
Low Power Realization of Finite State
Machines—A Decomposition Approach

SUE-HONG CHOW, YI-CHENG HO, TINGTING HWANG
Tsing Hua University, Taiwan
and
C. L. LIU
University of Illinois at Urbana-Champaign

We present in this article a new approach to the synthesis problem for finite state machines
with the reduction of power dissipation as a design objective. A finite state machine is
decomposed into a number of coupled submachines. Most of the time, only one of the
submachines will be activated which, consequently, could lead to substantial savings in power
consumption. The key steps in our approach are: (1) decomposition of a finite state machine
into submachines so that there is a high probability that state transitions will be confined to
the smaller of the submachines most of the time, and (2) synthesis of the coupled submachines
to optimize the logic circuits. Experimental results confirmed that our approach produced very
good results (in particular, for finite state machines with a large number of states).

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles–sequential circuits;
B.6.3 [Logic Design]: Design Aids—automatic synthesis, optimization; J.6 [Computer Ap-
plications]: Computer-Aided Engineering—computer-aided design (CAD)

General Terms: Design, Performance

Additional Key Words and Phrases: Decomposition of finite state machines, lower power
design, state assignment

1. INTRODUCTION

In CMOS circuits, power is dissipated in a gate when the gate output
changes from 0 to 1 or from 1 to 0. Minimization of power dissipation can be

This work was partially supported by R.O.C. NSC under grant NSC 85-2221-E-007-033 and by
U.S. NSF under grant MIP 92-22408.
Authors’ addresses: S.-H. Chow, Y.-C. Ho, and T. Hwang, Department of Computer Science,
Tsing Hua University, Hsin Chu, Taiwan 30043; email: ^tingting@cs.nthu.edu.tw&; C. L. Liu,
University of Illinois at Urbana-Champaign, 1304 W. Springfield Avenue, Urbana, IL 61801.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1084-4309/96/0700–0315 $03.50

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996, Pages 315–340.

considered at algorithmic, architectural, logic, and circuit levels [Chan-
drakasan et al. 1992]. Studies on low power design are abundant in the
literature1 in which various techniques are proposed to synthesize designs
with low transitional activities.
In sequential circuit design, an effective approach to reduce power

dissipation is to “turn off” portions of the circuit, and hence reduce the
switching activities in the circuit. Two attempts have been made to exploit
such an approach. Alidina et al. [1994] proposes a precomputation-based
approach in which the output values of a sequential circuit are precom-
puted so that the original circuit can be turned off in the next clock cycle.
Benini and De Micheli [1995b] describe a scheme to stop the clocking of a
finite state machine (FSM) when the machine is in a self-loop and the
outputs do not change.
In this article we propose a technique that is also based on selectively

turning off portions of a circuit. Our approach is motivated by the observa-
tion that, for an FSM, active transitions occur only within a subset of states
in a period of time. Therefore, if we synthesize an FSM in such a way that
only the part of the circuit which computes the state transitions and
outputs will be turned on while all other parts will be turned off, power
consumption will be reduced.
Consider as an example the FSM, dk27 from the MCNC benchmark set,

shown in Figure 1. In the example, assume that the input signals 0 and 1
are equiprobable. The steady state probabilities which are shown next to
the states in Figure 1 can then be computed accordingly [Papoulis 1984].
Now suppose we partition the FSM into two submachines M1 and M2 along
the dotted line. Then around 40% of the transitions occur in submachine
M1, 40% of the transitions occur in submachine M2, and 20% of the
transitions occur between submachines M1 and M2. Now suppose that the
FSM is synthesized as two individual combinational circuits for subma-
chines M1 and M2. Then we can turn off the combinational circuit for
submachine M2 when transitions occur within submachine M1. Similarly,
we can turn off the combinational circuit for submachine M1 when transi-
tions occur within submachine M2.
Using Jedi [Lin and Newton 1989] for state encoding and SIS [Sentovich

et al. 1992] for logic optimization for the original and the two submachines,
we obtain logic circuit realizations with 23, 10, and 14 literals, respectively.
Let the average power dissipation model be Pavg 5 1/ 2 z C z (Vdd

2/
Tcyc) z E, where C is the load capacitance, Vdd is the supply voltage, Tcyc is
the clock period, and E is the transition count. Using the number of literals
to approximate the load capacitance, the ratio between the power consump-
tion of the decomposed machine and that of the original machine is
computed as ((10 1 14)/23) 3 0.2 1 (10/23) 3 0.4 1 (14/23) 3 0.4 5 0.62. In
other words, power consumption in the decomposed machine is about 62%

1Please see Roy and Prasad [1992], Prasad and Roy [1993], Dresig et al. [1993], Lin and de
Man [1993], Tsui et al. [1993], Tiwari et al. [1993], Benini and De Micheli [1995a], and
Hachtel et al. [1994].

316 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

of the original machine when the overhead for controlling the two subma-
chines is ignored. (Such overhead is taken into consideration in our
discussion later.)
In general, since the combinational circuit for each submachine is

smaller than that for the original machine, power consumption in the
decomposed machine will be smaller than that of the original machine.
Besides reduction in power dissipation, realizing an FSM as a set of
coupled submachines also provides the advantage of reducing the length of
the critical path.
The remainder of this article is organized as follows. Section 2 discusses

the computation model of a decomposed FSM. In Section 3, we describe a
method for state partition. In Section 4, we discuss the state assignment

Fig. 1. Example of FSM (dk27).

Low Power Realization • 317

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

problem for the submachines. Section 5 describes an alternative approach
to the state partition problem. In Section 6, we present experimental
results on a set of circuits from the MCNC benchmark set. Finally, we
provide some concluding remarks.

2. PARTITIONING A FINITE STATE MACHINE—THE PHYSICAL MODEL

In the general model of a synchronous FSM, a combinational circuit
computes the output signals and the state signals for the next clock cycle,
based on the input signals to the FSM and the state signals representing
the current state of the machine. To reduce power consumption, we want to
investigate the possibility of turning on only a portion of the gates in the
combinational circuit in each clock cycle. To this end, we propose the
partitioning of an FSM into submachines. At any moment, only one
submachine is active (with its corresponding combinational circuit turned
on) while all other submachines are inactive (with their corresponding
combinational circuits turned off). The active submachine is in control.
When the next input signal arrives, the active submachine might remain
active. In that case, the other submachines will not be turned on and will
remain inactive. On the other hand, when the next input signal arrives, the
active submachine might turn on another submachine, set that submachine
to the correct state, and turn itself off, becoming inactive.
Figure 1 shows an example in which an FSM is partitioned into two

submachines M1 and M2, with their sets of states being S1 5 {START, s4,
s6} and S2 5 {s2, s3, s5, s7}. We say that these two submachines are
coupled in the sense that there are transitions from one submachine to
another. Such transitions are referred to as crossing transitions. The
overall machine containing the coupled submachines is referred as a
decomposed machine. In this example, there is one crossing transition from
submachines M1 to M2, and two crossing transitions from submachines M2
to M1. Clearly, when a crossing transition takes place, control is trans-
ferred from one submachine to another.
Some important questions arise. The first question is: for a given set of

submachines obtained from the partitioning of an FSM, how do we deter-
mine the submachine to be turned on in each clock cycle? The second
question is: when an inactive submachine becomes active, how do we set it
to the correct state for the next clock cycle? The third question is: how does
an active submachine relinquish control and pass it to the submachine that
will become active in the next clock cycle? And the last question is:
physically, how do we turn on and off a piece of combinational logic?
The first question can be answered as follows: on the basis of its current

state and the input signals, the active submachine is capable of determin-
ing the submachine that is to become active in the next clock cycle.
However, the complexity of the control logic that determines the subma-
chine to be turned on is a function of the state codes assigned to the states
of the FSM. To simplify the control logic, state codes are assigned according
to the following rules: a certain number of bits in a state code are

318 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

designated control bits which distinguish the submachines from one an-
other. Consequently, states in the same submachine will have identical
control bits in their state codes, whereas states in different submachines
will have different control bits. The remaining bits in a state code will be
used to distinguish among states in the same submachine. Then, based on
the values of the control bits of the state code of the present state, the
control logic will turn on the corresponding submachine and turn off the
others.
Let an FSM M be partitioned into n submachines, M1, M2, . . . , Mn.

Suppose these n submachines have S1, S2, . . . , Sn states, respectively.
Then, in the state codes, logn control bits are required to distinguish
between the n submachines, and maximum (logS1, logS2, . . . , logSn) bits
are required to distinguish between the states in one submachine.

Example 2.1. We now use the FSM in Figure 1 as an example. The FSM
is partitioned into two submachines M1 and M2, with their sets of states
being S1 5 {START, s4, s6} and S2 5 {s2, s3, s5, s7}. One control bit is
needed to distinguish between the states in S1 and S2, and two more bits
are needed to distinguish between the states within each submachine. The
state assignment START 5 000, s4 5 010, s6 5 011 for the states in S1,
and s2 5 101, s3 5 111, s5 5 110, s7 5 100 for the states in S2, is a legal
one. Submachine M1 will be turned on and submachine M2 will be turned
off if the first bit of the state code of the present state is 0. Similarly,
submachine M2 will be turned on and submachine M1 will be turned off if
the first bit of the state code of the present state is 1.

The second question is when an inactive submachine becomes active, how
do we set it to the correct state for the next clock cycle. Note that upon
receiving the input signals, the currently active submachine recognizes
that it should relinquish control in the next clock cycle, and it is also
responsible for determining the state code of the next state of the machine.
(The state code determines unambiguously both the submachine and the
state inside that submachine.) What we need to do is to include the
crossing transitions in the state transition tables of the submachines.
Clearly, when a crossing transition takes place, we know not only that
control is transferred from one submachine to another, but also the state
code of the next state of the machine.

Example 2.2. For the example in Figure 1, there are two submachines,
M1 and M2. In submachine M1, there are five transitions among states in
S1 and one crossing transition, s6 3 s2 when the input signal is 1.
Similarly, in submachine M2, there are six transitions among states in S2
and two crossing transitions, s7 3 s6 when the input signal is 1, and s5 3
START when the input signal is 0.

The third question is how does an active submachine relinquish control
to allow another submachine to become active. We note that the state
assignment scheme previously described together with the inclusion of
crossing transitions in the submachines will allow control to be transferred

Low Power Realization • 319

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

from one submachine to another with no additional circuitry. Suppose
submachine M1 is active in the present clock cycle, and control is to be
transferred from submachine M1 to submachine M2 for the next clock cycle.
According to our synthesis procedure, submachine M1 will compute cor-
rectly the values of the state variables for the next clock cycle with the
control bit set to be such that submachine M2 will be turned on and
submachine M1 will be turned off.

Example 2.3. To be specific, let us examine the example in Figure 1
again. Suppose submachine M1 is active, and is in state s6. Since the first
bit (which is the control bit) of the state code for s6 is 0, submachine M1 is
turned on and submachine M2 is turned off. Now, if the input signal is 0,
submachine M1 will transit to state START. Since the first bit of the state
code for START is also 0, submachine M1 will remain active in the next
clock cycle. On the other hand, if the input signal is 1, submachine M1 will
transit to state s2. Since the first bit of the state code for s2 is 1,
submachine M2 will be turned on and submachine M1 will be turned off in
the next clock cycle.

The last question is, in realizing the circuit, how do we actually turn on
and off a piece of combinational logic? We propose to use multiplexers,
decoder, and control gates (e.g., AND, or NAND gates) in our control logic.
Figure 2 shows a general architecture in which edge-triggered flip-flops are
used. Through the multiplexers, the control bits of the state code of the
present state will determine the portion of the combinational logic from
which the next state registers will be loaded as well as the correct output
signals. The decoder generates the enable signals which activate the
portion of the combinational logic corresponding to the submachine that is
to become active. The AND gates in front of the original combinational
circuit will block the state and primary input signals from propagating
through the combinational circuit if the corresponding submachine should
remain inactive.
Suppose the original machine has So states, P inputs and Q outputs, and

was partitioned into M1, M2, . . . , Mn submachines where submachine Mi
has Si states for i 5 1 . . . n. Then the number of flip-flops in the
decomposed machine is Sd 5 logn 1 maximum(logS1, logS2, . . . , logSn).
The control logic overhead will include (logSo 2 Sd) flip-flops, one logn to n
decoder, (n 3 (Sd 1 P)) two-input AND gates, and (Sd 1 Q) n to 1
multiplexers.

Example 2.4. To be specific, we examine the example in Figure 1 again.
The state codes have been chosen as in Example 2.1 and the two subma-
chines M1 and M2 have been synthesized as described in Example 2.2.
Figure 3 shows the block diagram for the overall realization. Note that
there are one control signal, control1, which is the output of the first
flip-flop; one 1 3 2 decoder which will generate the enable signals e1 and e2
for submachines M1 and M2; four AND gates A, B, C, D in front of M1 and
four AND gates E, F, G, H in front of M2 which will block the state and

320 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

primary input signals from propagating through M1 and M2, respectively;
three multiplexers mux1, mux2, mux3 which will determine whether the
next state registers will be loaded from M1 or M2; and two multiplexers
mux4, mux5 which will determine the correct output signals. Suppose
submachine M1 is active and is in state s6. Since the first bit of the state
code (the control signal control1) of s6, which is the input to the 1 3 2
decoder, is 0, the output signal from the decoder to Com1, e1, is 1 which
will turn on all the AND gates A, B, C, D in front of submachine M1. Thus,
all signals fed to the circuit corresponding to submachine M1 will propagate
through. However, the output signal from the decoder to Com2, e2, is 0
which will turn off all the AND gates D, E, F, G in front of submachine
M2. Thus, all signals fed to the circuit corresponding to submachine M2
will be blocked. Similarly, with the control signal control1 being 0, signals
for the next state flip-flops and output will come from Com1 through the

Fig. 2. General circuit structure of decomposed FSM.

Low Power Realization • 321

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

2 3 1 multiplexers. Now, if the input is 0, submachine M1 will transit to
state START. Since the first bit of the state code of START is also 0,
submachine M1 will stay active in the next clock cycle. On the other hand,
if the input is 1, submachine M1 will transit to state s2. Since the first bit
of the state code (the control signal control1) of s2 is 1, the output signal of
the decoder e2 will be 1 which will allow inputs to propagate through the
AND gates E, F, G, H and Com2, and thus turn on the submachine M2. In
the meantime, the value of e1 is 0 which will inhibit the propagation of
inputs through the AND gates A, B, C, D, and thus set all the inputs to
submachine M1 to 0s in the next clock cycle, rendering submachine M1
inactive. If in subsequent clock cycles state transitions are confined to
within submachine M2, the value of e1 will remain 0 and submachine M1
will remain inactive.

It is clear from Example 2.4 that, at any moment, power consumption
will be incurred in only one submachine Mi if transitions are confined

Fig. 3. Circuit of a decomposed FSM (dk27).

322 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

within that submachine. On the other hand, power consumption will be
incurred in both submachines Mi and Mj when a transition from subma-
chine Mi to Mj takes place. During the clock cycle in which Mi is turned off
and Mj is turned on, both machines consume power.

3. PARTITIONING A FINITE STATE MACHINE INTO SUBMACHINES

As previously pointed out, we want to partition an FSM into a number of
submachines. These submachines are said to be coupled in the sense that
state transitions take place either within a submachine or between two
submachines. To synthesize an FSM as a set of coupled submachines, we
need to solve two problems: the first is to partition the FSM into subma-
chines; that is, to partition the set of states of the FSM into subsets. The
second is to synthesize the submachines; that is, to assign state codes to
the states of the submachines. We present in this section a partitioning
algorithm, and in the next section a synthesis procedure for the subma-
chines.
According to our discussion in Section 1, we want to partition an FSM

into submachines such that the probabilities of state transitions within a
submachine are high and the probabilities of state transitions between two
submachines are low.
We employ a two-phase partitioning algorithm. In the first phase, an

initial clustering of the states of the FSM is performed in which states are
clustered based on the notion of closeness of states. Two states are said to
be close if there are many transitions between them. In the second phase,
clusters obtained in the first phase are grouped to form a final partition
based on an estimation of the total power consumption of all the subma-
chines.
Our clustering algorithm is based on a method proposed by Hagen and

Kahng [1992] for clustering the circuit elements in a circuit. The method is
based on the notion of sameness between two circuit elements, which is a
measure of the desirability of putting the two circuit elements in the same
cluster. The sameness between two circuit elements is computed based on a
random walk in the net-list graph of the circuit. For our algorithm, instead
of a net-list graph with circuit elements as vertices, we have the state
transition graph of an FSM with states as vertices. Furthermore, since we
are given the probability distribution of the input signals, we construct a
random walk according to such a probability distribution. For an FSM with
n states, a random walk of length n3 is constructed. A cycle in the random
walk is defined to be a sequence of states {sp, sp11, sp12, . . . , sq} with
sp 5 sq and all si distinct, i 5 p 1 1, p 1 2, . . . , q 2 1. Intuitively, the
set of states in a cycle corresponds to (part of) a natural cluster. The
sameness of two states sp and sq, sameness(sp, sq), is computed based on
the cycles in the random walk that reflect the commonality of the set of
states that are visited in cycles originating at sp and sq. Two states sp and
sq will be placed in the same cluster if sameness(sp, sq) . 0.

Low Power Realization • 323

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

In the second phase, clusters obtained in the first phase are grouped to
form a final partition based on an estimation of the total power consump-
tion of all the submachines. The total power consumption is estimated on
the basis of the areas and the state transitional probabilities of the
submachines. Suppose the original machine M has So states, P inputs and
Q outputs, and was partitioned into p 5 (M1, M2, . . . , Mn) submachines
where submachine Mi has Si states. Let SPi denote the probability that a
transition will bring a state in Mi back to a state in Mi. SPi is computed as
follows. Let si1, si2, . . . , sit denote the states of submachine Mi. Let
P(si1), P(si2), . . . , P(sit) denote the probabilities that the machine is in
states si1, si2, . . . , sit, respectively, at time equal to infinity. (In other
words, P(si1), P(si2), . . . , P(sit) are the steady state probabilities.) Let the
sum of the probabilities of occurrence of all input signals that will bring Mi
from state sij to any state of Mi be PIMij. SPi is computed as follows.

SPi 5 O
k51

t

P~sik! 3 PIMik . (1)

Let CPij denote the probability that a transition will occur between a
state in Mi and a state in Mj. Let the sum of the probabilities of occurrence
of all input signals that will bring Mi from state sij to any state of Mj be
POMij. CPij is computed as follows.

CPij 5 O
k51

ti

P~sik! 3 POMik 1 O
k51

tj

P~sjk! 3 POMjk . (2)

Power consumption in a submachine is estimated to be proportional to
the area of the submachine. Let areai denote the area of submachine Mi.
areai is estimated as:

areai 5 @P 1 log~Si!# 3 #_rows 3
Q

2
, (3)

where #_rows is the number of rows in the transition table specifying the
state transitions in submachine Mi. The value of #_rows corresponds to the
number of cubes in the submachine before any logic optimization is
performed. The area of a submachine is estimated by the number of literals
in a sum-of-product form realization of the submachine. To estimate the
number of literals in a sum-of-product form realization, the number of
cubes in the realization is estimated to be #_rows, and the average number
of variables in a cube is estimated to be the sum of the number of input bits
P and the state code length log Si. Consequently, the total number of
literals is estimated to be the total number of variables in all cubes
multiplied by one half of the number of outputs, which is due to the
assumption that the probability of each output being asserted is one half.

324 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

Now, the total power consumption is estimated as:

power_cost~M, p!

5 O
i51

n

SPi 3 areai 1 O
i, j

CPij 3 ~areai 1 areaj! 1 overhead~p!, (4)

where overhead(p) is computed according to the definition in Section 2.
The second phase begins with the selection of the seeds for a partition.

Suppose the clusters are to be merged to form a partition with n groups,
where n is given. The steady state probability of a cluster is computed to be
the sum of the steady state probabilities of the states in the cluster. The
n 2 1 clusters with the largest steady state probabilities are selected as
the seeds of n 2 1 groups, G1, G2, . . . , Gn21. The remaining clusters form
the last group, Gn. Then, iteratively, a cluster in Gn is selected for possible
movement into one of the other groups G1, G2, . . . , Gn21 according to the
estimated power consumption computed based on Eq. (4). In each iteration,
the cluster in Gn with the largest steady state probability Ck is selected.
Power consumption is evaluated for all the possibilities of moving Ck into
one of G1, G2, . . . , Gn21 as well as for the possibility of leaving Ck in Gn.
The possibility with the least power consumption will be selected. If Ck is
moved into one of G1, G2, . . . , Gn21, the iteration continues. If Ck
remains in Gn, the iteration stops. The reason behind this heuristic is that
when a cluster is moved into a group, it increases the steady state
probability of the group, it also increases the area of the group. Clearly,
groups with high steady state probabilities and small areas are desirable.
Figure 4 shows the partitioning algorithm.

4. STATE ASSIGNMENT FOR SUBMACHINES

In this section we discuss how the submachines are to be realized. In the
classical case of realizing an FSM, state codes are assigned to represent the
states. Once such assignment is made, a corresponding logic circuit can be
synthesized. In fact, there are existing software tools for solving the state
assignment problem for FSMs. One of the most notable systems is Jedi [Lin
and Newton 1989]. However, in our case, since the submachines to be
realized are coupled (there are state transitions from one submachine to
another), they cannot be synthesized individually in the traditional way.
We propose here an algorithm which first “decouples” the submachines and
then utilizes existing state assignment packages such as Jedi. In fact, the
general state assignment problem for coupled submachines (assigning state
codes to the states of all submachines simultaneously to optimize a certain
objective function) is an interesting and challenging research problem in its
own right.
Jedi assigns codes to states taking into account both fanin-oriented

relations and fanout-oriented relations [Devadas et al. 1991]. Jedi com-

Low Power Realization • 325

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

putes a set of weights between pairs of states to reflect the relations
imposed by the input and output parts of a transition. States with strong
weighting relations will be assigned codes that are within short Hamming
distance such that a large number of common cubes will result.
In a coupled submachine, there are two types of transitions; transitions

among states within the submachine and transitions from states in the
submachine to states in other submachines. The second type of transitions
is referred to as crossing transitions of the FSM. In our state assignment
algorithm, we first delete all crossing transitions in a submachine and then
use Jedi to assign state codes to the states of the submachine. Note that if
we do not delete the crossing transitions from the submachine, state codes
will also be assigned by the state assignment tool (e.g., Jedi) to the fanout

Fig. 4. Partition algorithm.

326 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

states of the crossing transitions, which are states that belong to other
submachines. This is undesirable because, in the first place, the state code
length for the submachine might have to increase in order to accommodate
these fanout states, and secondly, state codes are assigned to the fanout
states without taking into consideration the structures of the submachines
to which these states belong. However, if we simply delete the crossing
transitions and let the state assignment tool assign state codes to states
that belong only to the submachine without considering the structural
constraints imposed by the crossing transitions, then the logic circuits that
we eventually synthesize for the submachines are likely to be more com-
plex. (The logic circuits are synthesized after the state codes for the states
in all submachines have been determined.)
In our approach, all crossing transitions in a submachine are deleted.

However, pseudo-outputs are introduced to force Jedi to assign state codes
that are close together (in terms of Hamming distance) to some of the
states for the purpose of minimizing the logic circuit that realizes the
submachine. A pseudo-output bit is added corresponding to each relation
imposed by the crossing transitions. Transitions (rows in the transition
table) whose current states should be assigned close state codes will have a
pseudo-output of value “1” and all other transitions (rows in the transition
table) will have a pseudo-output of value “0”. That is, we create an output
relation (fanout-oriented relation) among those states that should be as-
signed codes that are close together (in terms of Hamming distance). Jedi
will give larger weights to those states that have the value “1” in a
pseudo-output bit due to the output relation (fanout-oriented relation). The
effect of the pseudo-output bits is essentially to use output relations
(fanout-oriented relations) to represent the relations imposed by the cross-
ing transitions that have been deleted from the transition table.
These rules should be followed when pseudo-output bits are added to

represent the relations imposed by the deleted crossing transitions:

Rule 1: (fanout-oriented) If two or more states in one submachine have
transitions going to the same state of another submachine under the same
input, these states should be assigned codes that are close together (in
terms of Hamming distance). Therefore, a pseudo-output bit is introduced.
For each state that is a fanin state of a crossing transition, the pseudo-
output bit of all transitions from this state will be “1”. For all other
transitions, the pseudo-output bit is “0”. Figure 5(a) depicts this rule,
where solid circles denote states that should be assigned codes that are
close together.

Rule 2: (fanin-oriented) If one state has transitions going to two or
more states in another submachine, all these fanout states in the other
submachine should be assigned codes that are close together. In this case, a
pseudo-output bit is introduced in the other submachine. For each state
that is a fanout state of a crossing transition, the pseudo-output bit of all
transitions from this state will be “1”. For all other transitions, the

Low Power Realization • 327

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

pseudo-output bit is “0”. Figure 5(b) depicts this rule, where solid circles
denote states that should be assigned codes that are close together.

Rule 3a: (fanout-oriented) For states in one submachine that are fanin
states of crossing transitions, if the fanout states of these crossing transi-
tions are in the same submachine, and if these crossing transitions transit
under the same input, then these states should be assigned codes that are
close together. Therefore, one pseudo-output bit is introduced. For each
state that is a fanin state of a crossing transition, the pseudo-output bit of
all transitions from this state will be “1”. For all other transitions, the
pseudo-output bit is “0”. Figure 5(c) depicts this rule, where solid circles
denote states that should be assigned codes that are close together.

Rule 3b: (fanin-oriented) For states in the same submachine that are
fanout states of crossing transitions, if the fanin states of these crossing
transitions are in the same submachine, and if these crossing transitions
transit under the same input, then these states should be assigned codes
that are close together. Therefore, one pseudo-output bit is introduced. For
each state that is a fanout state of a crossing transition, the pseudo-output
bit of all transitions from this state will be “1”. For all other transitions, the

Fig. 5. Rules for adding pseudo-output bits.

328 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

pseudo-output bit is “0”. Figure 5(d) depicts this rule, where solid circles
denote states that should be assigned codes that are close together.

After the introduction of pseudo-output bits according to the relations
imposed by the crossing transitions in each submachine, Jedi is invoked to
perform state assignment for each submachine individually. The following
example illustrates how pseudo-output bits are added.

Example 4.1. Consider the transition tables of two submachines M1, M2
shown in Table I. The crossing transitions between these two submachines
are shown in Figure 6. There are three crossing transitions from M1 to M2,
namely, s0 3 s3, s1 3 s3, and s2 3 s5. There are also three crossing
transitions from M2 to M1, namely, s3 3 s0, s3 3 s1, and s4 3 s1. After
adding all pseudo-outputs and deleting all crossing transitions, we obtain
the transition tables of the resultant submachines shown in Table II.
We now show how pseudo-output bits are added to the two submachines.

For the two crossing transitions s0 3 s3 and s1 3 s3 in submachine M1,
since their fanout states are the same and their transitions are under the
same input “1”, according to Rule 1, one pseudo-output bit [the second
output bit in the output column in Table II(a)] is added in which the first
and second transitions have the pseudo-output value “1”. Similarly, one
pseudo-output bit (the third output bit in the output column) is added
according to Rule 2, one pseudo-output bit (the fourth output bit in the
output column) is added according to Rule 3a, and one pseudo-output bit
(the fifth output bit in the output column) is added according to Rule 3b. In
submachine M2, two pseudo-output bits are added. One [the second output
bit in the output column in Table II(b)] is added according to Rule 3a and
another one (the third output bit in the output column) is added according
to Rule 3b.
Note that if all the transitions from a state happen to be crossing

transitions, all of them will be deleted from the submachine. So that this
state will not disappear from the submachine, we introduce a transition
from this state to a “don’t care” state (denoted *).

5. AN ALTERNATIVE APPROACH

There is an alternative approach to the decomposition problem which is
quite simple and straightforward. A given FSM is synthesized to obtain a

Table I. Original Transition Tables

Low Power Realization • 329

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

gate-level description. The FSM can then be decomposed into submachines
by computing the cofactors of the synthesized sequential circuit with
respect to one or more of the state variables. For example, to decompose an
FSM into two submachines, we can compute its cofactors with respect to
yi 5 0 and yi 5 1 for any state variable yi. The two subcircuits so obtained
correspond to two coupled submachines with yi being the control signal. We
can compute the cofactors with respect to each of the state variables and
select the decomposition that has the lowest power consumption. Clearly,
we can also compute the cofactors with respect to two state variables to
obtain a decomposition into four submachines, and so on. This type of
decomposition is referred as cofactor decomposition.
As was expected intuitively and is also demonstrated experimentally in

the next section, such an approach, although it indeed leads to a reduction
in power consumption, is not as effective as the algorithm presented in

Fig. 6. Crossing transitions of submachines.

Table II. Resultant Transition Tables

330 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

Sections 3 and 4 because transitional probabilities are not taken into
consideration when decomposition of the FSM is carried out.

6. EXPERIMENTAL RESULTS

Our algorithm which consists of the partitioning algorithm in Section 3 and
the state assignment algorithm in Section 4 has been implemented as a
software tool called FSMD in the C language and executed on a SUN Sparc
station. To demonstrate the effectiveness of our algorithm, 15 MCNC
benchmark circuits were tested. Only circuits with more than 16 states and
more than 100 literals in the original realization were selected because it is
less meaningful to perform decomposition on small machines. For each
machine, state assignment was performed by Jedi. The option we used for
all examples was jedi -e c. After state assignment, SIS was called to
perform logic optimization. For logic optimization, the standard script was
first used. External “don’t cares” were then extracted and full simplify was
called. Power consumption was estimated for the circuit (including the
added control logic) by using the command power_estimate -t S. Clock rate
was set to the default value of 20 MHz in SIS.
The first set of experiments was performed to compare the literal count

and the power consumption between the original machine and the decom-
posed machine. First, a two-way decomposition was performed on the
original FSM. Then, for each submachine, we carried out the state assign-
ment and logic optimization steps separately. Finally, the two submachines
were connected with control logic added. Table III shows the experimental
results. The columns labeled “#lit” show the number of literals in the
realization of a machine. The columns labeled “#power” show the power
consumption (in mW) in a machine. The columns labeled “#st” and “SP”
give the number of states in a submachine, and the probability of transition
within the submachine, respectively. The column “ratio” is the ratio be-
tween power consumption in the decomposed machine and in the original
machine. For all examples except s1, the decomposed machines achieve a
15 to 59% reduction in power dissipation. Such reductions are achieved
mainly because an FSM is decomposed in such a way that there is a high
probability that transitions will take place within a submachine that has
only a small number of states (i.e., a small area). For example, s1488 is
decomposed into two submachines M1 and M2. M1 has 4 states and a
probability of 0.89 for its transitions to stay within the submachine. M2 has
44 states but a probability of only 0.01 for its transitions to stay within the
submachine. The crossing transitional probability is 0.1. Consequently,
during the operation of the decomposed machine, only a small submachine
will be active most of the time. This explains why the decomposed machine
for s1488 attains a 59% power reduction. Only for the example s1, power
consumption is increased by about 39% in the decomposed machine. We
found that, in s1 there are adjacency relations among the states that, when
properly utilized in the assignment of state codes, yield a relatively simple
logic circuit realization of the machine. In other words, if s1 is synthesized

Low Power Realization • 331

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

as a single machine, many large cubes can be formed utilizing these
adjacency relations. However, when the states are partitioned into two
sets, some of the adjacency relations are destroyed. Consequently, many of
the large cubes can no longer be formed in the submachines, which results
in an increase in the number of literals. In fact, one submachine has a
larger literal count than the original one. This is the major reason that the
power consumption in the decomposed machine is worse than that of the
original one.
In most cases, the decomposed machine synthesized by our algorithm

attains a reduction in power consumption at a cost of increase in area. (For
circuits sand and tbk, we attain reductions in both literal count and power
consumption.) To measure the effectiveness of our approach, we define the
effectiveness ratio as:

Reff 5
#litdecomposed 3 powerdecomposed
#litoriginal 3 poweroriginal

(5)

If the effectiveness ratio is greater than 1, it means the reduction in
power consumption we attain is offset by an increase in area. Table IV
shows the effectiveness ratios for the machines we tested. Although almost
all the examples tested attain a reduction in power, it is clear from the
table that we have a high area overhead for small machines. For example,
the effectiveness ratios for the three smallest machines (with literal counts
close to 100) are all greater than 1. For larger machines, the effectiveness
ratios are in fact quite small.

Table III. Comparisons of Original M and Decomposed M

332 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

We then conducted two sets of experiments to measure the performance
of our partitioning algorithm (Section 3) and state assignment algorithm
(Section 4). Our partitioning algorithm partitions the state set of an FSM
into subsets, taking into account the probability distribution of the input
signals. To confirm the effectiveness of our approach, we conducted a set of
experiments on one example, s1494, assuming the probability distributions
for the input signals “0” and “1” to be (0.9, 0.1), (0.8, 0.2), . . . , and (0.1,
0.9). For each of these probability distributions, we measured the power
consumption for

(i) the original machine (the result is referred to as s1494.orig);
(ii) a decomposed machine obtained by our partitioning algorithm by

assuming that the input signals 0 and 1 were equiprobable (the result
is referred to as s1494.equal_partition); and

(iii) a decomposed machine obtained by our partitioning algorithm using
the given probability distribution for the input signals (the result is
referred to as s1494.prob_partition).

These results are plotted as shown in Figure 7. That s1494.prob_partition
is superior to the other two sets of results confirms that our partitioning
algorithm is indeed very effective.
Another set of experiments was performed to demonstrate the effective-

ness of the state assignment algorithm in Section 4 that utilizes the
concept of pseudo-output bits. After an FSM was decomposed into subma-

Table IV. Comparisons of Effectiveness Ratios

Low Power Realization • 333

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

F
ig
.
7.

P
ow

er
co
n
su
m
pt
io
n
of
s1
4
9
4
w
it
h
di
ff
er
en
t
in
pu

t
si
gn
al

pr
ob
ab
il
it
ie
s.

334 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

chines, we (i) used Jedi to assign state codes to the states of the subma-
chines by simply deleting the crossing transitions, and (ii) assigned pseudo-
output bits to the submachines and then used Jedi to do the state
assignment. The results after logic minimization are shown in Table V. The
literal counts of the two submachines are shown under the columns labeled
“M1” and “M2,” respectively. The column labeled “M1 1 M2” gives the sum
of the literal counts of the two submachines. The columns “without” and
“with” give the literal counts when state assignment was carried out
without and with the introduction of pseudo-output bits, respectively. The
table shows that our state assignment algorithm which utilizes the pseudo-
output bits outperforms the one without utilizing the pseudo-output bits in
10 of the 15 examples.
Realizing an FSM as a set of coupled submachines also provides the

additional advantage of reducing the length of the critical path. The
quantity action is defined to measure the energy consumption and critical
path delay in a circuit:

action 5 En 3 td 5 P 3 td
2 5

1

2
z C z V dd

2 z E z td , (6)

where En is the energy consumption, td is the critical path delay, C is the
load capacitance, and E is the transition count. We computed the critical

Table V. Comparisons of Literal Counts Without and With Pseudo Outputs

Low Power Realization • 335

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

path delay using the command map -s in SIS to map a design to the cell
library lib1.2.sis2lib. Table VI shows the values of action for the original
and the decomposed machines (including the added control logic).
The column labeled “delay” is the critical path delay of the mapped

circuits measured by map and the column labeled “energy” is the energy
consumed (power-delay product) which is calculated by dividing the power
consumed by the clock frequency (20 MHz). The column labeled “action” is
the value of action which is calculated as the product of energy consumed
and maximum delay of the mapped circuit. The column labeled “ratio” is
the ratio of the values of action between the decomposed machine and the
original machine. For all examples except keyb, s1, s1488, critical path
delay is reduced in the decomposed machines. The increase in critical path
delay for examples keyb, s1488 is due to the fact that states are partitioned
unevenly. For keyb, one submachine has 16 states out of a total of 19 states,
and for s1488, one submachine has 44 states out of a total of 48 states.
After adding the control overhead, the reduction in the critical path delay
due to a smaller number of states in a submachine is offset by the
additional control logic. In terms of the value of action, the decomposed
machine outperforms the original machine for all examples but two.
Another set of experiments was performed to compare the results of

two-way decomposition and four-way decomposition. In this set of experi-
ments, we chose only those machines the literal counts of which are larger
than 400 in the original machine realization because the gain obtained by
decomposing a small machine will be offset by the overhead of a four-way

Table VI. Comparisons of Values of Action of Original M and FSMD M

336 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

decomposed machine. The results of four-way decomposition are shown in
Table VII. The comparison between two- and four-way decompositions is
shown in Table VIII. We can see from the table that significant improve-
ment in power dissipation was attained for s1494 and s1488 because they
were decomposed in such a way that there is a high probability that
transitions will take place within a submachine that has only a small
number of states.
Another set of experiments was performed to compare the literal count

and the power consumption of the decomposed machine obtained by our
algorithm and that of the machine obtained by computing the cofactors as
described in Section 5. We first performed state assignment and logic
optimization on the original machine. For each state variable, the cofactors
with respect to that state variable were computed. The subcircuits of the
cofactors were optimized again and then connected with control logic.
Cofactor decompositions were performed for all state variables, and the
best result was selected. Table IX shows the results. For all examples
except s1494, cofactor decomposition is consistently inferior to our decom-
position method. As was previously pointed out, this is because cofactor
decomposition does not take into consideration the state transitional prob-
abilities.
Finally, a set of experiments was performed to compare our results with

those produced by LPSA [Wu 1996]. LPSA is a state assignment tool for low
power realization of sequential machines developed at the VLSI CAD
Laboratory at Tsing Hua University. LPSA assigns state codes that are
close together (in terms of Hamming distance) to states that have high
transitional probabilities. It produces results that are comparable to those
of Hachtel et al. [1994]. Table X shows the results. The column labeled
“ratio” is the power ratio of FSMD to LPSA. For this set of examples, FSMD
outperformed LPSA in all cases except pma. On the average, machines
synthesized by FSMD consumed 34% less power than those by LPSA.

7. CONCLUDING REMARKS

In this article we present a new approach to the synthesis problem for
FSMs with the reduction of power dissipation as a design objective. An
FSM is decomposed into a number of submachines. Most of the time, only
one of the submachines will be activated which, consequently, could lead to

Table VII. Results of Four-Way Decomposition

Low Power Realization • 337

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

substantial savings in power consumption. The key steps in our approach
are: (1) decomposition of an FSM into submachines so that there is a high
probability that state transitions will be confined to the smaller of the
submachines most of the time, and (2) synthesis of the coupled subma-
chines to optimize the logic circuits. Experimental results confirmed that
our approach produced very good results (in particular, for FSMs with a
large number of states).
We also have confirmed individually the effectiveness of our decomposi-

tion procedure and our synthesis procedure. Our partitioning algorithm
presented in Section 3 produced results that are superior to those produced
by the cofactor decomposition approach which does not take into account
state transitional probabilities. Our synthesis procedure employs the con-
cept of pseudo-outputs to decouple the submachines and has also been
shown to be quite effective. We believe that the problem of synthesizing

Table VIII. Comparisons of Two- and Four-Way Decompositions

Table IX. Comparisons of Cofactor- and FSMD-Decompositions

338 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

coupled (sub)machines is an interesting research problem in its own right,
and certainly deserves further investigation.
Besides reduction in power dissipation, realizing an FSM as a set of

coupled submachines also provides the advantage of reducing the length of
the critical path. In terms of the product of energy consumption and the
critical path delay, our decomposition approach also produces good results.

REFERENCES

ALIDINA, M., MONTEIRO, J., DEVADAS, S., GHOSH, A., AND PAPAEFTHYMIOU, M. 1994. Precom-
putation-based sequential logic optimization for low power. In Proceedings of ICCAD-94,
74–81.

BENINI, L. AND DE MICHELI, G. 1995a. State assignment for low power dissipation. IEEE J.
Solid State Circuits 30, 3 (March), 258–268.

BENINI, L. AND DE MICHELI, G. 1995b. Transformation and synthesis of FSMs for low-power
gated-clock implementation. In Proceedings of the International Symposium on Low Power
Design, 21–26.

CHANDRAKASAN, A. P., SHENG, S., AND BRODERSEN, R. W. 1992. Low-power CMOS digital
design. IEEE J. Solid-State Circuits 27, 4 (April), 473–484.

DEVADAS, S., MA, H., AND NEWTON, R. 1991. MUSTANG: State assignment of finite state
machines targeting multilevel logic implementations. IEEE Trans. CAD (Dec.), 1290–1300.

DRESIG, F., LANCHES, P., RETTIG, O., AND BAITINGER, U. G. 1993. Simulation and reduction of
CMOS power dissipation at logic level. In Proceedings of the EDAC’93 EURO-ASIC (Feb.),
341–346.

HACHTEL, G., HERMIDA, M., PARDO, A., PONCINO, M., AND SOMENZI, F. 1994. Re-encoding
sequential circuits to reduce power dissipation. In Proceedings of ICCAD’94, 70–73.

HAGEN, L. AND KAHNG, A. B. 1992. A new approach to effective circuit clustering. In
Proceedings of ICCAD (Nov.), 422–427.

Table X. Comparisons of LPSA and FSMD

Low Power Realization • 339

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

LIN, B. AND DE MAN, H. 1993. Low-power driven technology mapping under timing con-
straints. In Proceedings of ICCD’93 (Oct.), 421–427.

LIN, B. AND NEWTON, A. R. 1989. Synthesis of multiple level logic from symbolic high-level
description language. In Proceedings of the IFIP International Conference on VLSI, 187–196.

PAPOULIS, A. 1984. Probability, Random Variables and Stochastic Processes. McGraw Hill,
New York.

PRASAD, S. C. AND ROY, K. 1993. Circuit activity driven multilevel logic optimization for low
power reliable operation. In Proceedings of the EDAC’93 EURO-ASIC (Feb.), 368–372.

ROY, K. AND PRASAD, S. C. 1992. SYCLOP: Synthesis of CMOS logic for low power applica-
tions. In Proceedings of the ICCD, 464–467.

SENTOVICH, E., SINGH, K., MOON, C., SAVOJ, H., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A.
1992. Sequential circuit design using synthesis and optimization. In Proceedings of
ICCD’92 (Oct.), 328–333.

TIWARI, V., ASHAR, P., AND MALIK, S. 1993. Technology mapping for low power. In Proceed-
ings of the 30th Design Automation Conference (June), 74–79.

TSUI, C. Y., PEDRAM, M., AND DESPAIN, A. M. 1993. Technology decomposition and mapping
targeting low power dissipation. In Proceedings of the 30th Design Automation Conference
(June), 68–73.

WU, S.-S. 1996. State assignment for low power and high speed. M.S. thesis, Dept. of
Computer Science, Tsing Hua University, Taiwan.

Received November 1995; revised June 1996; accepted July 1996

340 • S.-H. Chow et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

	TODAES Main Index
	Volume 1
	Number 1: 1/96
	Number 2: 4/96
	Number 3: 7/96
	Number 4: 10/96
	Author Index

