Behavioral Descriptions

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

w= Behaviors (Processes)

m [WO constructs

— Initial: one-shot activity flow (not
synthesi zable but good for testbenches)

— always: cyclic (repetitive) activity flow
W . Use procedural statements that assign

values to register variables (exception:
force...release)

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

= Behaviors

m Continuous assignments and primitives
assign outputs whenever there are events on
INputs

m Behaviors assign values when an
assignment statement in the activity flow
executes. (Input events on the RHS do not
Initiate activity — control must be passed to
the statement.)

3/15/04, 3/18/04, Hardware Description Languages 3
l 3/22/04 & 3/25/04 and Synthesis

= Behaviors

m Body may consist of asingle statement or a
block statement

m Block statement begins with begin and ends
with end

m Behaviors are an elaborate form of
continuous assignments or primitives but
operate on registers rather than nets
(exception: force...release)

3/15/04, 3/18/04, Hardware Description Languages 4
l 3/22/04 & 3/25/04 and Synthesis

7
= initial

— B Run once
initial /[An“initial” behavior

sig a=0; // Procedural assignments

sig b=1; /] execute sequentially.
- sig c=0;

end
L]
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

TN

always

m [nfinite loop until ssimulation stops
initial
clock =0;

always
#10 clock = ~clock:

initial

#100 $finish;
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

Structural vs. Behavioral Descriptions

module my_module(...);

assign ...; // continuous assignment
and (...); // instantiation of a primitive
adder 16 M(...); // instantiation of a module

always @ (...)
begin ... end

initial
begin ... end

endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

Procedural Assignment

" = Assign valueto registers

m Blocking procedural assignment
— Use“="

— An assignment is completed before the the next
assignment starts

. a=0,a=1c=al/lc=1
m Non-blocking procedural assignment
. U% (14 <:”
— Assignments are executed in paralle

a=0a<=l:.c=allc=0
d<=0;d<=1;//d=0or 1?

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

TN

Examples

a=1; a=1;
b=0; b=0;
a<=Db; I/ Use b=0 b<=g
b<=a /[Usea=1 a<=h;
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

/[l Usea=1
/I Use b=0

vl BB

Examples

a=1;
b=0;
a=Dh; /I Use b=0
b=a /I Use a=0

3/15/04, 3/18/04,
3/22/04 & 3/25/04

=

o Q
T
o

» T :
I
Q

i3

Hardware Description Languages

and Synthesis

/[l Usea=1
/I Use b=1

10

Procedural Assignments— Some Rules

m A register (net) variable can be referenced
anywhere in amodule

m A register variable can be assigned only within a
procedural assignment, task or function

m A register variable cannot be input or inout

m A net variable may not be assigned within a
behavior, task or function (exception:
force...release)

m A net variable within a module must be driven by
a primitive, continuous assignment,
force...release, or module port

3/15/04, 3/18/04, Hardware Description Languages 11
l 3/22/04 & 3/25/04 and Synthesis

Procedural Continuous Assignment (PCA)

]
m assign ... deassign
— Assign value to register
— Dynamic binding to target register
— Override all procedura assignments to target
register
— Binding can not be removed until deassign or a
o new PCA is established
— deassign is optional
— Synthesis tools might not support it

— Can be used to model level-sensitive behavior of
combinational logic, transparent latches, and
asynchronous control of sequential logic

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

12

Example

2 module mux4_PCA (a, b, c, d, select, y_out);

Input a Db, c,d
input [1.0] sel ect;
output y_out;
reg y_out;
always @ (select)

If (select ==0) assigny_out = a; else
If (select ==1) assigny_out = b; else
If (select == 2) assigny_out =c; else
If (select ==3) assigny _out =d; else
assign y_out = 1'bx;

endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

13

Alternative
2 module mux4_PCA (a, b, c, d, select, y_out);

input a b, c,d;
input [1.0] sel ect;
output y_out;
reg y_out;

always @ (select or aor bor cor d)
If (select==0)y out = a; else
If (select==1)y out =Db; else
If (select==2)y out =c; else
If (select==3)y out =d; else
y_out = 1'bx;

endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

14

TN

Example

module Flop PCA(preset, clear, g, gbar, clock, data);
Input preset, clear, clock, data;

output q, gbar;

reg g

assign gar = ~q;

always @ (negedge clock)
q = data;

always @ (clear or preset)
begin
If ('clear) assign q=0;
elseif (!preset) assign g =1,
else deassign q;

end
endmodule
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

15

wn Procedural Continuous Assignment (PCA)

m force... release
— Assign value to net or register
— Dynamic binding to target net or register
— Overwrite primitive and continuous assignment to a

. net, and override procedural assignment and assign ...
deassign to aregister

— Binding can not be removed until release
— Synthesis tools might not support it

— Can be used with hierarchical de-referencing in
testbenches

3/15/04, 3/18/04, Hardware Description Languages 16
l 3/22/04 & 3/25/04 and Synthesis

= Example

|
. AL test_bench
for CeSg_a= 1; in1 in2 in3 ind in5
forcesig b=1; —rr A2
: ~ mod_abc ‘mod xyz -
forcesig c=0; e T d
sig in1=0; SIgT_Im Sig—a+ +j'g—b Sig‘cL _____ é_ e
#5sig inl=1; et e
#5sig_inl1=0:; o1 02 09
/] Insert code to construct tests
release sig a;
release sig_b;
release sig _c;
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

17

= Assignment Modes

Variable Output of |Continuous| Procedural |assign ... | force...

type primitive |assignment | assignment |deassign | release

Net Yes Yes No No Yes

. Register Comb - No No Yes Yes Yes
Seg-Yes

3/15/04, 3/18/04,

l 3/22/04 & 3/25/04

Hardware Description Languages

and Synthesis

18

= Procedura Timing Controls

m Mechanisms
— delay control operator (#)
— event control operator (@)
— event or
— named events
— wait construct

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

19

Delay Control Operator (#)
.
m Suspend the activity flow at the location of

the operator
m Examples,

. always always
begin begin
#0 clock = 0; #clock period/2;
#50 clock = 1; clock = ~clock;
#50:; end
end
3/15/04, 3/18/04, Hardware Description Languages 20

l 3/22/04 & 3/25/04 and Synthesis

Event Control Operator (@)

]
m Synchronize execution to an event
m Examplel:
@ signal_1 a=b;
m Example2: ..
. @ (event_a) begin
@ (event_b) begin
end
end
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

21

“ posedge and negedge

m posedge: 0->1, 0->x, Xx->1
m hegedge: 1->0, 1->X, x->0
m Example:
— always @ (posedge clock) #10 b = &;

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

22

Event or

always @ (set or reset or posedge clk)
begin
If (reset ==0) g=0;
elseif (set ==0) q=1,
elseif (clk ==1) q = data;
end

The above behavior does not correctly model a
positive edge-triggered D flip-flop with asynchronous
(active-low) set and reset.

3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

23

. FIX
[]

. always @ (negedge set or negedge reset or posedge clk)

begin
If (reset ==0) q=0;
- elseif (set ==0) q =1,
elseif (clk == 1) q = data;
end

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

24

Named Events

g = Synchronization within and between modules

= A named event can be declared only in amodule, with
keyword event; it can then be referenced within that
module directly, or in other modules by hierarchically de-
referencing the name of the event.

m Theoccurrence of an event is explicitly determined by a
procedural statement using the event-trigger operator, “->".

m Example:
event up_edge;
always @ (posedge clk)
-> up_edge;
always @ (up_edge)
3/15/04, 3/18/04, Hardware Description Languages 25

l 3/22/04 & 3/25/04 and Synthesis

= Example

module top (clk
input clk, data;
output g;

talker M1 (clk);

. receiver M2 (g, data);

endmodule

module talker (clk);

, data, q); input clk;

event do it;
always @ (posedge clk)
-> do it;
endmodule

module receiver (q, data);
Input data;
output q;

M1

| reg g,
= always @ (top.M1.do it)

q = data;

3/15/04, 3/18/04,

l 3/22/04 & 3/25/04

endmodule

Hardware Description Languages 26
and Synthesis

= wait

m Suspend activity flow until expression
following wait istrue

m Can modd level-sensitive behavior
_ m Example:

wait (enable) a= b;

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

27

= IntracAssignment Delay

m Postpone assignment, not evaluation
m Examples (blocking assignments)

. a=#5Db; e=@ (bus) f;
c=d; g=h;
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

28

= IntracAssignment Delay
m Examples (non-blocking assignments)

Initial begin always begin

@ (posedge clk) @ (posedge clock)
g <= @ (bus) k; g <= @ (bus) k;
P<=q, end

end

3/15/04, 3/18/04, Hardware Description Languages 29
l 3/22/04 & 3/25/04 and Synthesis

Blocking vs. Non-Blocking
= Assignments

/I blocking /I non-blocking
a=#101; a<=#101;
b=#20; b<=#20:
c=#31; c<=#31;
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

30

-
= Examples

L assigny=alb;

always @ (aor b)

. y=alb;
i

3/15/04, 3/18/04,

l 3/22/04 & 3/25/04

assign #5y = a| b;

always @ (aor b)
#5y=alb;

always @ (aor b)
y=#5al|b;

always @ (aor b)
y<=#5al|b;

Hardware Description Languages
and Synthesis

31

“* Repeated Intra-Assignment Delay

reg_a=repeat (5) @ (negedge clock) reg_b;

begin
temp = reg_b; equivalent
@ (negedge clock);
@ (negedge clock);
@ (negedge clock);
@ (negedge clock);
@ (negedge clock);
reg_a=temp;
end

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

32

TN

Example

module repeater; clock

reg clock;
reg reg_a, reg_b;

initial . | 60 70

clock = 0;
reg_a

initial begin
#5 reg_a=1,

80

#10 reg_a=0;
#5 reg_a=1,

60 70

80

#20 reg_a=0; reg_b
end

always 0 10 20 30 40 50 - 60 70
#5 clock = ~ clock;
Initial Figure 7.20 Waveforms for repeated intra-assignment delay.
initia
#100 $finish;
initial
begin
#10 reg_b = repeat (5) @ (posedge clock) reg_a;
end
endmodule

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

80

33

Simulation of Procedural Assignments
m

m At agiven time step,
— evaluate expressions on RHS
— execute blocking assignments

— execute non-blocking assignments that do not
have intra-assignment timing control

. — execute past assignments which have been
scheduled to execute in the current time step

— execute $monitor (note: $display is executed
when it is encountered, but is executed before
non-blocking assignments)

— Advance smulation time

3/15/04, 3/18/04, Hardware Description Languages 34
l 3/22/04 & 3/25/04 and Synthesis

= $display vs. $monitor

Initial begin initial begin
a=1 a=1,
b=0, b=0;
a<=b; a<=b;
B b<=a b<=a
$display (“a=%b b=%b", a, b); $monitor (“a=%b b=%b", a, b);
display: a=1 b=0 monitor: a=0 b=1
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

35

vl BB

|ndeterminate Assignments

module ambiguity();
rega b,c;

éiways @ (a)
C=2a

always @(a)
c=Db;

endmodule

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

36

TN

No Ambiguity

module example;
reg wave,

reg [2:0] I;

Initial
begin
for (i=0; i<=5; i=1+1)
wave <= #(i1* 10) i[O];
end
endmodule

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

37

= Activity Flow Control

m conditional operator (?...:)

W Ccase, casex, Casez

mif ... else

m loops: for, while, repeat, forever
m disable

mfork...join

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

38

= Conditional Operator

m Can be also used in aprocedural statement
to assign value to aregister variable

m Example:

always @ (posedge clock)

g=s?a:b;

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

39

Case

] . L
m Reguire complete bitwise match, so

expression and case item must have the
same bit length

m Example:

always @ (aor bor cor dor select)

begin
. case (select)
Oy=4&
1.y=D;
2.y =¢
3:y=d
default: y = 1'bx;
endcase
end

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

40

= Casex and casez

m casex ignores bit positions that have “x” or

Z

m casez ignores bit positions that have “z”,
Bl and uses“?" asdon't cares

m Example:

always @ (decode)
casez (word)

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

41

If...else

m Numerical value of O, or valuex or zis
logic false (non-zero numerical valueis
evaluated to true)

m elseispared with nearest iIf when
ambiguous (use begin...end In nesting to
clarify)

3/15/04, 3/18/04, Hardware Description Languages 42
l 3/22/04 & 3/25/04 and Synthesis

TN

Examples

(@ if (a<b)c=d+1;
(b) if (a<b);
() if (k==1)
begin : A_block
sum_out = sum_reg;
C_out = _reg;
end
(d) if (a<Dh)
sum = sum +1;
else
sum = sum + 2;
(e)if (a==1) sig_out =reg_a; else
if (a==2) sig out =reg_b; else
if (a==3) sig_out =reg_c;

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

43

wm I epeat
m Example:
i
word address = O;
repeat (memory_size)

begin
memory[word address| = 0;
word address = word address +1,

end

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

TN

44

= for

vl BB

reg [15:0] data;
Integer K;

for (k=4;k>0; k =k —1)

begin
datalk+10] = O;
data[k+2] = 1;
end

3/15/04, 3/18/04,
3/22/04 & 3/25/04

reg [3:0] k;
for (k=0; k<=15k=k +1)

Hardware Description Languages
and Synthesis

45

I
= 4-bit Carry Look-ahead Adder

module Add_prop_gen (sum, c_out, a, b, c_in); // 4-bit look-ahead carry adder

// behavioral model a b c_in
output [3:0] sum;
output c_out;]
- input [3:0] a,b;
input c_in;]] | G
Form carry generate bits. Form carry propagate bits. Continuous
reg [3:0] carrychain; (Combinational logic) (Combinational logic) 7 ;ﬁm
wire [3:0] g = a & b; // carry generate, continuous assignment, bitwise and 7
wire [3:0] p=a~b;// carry propagate, continuous assignment, bitwise xor = Event-
When an input bit changes, oo Activated
always @ (a or b or c_in) // event “or” update the carry chain £ m
begin : carry_generation /I usage: block name $ L_I 35
integer i; Form the shifted carry chain
#0 carrychain[0] = g[0] + (p[0] & c_in); // needed for simulation (Combinational logic) P
for(i=1;i<=3;i=i+1) / l
begin \ - m
. carrychain(i] = g[i] | (pli] & carrychain[i-1]); Form the carry bit. Form the sum bits. Statements
end {Combir!atianal (Combinational
end logic) logic)
wire [4:0] shiftedcarry = {carrychain, c_in} ; // concatenation
wire [3:0] sum = p ~ shiftedcarry; // summation |
wire c_out = shiftedcarry[4]; // carry out, usage: bit select c_out su:n
endmodule
- Figure 7.35 Organization of a carry look-ahead algorithm.
3/15/04, 3/18/04, Hardware Description Languages 46
l 3/22/04 & 3/25/04 and Synthesis

TN

while

begin
reg[7:0] temp;
counter = 0O;
temp = &;

while (temp)
begin
If (temp[0O]) counter = counter + 1,
I if statement can be replaced by
// counter = counter + templ[O];
temp = temp >> 1;

end
end
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

a7

-
= forever

n Initial

begin: clock loop

clock = O;
forever

end

Initial

3/15/04, 3/18/04,
3/22/04 & 3/25/04

vl BB

#10 clock = ~clock:

#100 disable clock_loop;

Hardware Description Languages
and Synthesis

48

vl BB

disable

module find first_one (a, trigger, 1);
input [15:0] &;
Input trigger;
output [3:0] I;
reg [3:.0] i;

always @ trigger
for (1=0,1<16;1=1+1)
If (a[i] ==1) disable;

endmodule
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

49

Comparisons

m alwaysvs. forever
m disable vs. $finish

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

TN

50

w Pardld Activity Flow: fork ... join

m Create parallel threads of activity
m Not supported by synthesis tools

m Wait for completion of all threads between
fork and join

m No ordering of the execution of the threads

s Ambiguity could exist due to interaction
between threads

3/15/04, 3/18/04, Hardware Description Languages 51
l 3/22/04 & 3/25/04 and Synthesis

n
= Example

| fork begin

#50a=1: #0a=1,

#100 a=0; - #50a=0;
. #150a=1,; #50a=1;

#200a=0; #50a=0;

join end
L]
3/15/04, 3/18/04, Hardware Description Languages 52

l 3/22/04 & 3/25/04 and Synthesis

||
« Race Condition vs. No Race Condition

C]
fork fork
- #150 a = b; a=#150 b;
#150c =g Cc=#150 g

. join join

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

53

Tasks and Functions

= m Both let you execute common procedures from

different places in adescription
m Both facilitate a readable style of code
m [asks:

— may have zero or more arguments of type input,
output, or inout

. — do not return a value but can pass values through
output and inout arguments

— may contain timing control statements
— may execute in non-zero ssmulation time
— can enable other tasks (including itself) and functions

3/15/04, 3/18/04, Hardware Description Languages 54
l 3/22/04 & 3/25/04 and Synthesis

= [lasksand Functions

m Functions:
— must have at least one input argument
— cannot have output or inout arguments
— awaysreturn asingle value
— must not contain any timing control statements
— always execute in O smulation time
— can enable another function but not itself or any task

3/15/04, 3/18/04, Hardware Description Languages 55
l 3/22/04 & 3/25/04 and Synthesis

Tasks

m Declared within amodule

m Must be named

m Called from aprocedural statement
m | ocal variables can be declared

m Arguments of atask retain the type they hold in
the environment that calls the task

m Arguments are passed by value

m When atask is called, its formal and actual
arguments are associated in the order in which the
task’ s ports have been declared

3/15/04, 3/18/04, Hardware Description Languages 56
l 3/22/04 & 3/25/04 and Synthesis

vl BB

Example

module bit_counter (data, count);
input [7:0] data;

output [3:0] count;

reg [3:0] count;

always @ (data)
count_ones in_data (data, count);

task count_ones in_data;
input [7:0] &
output [3:0] c;
reg[3.0] c;
reg [7.0] tmp;

beginc=0; tmp =g
while (tmp)
begin
c=c+tmp[0];
tmp =tmp >> 1;
end
end
endtask

3/15/04, SN@gdule Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

57

= Functions

May implement only combinational behavior
Declared within a module
_ocal variables can be declared

Referenced 1n an expression (e.g., RHS of a
continuous assignment statement)

m Thevaue of afunction isreturned by its name

m Implicitly define an register variable having the
same name, range, and type as the function itsalf;
this variable must be assigned value within the
function body

3/15/04, 3/18/04, Hardware Description Languages 58
l 3/22/04 & 3/25/04 and Synthesis

TN

Example

module word_aligner (w_in, w_out);
input [7:0] w_in;
output [7:0] w_out;

assign w_out = align (w_in);

function [7:0] align;
input [7:0] word,;
begin
align = word;
if (align!=0)
while (align[7] == 0)
adign=dign<<1,
end
endfunction
endmodule

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

59

Example - LFSR

0 = LFSR =Linear Feedback Shift Register

m Commonly used as binary pattern generator for self-testing
circuits

m The following structure shows that
— Cy=1, indicating Y (0) isthe input of the leftmost register (at stage
N-1)
— forj=1,2,...,N-1
. « if =1, then exclusive-or of Y[j] and Y[O] forms the input of
the register at stage |-1
o otherwise, Y[j] istheinput of the register at stage j-1

Gy=1 c,
R iR R R
HE R > +
D Q IyN-1) D Q@ I'va D@ "y D Q v

CKk Cik S Clk Clk

l I 1 |

Clock
Figure 7.45 Linear feedback shift register with modulo-2 (exclusive-or) addition.

3/15/04, 3/18/04, Hardware Description Languages 60
l 3/22/04 & 3/25/04 and Synthesis

LFSR

module Autonomous_LFSR1 (Clock, Reset, Y);

- parameter Length=8;

parameter initial_state = 8'b1001_0001;
parameter [Length-1:1] Tap_Coefficient = 7'b100_1111;

Al b
reg [Length-1: 0] Y: Y[" Yol
R [RO PO MO MO P [
always @ (posedge Clock) o e il '
begin o {11 Pl ;lol, lol 10[11l |1[- 11] he7
if (\Reset) Y = initial_state; // Arbitrgry initial state . S '
o else Y = LFSR_Value (Y); // Function call [1 [I ﬂ . J ; [> ,LO FET | , 1 l r l‘ﬂ — l"] o
function [Length-1: 0] LFSR_Value; [o} el i_TO Faadof: Topea | fadd b [o]] me
;:felger g_sng;?r-'t OILFSA_state: Figure 7.46 Data movement in a linear feedback shift register with modulo-2
- (exclusive-or) addition.
begin

for (Cell_ptr = Length -2; Cell_ptr >= 0; Cell_ptr = Cell_ptr -1)

if (Tap_Coefficient [Cell_ptr + 1]==1) // same as ¢ in Figure
LFSR_Value [Cell_ptr] = LFSR_state [Cell_ptr + 1] A LFSR_state [0];
else

LFSR_Value [Cell_ptr] = LFSR_state [Cell_ptr +1];
LFSR_Value [Length - 1] = LFSR_state [0];
end

endfunction

endmodule

3/15/04, 3/18/04, Hardware Description Languages 61
l 3/22/04 & 3/25/04 and Synthesis

m Static vs. Dynamic Timing Analysis

m Static timing analysis m Dynamic timing analysis
— Consider all paths, including (ssimulation)
false paths which are never — If input stimulus set fails to
exercised exercise al functional paths,

3/15/04, 3/18/04,

l 3/22/04 & 3/25/04

timing violations can be

missed
— Do not report timing on false
paths
Hardware Description Languages 62

and Synthesis

|
m Example of Static Timing Analysis

7/4/-3
5/3/-2

23/20/-3

4/7/3
8/8/0

18/18/0

11/11/0

m arrival time/required arrival time/dlack
m Slack = required arrival time — arrival time

3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

vl BB

= Timing Checks

m Usetiming checksto verify the timing of adesign

m Timing checks
— setup
— hold
— pulse width
— clock period
— skew
— recovery
— others

3/15/04, 3/18/04, Hardware Description Languages 64
l 3/22/04 & 3/25/04 and Synthesis

Systems Tasks for Timing Checks

m System tasks for timing checks can be invoked within
= a behavior in atestbench, or invoked within a specify
block of amodule.

m $setup (data event, ref _event, limit),

— violation isreported if the period that elapses from
data event to ref event islessthan limit

— e.g., $setup (data, posedge clk, 5);
. m Shold (ref_event, data event, limit),

— Violation isreported if the stable period of data event
Isless than limit after ref _event

— e.g., $hold (posedge clk, data, 2);

m $setuphold (data event, ref _event, s limit, h_limit)
— $setuphold is the combination of $setup and $hold
— e.g., $setuphold (data, posedge clk, 5, 2);

3/15/04, 3/18/04, Hardware Description Languages 65
l 3/22/04 & 3/25/04 and Synthesis

Systems Tasks for Timing Checks

m Jperiod (ref_event, limit);
— violation is reported if the time between two consecutive ref-event
IS less than limit

— eg., $period (posedge clk, 16);
m Swidth (ref_event, limit);
— violation is reported if the period that elapses between ref _event
and the next opposite transition is less than limit
— eg., $width (posedge clk, 8);
. m $skew (event_1, event_2, limit);

— violation isreported if the time between event_1 and event 2
exceeds limit

— eg., $skew (posedge clkl, posedge clk2, 3);
m $recovery (ref_event, data_event, limit);
— violation isreported if the time between ref _event and data_event

exceeds limit
— eg., $recovery (posedge set, data, 5)
3/15/04, 3/18/04, Hardware Description Languages 66

l 3/22/04 & 3/25/04 and Synthesis

= Systems Tasks for Timing Checks

m $nochange (posedge clk, data, -1, 2)
— checks whether data is stable in theinterval (-1,2)
relative to posedge clk
m edge
— the edges 01, 10, Ox, x1, 1x, X0 can be used with the
specifier edge
— $setuphold (data, edge 01 clk, 5, 2)
B &&&
— $setup (data, posedge clk & & & (!reset), 5)

3/15/04, 3/18/04, Hardware Description Languages 67
l 3/22/04 & 3/25/04 and Synthesis

Notifiersin Timing Checks

m \When atiming check violation occurs, Verilog reports a
violation and the output gets the new value.

m The normal behavior should be for the output to become
undefined when atiming violation occurs.

m Example: (anadditional port is specified in the sequential UDP which will
force the output to an undefined value whenever the notifier register toggles)

module dff (data, clock, q);
input data, clock;
output q;

udp_dff (g, data, clock, notifier);

specify

$setup (data, posedge clock, 12, notifier);
$hold (posedge clock, data, 5, notifier);
$width (posedge clock, 25, notifier);

endspecify

endmodule
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

68

Variable Scope Revisited

m The scope of variables declared within a
begin...end block islocal to the block

m If ablock isnamed, the variables declared within
It can be hierarchically de-referenced from any
location in the design
—-eg., X.Y.k

modaule X(...);

begin: Y
reg k;
end
endmodule

3/15/04, 3/18/04, Hardware Description Languages 69
l 3/22/04 & 3/25/04 and Synthesis

Finite State M achines

Inputs e
*—>" Next State and Out
~ Combinational

Outputs

(a)

Inputs

| NextState i
Combinational |

Outputs

(b)

Figure 7.56 The generic structure of Mealy (a) and Moore (b) finite state
machines.

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

70

= Descriptive Styles

m Explicit style
— Declare a state register to encode the state
m Implicit style
— Use multiple event controls to describe an evolution of
states
— More abstract and |ess code than explicit style

— Description of reset behavior could be more
complicated than explicit style

— Only suitable when a given state can be reached from
only one other state

3/15/04, 3/18/04, Hardware Description Languages 71
l 3/22/04 & 3/25/04 and Synthesis

Explicit Style 1

[module FSM_stylel (...);
Input ...;
output ...;
parameter size=...;
reg [size-1.0] state;
wire[size-1:0] next_state;

assign the outputs= ... // afunction of state and inputs
// or afunction of state

assign next_state = ... // afunction of state and inputs

always @ (negedge reset or posedge clk)
If (reset == 1'b0) state = start_state; else
state <= next_state;

endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

12

Explicit Style 2

- module FSM _style2 (...);
input ...;
output ...;
parameter size=...;
reg [size-1:0] state, next_state;

assign the outputs = ... // afunction of state and inputs
// or afunction of state

always @ (state or the inputs)
begin
/] decode for next_state with case or if statement
end

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state = start_state; else
state <= next_state;
endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

73

Explicit Style 3

module FSM_style 3(...);
input ...;
output ...;
parameter size=...;
reg [size-1:0] state, next_state;

always @ (state or the inputs)
begin
// decode for next_state with case or if statement
end

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state = start_state; else begin
state <= next_state;
the outputs <= ... // synchronous outputs which depend on
I/ inputs and state for a synchronous Mealy machine

end
endmodule
3/15/04, 3/18/04, Hardware Description Languages
3/22/04 & 3/25/04 and Synthesis

74

-
= Example: Speed Controller

a: accelerator
b: brake

a=1b=0

3/15/04, 3/18/04, Hardware Description Languages 75
3/22/04 & 3/25/04 and Synthesis

TN

Explicit Style

Il Explicit FSM style

module speed_machine_1 (clock,
accelerator, brake, speed);

input clock, accelerator, brake;
output [1:0] speed,;
reg [1:0] state, next_state;

parameter stopped = 2 b00;
parameter s_slow = 2°'b01;
parameter s_medium = 2°b10;
parameter s_high = 2°b11;

assign speed = state;

always @ (posedge clock)
State <= next_state;

always @ (state or accelerator or brake)
if (brake ==1'bl)
case (state)
stopped: next_state <= stopped,;
s_low: next_state <= stopped,
S_medium: next_state <=s_low;
s_high: next_state <= s_medium;
default: next_state <= stopped,;
endcase
else if (accelerator == 1'b1)
case (state)
stopped: next_state <=s_low;
s_low: next_state <='s_medium;
S_medium: next_state <=s_high;
s_high: next_state <=s_high;
default: next_state <= stopped,;
endcase
else next_state <= state;

endmodule

3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04

and Synthesis

/6

Implicit Style

module speed__machine__2 (clock, accelerator, brake, speed);

// Implicit FSM

// Style: Decode the input, decode the state
// Model has implied states

input clock, accelerator, brake;
output [1:0] speed;

reg [1:0] speed;

“define stopped 2'b00

“define low 2'b01

“define medium 2'b10

“define high 2'p11

always @ (posedge clock)

if (brake == 1'b1)
case (speed)

“stopped: speed <= “stopped;
Tlow: speed <= “stopped;
"medium: speed <= "low;
“high: speed <= "'medium;
default: speed <= “stopped;
endcase
else if (accelerator == 1'b1)

case (speed)
“stopped:
“low:
“medium:
“high:
default:
endcase
else
endmodule

3/15/04, 3/18/04,
3/22/04 & 3/25/04

speed <= "low;
speed <= "medium;
speed <= “high;
speed <= "high;
speed <= ~stopped;

speed <= speed;

Hardware Description Languages
and Synthesis

77

Another Implicit Style

- module speed_machine_3 (clock, accelerator, brake, speed);
// Style: case of state and inputs. Model has implied states

input clock, accelerator, brake;

output [1:0] speed;
reg [1:0] speed,;
‘define stopped 2'b00
“define low 2'b01
‘define medium 2'b10
‘define high 2'b11

always @ (posedge clock)
case (speed)

“stopped: if (brake == 1'b1) speed <= "stopped;
else if (accelerator == 1'b1) speed <= "low;
“low: if (brake == 1'b1) speed <= "low;
else if (accelerator == 1'b1) speed <= "medium;
‘medium: if (brake == 1'b1) speed <= "low;
else if (accelerator == 1'b1) speed <= "high;
“high: if (brake == 1'b1) speed <= "medium;
default: speed <= "stopped;
endcase
endmodule
3/15/04, 3/18/04, Hardware Description Languages

l 3/22/04 & 3/25/04 and Synthesis

Up-Down Counter (Explicit Style)

module Up_Down_Explicit (count, up_dwn, clock, reset_);
- output [2:0] count;

input [1:0] up_dwn;
input clock, reset_;
reg [2:0] count, next_count;

always @ (negedge clock or negedge reset_)
if (reset_ == 0) count = 3'b0; else count = next_count:

always @ (count or up_dwn) begin
case (count)
0: case (up_dwn)
0, 3: next_count = 0;
1z next_count = 1;
2: next_count = 3'b111;
default next_count = 0; endcase

1: case (up_dwn)
0, 3: next_count = 1;
1: next_count = 2;
2: next_count = 0;
default next_count = 1; endcase

2: case (up_dwn)
0, 3: next_count = 2;
1: next_count = 3;
2: next_count = 1;
default next_count = 2; endcase

3: case (up_dwn)
0, 3: next_count = 3;
13 next_count = 4;
2: next_count = 2;
default next_count = 3; endcase

4,5,6,7: if (up_dwn == 0 |l up_dwn == 3) next_count = count;
else if (up_dwn == 1) next_count = count + 1;
else if (up dwn == 2) next_count = count —1;
else| next_count = 0;

endcase /

end

endmodule next_count = count; iption Languages
l 3/22/04 & 3/25/0 and Synthesis

79

Implicit Styles

- module Up_Down_Implicit1 (count, up_dwn, clock, reset_);
output [2:0] count;
input [1:0] up_dwn;
inout clock. reset :
reg [2:0] count;

always @ (negedge clock or negedge reset_)
if (reset_ == 0) count = 3'b0; else
if (up_dwn == 2'b00 |l up_dwn == 2'b11) count = count; else
if (up_dwn == 2'b01) count = count + 1; else
if (up_dwn == 2'b10) count = count —1;

endmodule

module Up_Down_Impilicit2 (count, up_dwn, clock, reset_);
output [2:0] count;

input [1:0] up_dwn;
input clock, reset_;
reg [2:0] count, next_count;

always @ (negedge clock or negedge reset_)
if (reset_ == 0) count = 3'b0; else count = next_count;

always @ (count or up_dwn) begin
if (up_dwn == 2'b00 I up_dwn == 2'b11) next_count = count; else
if (up_dwn == 2'b01) next_count = count + 1; else
if (up_dwn == 2'b10) next_count = count —1; else
next_count = count;
end
endmodule

3/15/04, 3/18/04, Hardware Description Languages
l 3/22/04 & 3/25/04 and Synthesis

80

= Polling Circuit

TN

service
clock
_ 3, request
Server Polling
feset | circuit 2 |
service
code
3/15/04, 3/18/04, Hardware Description Languages 81
3/22/04 & 3/25/04 and Synthesis

e
e State Transition Graph

Service code

3/15/04, 3/18/04, Hardware Description Languages 82
3/22/04 & 3/25/04 and Synthesis

. Verilog Code
]

module polling (s_request, s_code, clk, rst);
“define clientl 2°b01
“define client2 2°b10
“define client3 2°b11
- “define none 2°b00
input [3:1] s_request;
input clk, rst; output [1:0] s_code;
reg [1:0] next_client, present_client;
always @ (posedge clk or posedge rst)
begin if (rst)
present_client = "none;
else present_client = next_client;
end

assign s_code[1:0] = present_client;
. always @ (present_client or s_request)

task poll_for_clients;
input [1:0] present_client;
input [3:1] s_request;
output [1:0] next_client;
reg [1:0] contender; integer N;
begin: polling
contender = ‘none;
for(N=3;N>=1;N=N-1)
begin:
if (s_request[N]) begin
if (present_client == N)
contender = present_client;
else begin next_client = N;
disable polling; end

end end
begin if ((next_client == "none) &&
poll_for_clients (present_client, (contender))
S_request, next_client); next_client = contender; end

endtask
endmodule

end

3/15/04, 3/18/04, Hardware Description Languages 83
3/22/04 & 3/25/04 and Synthesis

