area | delay | area | delay
9symml | 1.00 | 1.00 | 1.09 | 090
apex6 1.00 | 100|103 | 0.75
apex’7 100 100} 101 | 093
des 100 | 100| 1.00} 0.89
b9 100 | 100} 1.06 | 092
ot 100 { 100 | 1.01 | 095
z4ml 100 100|110} 0.87
C1908 100} 100] 1.04] 101
C1355 100 | 1.00] 1.10| 093
C432 1.00 1.00 | 107 | 0383
C880 100 | 1.00 | 1.07 | 090
C3540 100 | 100 | 1.04 | 091
C5315 100 | 100105 085
C7552 100 | 1.00] 1.03 | 090
average | 1.00 | 1.00 | 1.05 [091

Table 3: Normalized mapping results for ADIEU

Paper 30.4

498

C432

2730

2760

2740

2120 \
2100

2680
2660 \
N
2640
N
2620 \
2000 \

28.00 29.00 30.00 31.00 32.00 33.00
delay

Figure 7.1: Delay-curves for C432 benchmark

[2] R. K. Brayton, G. D. Hachtel and A. L. Sangiovamni-
Vincenntelli, “Multilevel logic synthesis,” Proc. of the IEEE,
vol 78, no. 2, pp. 264-300, February 1990.

[3] K. Keutzer, “DAGON: technology binding and local opti-
mization by DAG matching,” Proc. 24th ACM/IEEE Design
Automation Conference, pp. 341-347, 1987.

[4] M. Pedram and N. Bhat, “Layout driven technology map-
ping,” Proc. 28th ACMIIEEE Design Automation Conf.,
pages 99-105, 1991.

[S] M. Pedram and N. Bhat, “Layout driven logic restructuring /
decomposition,” Proc. IEEE Int. Conf. Computer-Aided De-
sign, pages 134-137, 1991.

[6] R.Rudell, “Logic synthesis for VLSI design,” Ph.D. disserta-
tion, University of California, Berkeley, April 1989.

[7] H. Savoj, H. -Y. Wang, “Improved scripts in MIS-II for logic
minimization of combinational circuits,” Proc. Int. Workshop
on Logic Synthesis, Vol. 3, 1991.

[8] L. Stockmeyer, “Optimal orientation of cells in slicing floor-
plan designs,” Information and Control, Vol. 57, pages 91-
101, 1983.

{91 H. J. Touati, C. W. Moon, R. K. Brayton and A. Wang,
“Performance-oriented technology mapping,” Proc. 6th MIT
Conf, Advanced Research in VLSI, W. J. Dally ed., pp. 79-97,
1990.

[10] H.]J.Touat, H. Savoj, and R. K. Brayton, “Delay optimization
of combinational logic circuits by clustering and partial col-
lapsing,” Proc. IEEE Int. Conf. Computer Design, pages 188-
191, 1991.

[11] A. Wang, “Algorithms for multi-level logic optimization,”
Ph.D. dissertation, University of California, Berkeley, April
1989.

