
3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

1

Behavioral Descriptions

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

2

Behaviors (Processes)

� Two constructs
– initial: one-shot activity flow (not

synthesizable but good for testbenches)
– always: cyclic (repetitive) activity flow

� Use procedural statements that assign
values to register variables (exception:
force…release)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

3

Behaviors

� Continuous assignments and primitives
assign outputs whenever there are events on
inputs

� Behaviors assign values when an
assignment statement in the activity flow
executes. (Input events on the RHS do not
initiate activity – control must be passed to
the statement.)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

4

Behaviors

� Body may consist of a single statement or a
block statement

� Block statement begins with begin and ends
with end

� Behaviors are an elaborate form of
continuous assignments or primitives but
operate on registers rather than nets
(exception: force…release)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

5

initial

� Run once
…
initial // An “ initial” behavior
begin

sig_a= 0; // Procedural assignments
sig_b = 1; // execute sequentially.
sig_c = 0;

end
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

6

always

� Infinite loop until simulation stops
…
initial
clock = 0;

always
#10 clock = ~clock;

initial
#100 $finish;
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

7

Structural vs. Behavioral Descriptions

modulemy_module(…);
…
assign …; // continuous assignment
and (…); // instantiation of a primitive
adder_16 M(…); // instantiation of a module

always @ (…)
begin … end

initial
begin … end

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

8

Procedural Assignment
� Assign value to registers
� Blocking procedural assignment

– Use “=”
– An assignment is completed before the the next

assignment starts

� Non-blocking procedural assignment
– Use “<=”
– Assignments are executed in parallel

a = 0; a <= 1; c = a; // c = 0
d <= 0; d <= 1; // d = 0 or 1?

a = 0; a = 1; c = a; // c = 1

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

9

Examples

a = 1;
b = 0;
…
a <= b; // Use b=0
b <= a; // Use a=1

a = 1;
b = 0;
…
b <= a; // Use a=1
a <= b; // Use b=0

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

10

Examples

a = 1;
b = 0;
…
a = b; // Use b=0
b = a; // Use a=0

a = 1;
b = 0;
…
b = a; // Use a=1
a = b; // Use b=1

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

11

Procedural Assignments – Some Rules

� A register (net) variable can be referenced
anywhere in a module

� A register variable can be assigned only within a
procedural assignment, task or function

� A register variable cannot be input or inout
� A net variable may not be assigned within a

behavior, task or function (exception:
force…release)

� A net variable within a module must be driven by
a primitive, continuous assignment,
force…release, or module port

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

12

Procedural Continuous Assignment (PCA)

� assign … deassign
– Assign value to register
– Dynamic binding to target register
– Override all procedural assignments to target

register
– Binding can not be removed until deassign or a

new PCA is established
– deassign is optional
– Synthesis tools might not support it
– Can be used to model level-sensitive behavior of

combinational logic, transparent latches, and
asynchronous control of sequential logic

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

13

Example
modulemux4_PCA (a, b, c, d, select, y_out);

input a, b, c, d;
input [1:0] select;
output y_out;
reg y_out;

always @ (select)
if (select == 0) assign y_out = a; else
if (select == 1) assign y_out = b; else
if (select == 2) assign y_out = c; else
if (select == 3) assign y_out = d; else
assign y_out = 1’bx;

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

14

Alternative
modulemux4_PCA (a, b, c, d, select, y_out);

input a, b, c, d;
input [1:0] select;
output y_out;
reg y_out;

always @ (select or a or b or c or d)
if (select == 0) y_out = a; else
if (select == 1) y_out = b; else
if (select == 2) y_out = c; else
if (select == 3) y_out = d; else
y_out = 1’bx;

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

15

Example
module Flop_PCA(preset, clear, q, qbar, clock, data);
input preset, clear, clock, data;
output q, qbar;
reg q;

assign qbar = ~q;

always @ (negedge clock)
q = data;

always @ (clear or preset)
begin
if (!clear) assign q = 0;
else if (!preset) assign q = 1;
else deassign q;

end

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

16

Procedural Continuous Assignment (PCA)

� force … release
– Assign value to net or register
– Dynamic binding to target net or register
– Overwrite primitive and continuous assignment to a

net, and override procedural assignment and assign …
deassign to a register

– Binding can not be removed until release
– Synthesis tools might not support it
– Can be used with hierarchical de-referencing in

testbenches

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

17

Example

� …

forcesig_a= 1;
forcesig_b = 1;
forcesig_c = 0;
sig_in1 = 0;
#5 sig_in1 = 1;
#5 sig_in1 = 0;
// Insert code to construct tests
releasesig_a;
releasesig_b;
releasesig_c;
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

18

Assignment Modes

Net Yes Yes No No Yes
Register Comb - No No Yes Yes Yes

Seq - Yes

Variable
type

Output of
primitive

Continuous
assignment

assign …
deassign

Procedural
assignment

force …
release

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

19

Procedural Timing Controls

� Mechanisms
– delay control operator (#)

– event control operator (@)

– event or

– named events

– wait construct

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

20

Delay Control Operator (#)

� Suspend the activity flow at the location of
the operator

� Examples:

…
always
begin
#clock_period/2;
clock = ~clock;

end
…

…
always
begin
#0 clock = 0;
#50 clock = 1;
#50;

end
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

21

Event Control Operator (@)

� Synchronize execution to an event

� Example 1:

� Example 2:

…
@ signal_1 a=b;
…

…
@ (event_a) begin

…
@ (event_b) begin
…
end

end
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

22

posedgeand negedge

� posedge: 0->1, 0->x, x->1

� negedge: 1->0, 1->x, x->0

� Example:
– always @ (posedgeclock) #10 b = a;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

23

Event or

…
always @ (set or reset or posedgeclk)
begin

if (reset == 0) q = 0;
else if (set == 0) q = 1;
else if (clk == 1) q = data;

end
…

The above behavior does not correctly model a
positive edge-triggered D flip-flop with asynchronous
(active-low) set and reset.

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

24

Fix

…
always@ (negedgeset or negedge reset or posedgeclk)
begin

if (reset == 0) q = 0;
else if (set == 0) q = 1;
else if (clk == 1) q = data;

end
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

25

Named Events
� Synchronization within and between modules

� A named event can be declared only in a module, with
keyword event; it can then be referenced within that
module directly, or in other modules by hierarchically de-
referencing the name of the event.

� The occurrence of an event is explicitly determined by a
procedural statement using the event-trigger operator, “ ->” .

� Example: …
event up_edge;

always @ (posedge clk)
-> up_edge;

always @ (up_edge)
…

…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

26

Example

module top (clk, data, q);
input clk, data;
output q;

talker M1 (clk);
receiver M2 (q, data);
endmodule

module talker (clk);
input clk;
event do_it;
always@ (posedgeclk)

-> do_it;
endmodule

module receiver (q, data);
input data;
output q;
reg q;
always @ (top.M1.do_it)

q = data;
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

27

wait

� Suspend activity flow until expression
following wait is true

� Can model level-sensitive behavior

� Example:
wait (enable) a = b;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

28

Intra-Assignment Delay

� Postpone assignment, not evaluation

� Examples (blocking assignments)

… …

a = #5 b; e = @ (bus) f;

c = d; g = h;

… …

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

29

Intra-Assignment Delay

� Examples (non-blocking assignments)

… …

initial begin always begin

@ (posedgeclk) @ (posedgeclock)

g <= @ (bus) k; g <= @ (bus) k;

p <= q; end

end …

…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

30

Blocking vs. Non-Blocking
Assignments

// blocking
a = #10 1;
b = #2 0;
c = #3 1;

// non-blocking
a <= #10 1;
b <= #2 0;
c <= #3 1;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

31

Examples

assign y = a | b;

always @ (a or b)
y = a | b;

assign #5 y = a | b;

always @ (a or b)
#5 y = a | b;

always @ (a or b)
y = #5 a | b;

always @ (a or b)
y <= #5 a | b;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

32

Repeated Intra-Assignment Delay

reg_a= repeat (5) @ (negedgeclock) reg_b;

begin
temp = reg_b;
@ (negedgeclock);
@ (negedgeclock);
@ (negedgeclock);
@ (negedgeclock);
@ (negedgeclock);
reg_a= temp;

end

equivalent

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

33

Example

x

x

x

x

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

34

Simulation of Procedural Assignments
� At a given time step,

– evaluate expressions on RHS

– execute blocking assignments

– execute non-blocking assignments that do not
have intra-assignment timing control

– execute past assignments which have been
scheduled to execute in the current time step

– execute $monitor (note: $display is executed
when it is encountered, but is executed before
non-blocking assignments)

– Advance simulation time

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

35

$display vs. $monitor

initial begin
a = 1;
b = 0;
a <= b;
b <= a;
$display (“a=%b b=%b”, a, b);

end

initial begin
a = 1;
b = 0;
a <= b;
b <= a;
$monitor (“a=%b b=%b”, a, b);

end

display: a=1 b=0 monitor: a=0 b=1

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

36

Indeterminate Assignments
moduleambiguity();
reg a, b, c;
...
always @ (a)
c = a;

always @(a)
c = b;

…
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

37

No Ambiguity
moduleexample;
reg wave;
reg [2:0] i;

initial
begin
for (i=0; i<=5; i=i+1)

wave <= #(i*10) i[0];
end

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

38

Activity Flow Control

� conditional operator (?…:)

� case, casex, casez
� if … else
� loops: for , while, repeat, forever
� disable
� fork…join

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

39

Conditional Operator

� ?…:

� Can be also used in a procedural statement
to assign value to a register variable

� Example:

always @ (posedgeclock)

q = s ? a : b;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

40

case
� Require complete bitwise match, so

expression and case item must have the
same bit length

� Example: …
always @ (a or b or c or d or select)
begin
case (select)
0: y = a;
1: y = b;
2: y = c;
3: y = d;
default: y = 1’bx;

endcase
end

…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

41

casex and casez

� casex ignores bit positions that have “x” or
“z”

� casez ignores bit positions that have “z” ,
and uses “?” as don’ t cares

� Example:
…
always @ (decode)

casez (word)
16’b0000_????_????_????:;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

42

if…else

� Numerical value of 0, or value x or z is
logic false (non-zero numerical value is
evaluated to true)

� else is paired with nearest if when
ambiguous (use begin…end in nesting to
clarify)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

43

Examples
(a) if (a < b) c = d +1;

(b) if (a < b);

(c) if (k == 1)

begin : A_block

sum_out = sum_reg;

c_out = c_reg;

end

(d) if (a < b)

sum = sum +1;

else

sum = sum + 2;

(e) if (a == 1) sig_out = reg_a; else

if (a == 2) sig_out = reg_b; else

if (a == 3) sig_out = reg_c;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

44

repeat
� Example:

…

word_address = 0;

repeat (memory_size)

begin

memory[word_address] = 0;

word_address = word_address +1;

end

...

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

45

for

…
reg [15:0] data;
integer k;

for (k = 4; k > 0; k = k – 1)
begin
data[k+10] = 0;
data[k+2] = 1;
end
…

…

reg [3:0] k;

for (k = 0; k <= 15; k = k + 1)

...

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

46

4-bit Carry Look-ahead Adder

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

47

while
…
begin
reg [7:0] temp;
counter = 0;
temp = a;

while (temp)
begin
if (temp[0]) counter = counter + 1;
// if statement can be replaced by
// counter = counter + temp[0];
temp = temp >> 1;

end
end
…

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

48

forever

initial
begin: clock_loop

clock = 0;
forever

#10 clock = ~clock;
end

initial
#100 disableclock_loop;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

49

disable
module find_first_one (a, trigger, i);

input [15:0] a;
input trigger;
output [3:0] i;
reg [3:0] i;

always @ trigger
for (i = 0; i < 16; i = i + 1)

if (a[i] == 1) disable;

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

50

Comparisons

� alwaysvs. forever
� disablevs. $finish

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

51

Parallel Activity Flow: fork … join

� Create parallel threads of activity

� Not supported by synthesis tools

� Wait for completion of all threads between
fork and join

� No ordering of the execution of the threads

� Ambiguity could exist due to interaction
between threads

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

52

Example

fork
#50 a = 1;
#100 a = 0;
#150 a = 1;
#200 a = 0;

join

begin
#50 a = 1;
#50 a = 0;
#50 a = 1;
#50 a = 0;

end

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

53

Race Condition vs. No Race Condition

fork

#150 a = b;

#150 c = a;

join

fork

a = #150 b;

c = #150 a;

join

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

54

Tasks and Functions

� Both let you execute common procedures from
different places in a description

� Both facilitate a readable style of code
� Tasks:

– may have zero or more arguments of type input,
output, or inout

– do not return a value but can pass values through
output and inout arguments

– may contain timing control statements
– may execute in non-zero simulation time
– can enable other tasks (including itself) and functions

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

55

Tasks and Functions

� Functions:
– must have at least one input argument

– cannot have output or inout arguments

– always return a single value

– must not contain any timing control statements

– always execute in 0 simulation time

– can enable another function but not itself or any task

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

56

Tasks
� Declared within a module

� Must be named

� Called from a procedural statement

� Local variables can be declared

� Arguments of a task retain the type they hold in
the environment that calls the task

� Arguments are passed by value

� When a task is called, its formal and actual
arguments are associated in the order in which the
task’s ports have been declared

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

57

Example
modulebit_counter (data, count);
input [7:0] data;
output [3:0] count;
reg [3:0] count;

always @ (data)
count_ones_in_data (data, count);

task count_ones_in_data;
input [7:0] a;
output [3:0] c;
reg [3:0] c;
reg [7:0] tmp;

begin c = 0; tmp = a;
while (tmp)

begin
c = c + tmp[0];
tmp = tmp >> 1;

end
end

endtask
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

58

Functions
� May implement only combinational behavior
� Declared within a module
� Local variables can be declared
� Referenced in an expression (e.g., RHS of a

continuous assignment statement)
� The value of a function is returned by its name
� Implicitly define an register variable having the

same name, range, and type as the function itself;
this variable must be assigned value within the
function body

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

59

Example
moduleword_aligner (w_in, w_out);
input [7:0] w_in;
output [7:0] w_out;

assign w_out = align (w_in);

function [7:0] align;
input [7:0] word;
begin

align = word;
if (align != 0)

while (align[7] == 0)
align = align << 1;

end
endfunction

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

60

Example - LFSR
� LFSR = Linear Feedback Shift Register

� Commonly used as binary pattern generator for self-testing
circuits

� The following structure shows that
– CN=1, indicating Y(0) is the input of the leftmost register (at stage

N-1)

– for j=1,2,…,N-1

• if Cj=1, then exclusive-or of Y[j] and Y[0] forms the input of
the register at stage j-1

• otherwise, Y[j] is the input of the register at stage j-1

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

61

LFSR

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

62

Static vs. Dynamic Timing Analysis

� Static timing analysis
– Consider all paths, including

false paths which are never
exercised

� Dynamic timing analysis
(simulation)
– If input stimulus set fails to

exercise all functional paths,
timing violations can be
missed

– Do not report timing on false
paths

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

63

Example of Static Timing Analysis

� arrival time/required arrival time/slack

� slack = required arrival time – arrival time

�

�

�

�

�

��

�

�

������

������

�����

	�	�

������

�
������

������

�	��	�

����
���

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

64

Timing Checks

� Use timing checks to verify the timing of a design

� Timing checks
– setup

– hold

– pulse width

– clock period

– skew

– recovery

– others

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

65

Systems Tasks for Timing Checks
� System tasks for timing checks can be invoked within

a behavior in a testbench, or invoked within a specify
block of a module.

� $setup (data_event, ref_event, limit);
– violation is reported if the period that elapses from

data_event to ref_event is less than limit

– e.g., $setup (data, posedgeclk, 5);

� $hold (ref_event, data_event, limit);
– Violation is reported if the stable period of data_event

is less than limit after ref_event
– e.g., $hold (posedgeclk, data, 2);

� $setuphold (data_event, ref_event, s_limit, h_limit)
– $setuphold is the combination of $setup and $hold
– e.g., $setuphold (data, posedgeclk, 5, 2);

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

66

Systems Tasks for Timing Checks
� $per iod (ref_event, limit);

– violation is reported if the time between two consecutive ref-event
is less than limit

– e.g., $per iod (posedgeclk, 16);
� $width (ref_event, limit);

– violation is reported if the period that elapses between ref_event
and the next opposite transition is less than limit

– e.g., $width (posedgeclk, 8);
� $skew (event_1, event_2, limit);

– violation is reported if the time between event_1 and event_2
exceeds limit

– e.g., $skew (posedgeclk1, posedgeclk2, 3);
� $recovery (ref_event, data_event, limit);

– violation is reported if the time between ref_event and data_event
exceeds limit

– e.g., $recovery (posedgeset, data, 5)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

67

Systems Tasks for Timing Checks

� $nochange (posedgeclk, data, -1, 2)
– checks whether data is stable in the interval (-1,2)

relative to posedgeclk

� edge
– the edges 01, 10, 0x, x1, 1x, x0 can be used with the

specifier edge
– $setuphold (data, edge01 clk, 5, 2)

� & & &
– $setup (data, posedgeclk & & & (!reset), 5)

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

68

Notifiers in Timing Checks
� When a timing check violation occurs, Verilog reports a

violation and the output gets the new value.
� The normal behavior should be for the output to become

undefined when a timing violation occurs.
� Example: (an additional port is specified in the sequential UDP which will

force the output to an undefined value whenever the notifier register toggles)

moduledff (data, clock, q);
input data, clock;
output q;
…
udp_dff (q, data, clock, notifier);
specify
$setup (data, posedge clock, 12, notifier);
$hold (posedgeclock, data, 5, notifier);
$width (posedgeclock, 25, notifier);
endspecify
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

69

Variable Scope Revisited
� The scope of variables declared within a

begin…end block is local to the block
� If a block is named, the variables declared within

it can be hierarchically de-referenced from any
location in the design
– e.g., X.Y.k

�����������

�

��������

����	

�

���

�

���
�����

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

70

Finite State Machines

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

71

Descriptive Styles

� Explicit style
– Declare a state register to encode the state

� Implicit style
– Use multiple event controls to describe an evolution of

states
– More abstract and less code than explicit style
– Description of reset behavior could be more

complicated than explicit style
– Only suitable when a given state can be reached from

only one other state

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

72

Explicit Style 1
moduleFSM_style1 (…);
input …;
output …;
parameter size = …;
reg [size-1:0] state;
wire [size-1:0] next_state;

assign the_outputs = … // a function of state and inputs
// or a function of state

assign next_state = … // a function of state and inputs

always@ (negedge reset or posedgeclk)
if (reset == 1’b0) state = start_state; else

state <= next_state;
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

73

Explicit Style 2
module FSM_style2 (…);
input …;
output …;
parameter size = …;
reg [size-1:0] state, next_state;

assign the_outputs = … // a function of state and inputs
// or a function of state

always@ (state or the_inputs)
begin

// decode for next_state with case or if statement
end

always@ (negedge reset or posedgeclk)
if (reset == 1’b0) state = start_state; else

state <= next_state;
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

74

Explicit Style 3
module FSM_style 3 (…);
input …;
output …;
parameter size = …;
reg [size-1:0] state, next_state;

always@ (state or the_inputs)
begin

// decode for next_state with case or if statement
end

always@ (negedge reset or posedgeclk)
if (reset == 1’b0) state = start_state; else begin

state <= next_state;
the_outputs <= … // synchronous outputs which depend on

// inputs and state for a synchronous Mealy machine
end

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

75

Example: Speed Controller

���

�����������

�����

�����

��
���

���
�����

����

��������������

��������

������������

�����
�����

�
��
��

�����

�
��
��
��
�
��
��

������������

������������

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

76

Explicit Style

// Explicit FSM style
module speed_machine_1 (clock,

accelerator, brake, speed);

input clock, accelerator, brake;
output [1:0] speed;
reg [1:0] state, next_state;

parameter stopped = 2`b00;
parameter s_slow = 2`b01;
parameter s_medium = 2`b10;
parameter s_high = 2`b11;

assign speed = state;

always @ (posedge clock)
state <= next_state;

always @ (state or accelerator or brake)
if (brake == 1`b1)
case (state)

stopped: next_state <= stopped;
s_low: next_state <= stopped;
s_medium: next_state <= s_low;
s_high: next_state <= s_medium;
default: next_state <= stopped;

endcase
else if (accelerator == 1`b1)
case (state)

stopped: next_state <= s_low;
s_low: next_state <= s_medium;
s_medium: next_state <= s_high;
s_high: next_state <= s_high;
default: next_state <= stopped;

endcase
else next_state <= state;

endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

77

Implicit Style

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

78

Another Implicit Style

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

79

Up-Down Counter (Explicit Style)

�

next_count = count;

next_count = count;

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

80

Implicit Styles

=

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

81

Polling Circuit

�������

������

������!

"��#�� $�������
�������

!

�����

��
��

��#����
��%��
�

��#����
��
�

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

82

State Transition Graph

&���

��

'�����!

��

'�����

��

'������

��

���

(��

�((

������

���

���

��� �(�

��(

��(

���

(�(
�((

�((���

"��#������
�

"��#������%��
�

3/15/04, 3/18/04,
3/22/04 & 3/25/04

Hardware Description Languages
and Synthesis

83

Verilog Code
module polling (s_request, s_code, clk, rst);

`define client1 2`b01
`define client2 2`b10
`define client3 2`b11
`define none 2`b00
input [3:1] s_request;
input clk, rst; output [1:0] s_code;
reg [1:0] next_client, present_client;
always @ (posedge clk or posedge rst)

begin if (rst)
present_client = `none;
else present_client = next_client;

end
assign s_code[1:0] = present_client;
always @ (present_client or s_request)

begin
poll_for_clients (present_client,

s_request, next_client);
end

task poll_for_clients;
input [1:0] present_client;
input [3:1] s_request;
output [1:0] next_client;
reg [1:0] contender; integer N;
begin: polling

contender = `none;
for (N = 3; N >= 1; N = N) 1)

begin:
if (s_request[N]) begin
if (present_client == N)

contender = present_client;
else begin next_client = N;

disable polling; end
end end

if ((next_client == `none) &&
(contender))

next_client = contender; end
endtask

endmodule

