
The Supplement to “Modeling UMTS Power Saving
with Bursty Packet Data Traffic” Submitted to IEEE

Transactions on Mobile Computing

Shun-Ren Yang∗ and Sheng-Ying Yan

1 Discrete Event Simulation Model

This section describes a discrete event simulation model for UMTS DRX mechanism. According

to the ETSI packet traffic model described in Section 3, a packet service session consists of Npc

packet calls. Each of these packet calls in turn contains a sequence of Np packets. Npc and Np are

assumed to be geometric random variables with mean µpc and µp, respectively. This assumption

can easily be relaxed to accommodate general distributions in our simulation experiments. Our

simulation model defines five types of events: Packet arrival, Packet departure, Sleep, Reading,

and Wakeup. The output measures of the simulation are:

1. Nsp: the number of served packet arrivals in a simulation run

2. Ttw: the total waiting time of the served Nsp packet arrivals

3. To: the length of total observation period in the simulation run

4. Ts: the length of total sleep period within To

These output measures are used to compute the mean packet waiting time E[tw] and the power

saving factor Ps:

E[tw] =
Ttw

Nsp

and Ps =
Ts

To

.

∗Corresponding Author: Shun-Ren Yang, Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan, R.O.C.; Email: sryang@cs.nthu.edu.tw

1

The simulation flowchart for the UMTS DRX is given in Figure 1. These events are inserted into

an event list, and are deleted/processed from the event list in the non-decreasing timestamp order.

A simulation clock is maintained to indicate the progress of the simulation. The clock value is

the timestamp of the event being processed. In each simulation run, N = 20, 000, 000 incoming

packets are simulated to ensure that the simulation results are stable.

In Figure 1, Step 1 initializes N , Ttw, Nsp, Ts and To to 0 and sets counters npc and np to the

Npc and Np random variates which could be derived following Inverse Transform Technique [1]

for geometric distribution. In addition, the initial server state is set to idle. The first Packet arrival

event of the first packet service session is generated at Step 2 according to the inter-packet arrival

time distribution and is inserted into the event list. The next event e is extracted from the event list

at Step 3. Step 4 checks the event type of e.

Packet arrival: When a packet arrives to the RNC buffer, if N = 20, 000, 000 at Step 5, then the

simulation terminates, and the performance measures E[tw] and Ps are computed at Step 6.

Otherwise, the number of packet arrivals N is incremented by 1 at Step 7 and the counter

np is decremented by 1 at Step 8. Step 9 utilizes np to check if the packet call in service

has terminated. If np > 0, then the next Packet arrival event of the current packet call is

generated and is inserted into the event list at Step 10. After that, the simulation proceeds

to Step 11. On the other hand, if np = 0, it means that the last packet of the packet call

has arrived, and the simulation executes Step 11 directly. Step 11 checks the server state.

If the server is idle, Step 12 changes the server state to busy, and removes the Sleep event

from the event list in order to stop the RNC inactivity timer. At Step 13, the corresponding

Packet departure event of event e is generated according to the service time distribution and

is inserted into the event list. Meanwhile, Nsp is incremented by 1. Note that, in this case, the

Packet arrival event e does not need to wait for service, and therefore, the total waiting time

Ttw remains unchanged. When the server state is busy at Step 11, the Packet arrival event e

can not be served immediately and is stored in the RNC buffer at Step 14. Eventually, the

simulation returns to Step 3.

Packet departure: When a packet completes the service and departs, Step 15 checks if there is

2

���������	���
���
�
����

������	��
�����������������������	
������	���������

�������
�������������������	�
	���	���������	�������

���	�������

���������������	�������	� ��������������	�������

� ��	
� �������
�����
����
��

	� � 	
� �������
�������	�
��
������
��

	����	
� �������
������
�����	�
�������	

��� ��	
� ��������������
�����
����
��

!�" �����
��"
���	#�������������������������
�����
����
��

!� ����	#������� ����
���	�������

!� ����	#�������������������"����	�����!��������

$%�"&�����
	��
�����"
���	#�����

'� ����"����
��	#��
����

��
��

��(����	��
���

����	�����������

���	
������	�����

�����
������
���

	���	���������	���

�������	�������

����

)���������

����*

��������������
��+
�,�

���������������
����	��

������������	����������

���������-�.��	
������,

������

�������	��
�������

��������	��	#��������

��
����������	�����

���	����
	���	��������

�	����������	�������

��� +����/���

�0�

��+ �(�

������	*

��

1��

�2��!� +��
���	��

�������
�
������

.���
��

$%�"&�+�!�"3���
'� +�!�3!��

$	�
�4����+ �/��

�5��	� + 	�6��

��7�����������	��

���	�����-�.�

�����

1��

��

��

1��

��0�

)������-�.�

���������,*

�������	��
�������

����������������	
��

���	���������	����

�
������
���
	���	����

����	����������	��������

��7��-�����	��

��

��0����	��
�������

����������������	
��

���	���������	����

������	�
	���	��������

�	����������	��������

��2��-�����	���
	��	��

1��

��

�����	��+�	��6��

��2��������������������

���	
������	����
������

��
���������-�.�
�����

��4����	��
�������

��������	��	#��������

��
����������	��������	��

��
	���	���������	�������

���	�������

��5����� +����/��

.���
���!�"�

����

	��+�(*

��(�

	� +�(*

1��

��5���������

��
��+��
��	#�

.���
����!��

��8����	��
�������

� ����
���	��
	��

�	���������	����������	��

������

��(�

)������-�.�

���������,*

��

��4���������

��
��+������

��	��
�������	���

����	�����	��
	��

�	���������	�������

���	�������

1��

�7�

)���9$��	�!,���

����������	
��*

�7�

)���9$��	�!,���

�������

��
������*

�7�

)���9$��	�!,���

����
*

�7�

)���9$��	�!,���

����	��*

�7�

)���9$��	�!,���

� ����
*

1�� 1��
1�� 1�� 1��

�� �� �� ��

�8�

	� :�(*

1��

��

��8�����������
��+�����

;����
�������-�.�

�	
������,������� ,�

#�	��
��	#��������
�

���	�<�
	���	���������	���

�������	�������

��������������
��+
�,�

Figure 1: Simulation flowchart for UMTS DRX mechanism

3

any remaining packet in the RNC buffer. If the RNC buffer is not empty, Step 16 processes

the Packet arrival event e’ waiting at the head of the RNC buffer. Step 17 generates the

corresponding Packet departure event for e’ and inserts it into the event list. At Step 18,

Ttw is incremented by the waiting time which event e spends in the RNC buffer, and Nsp

is incremented by 1. On the other hand, if there are no packets in the RNC buffer at Step

15, the server returns to idle state. In this case, a Sleep event is generated to activate the

RNC inactivity timer at Step 19, and its timestamp is calculated based on the fixed RNC

inactive timer tI . Step 20 employs np to check if the serving packet call has terminated. If

np > 0, the simulation proceeds to Step 3 to process the remaining Packet arrival events

of the current packet call. If np = 0, the current packet call has finished service, and the

counter npc is decremented by 1 at Step 21. Step 22 evaluates npc to check whether the

ongoing packet service session has completed. If npc > 0, then the session continues and

the first Packet arrival event of the next packet call is generated according to the inter-packet

call idle time distribution and is inserted into the event list at Step 23. Step 24 resets counter

np to another Np random variate for the next packet call. When npc = 0 at Step 22, the

session has completed and the first Packet arrival event of the next packet service session is

generated according to the inter-packet session idle time distribution and is inserted into the

event list at Step 25. Step 26 resets npc and np for the next packet service session. Finally,

the simulation goes back to Step 3.

Sleep: When the RNC inactivity timer is expired, the MS enters the power saving mode to reduce

power consumption, and the server changes to sleep state. In order to periodically wake up

to listen to the information from the BS for MS, the Reading event is generated according to

a fixed sleep period tS and is inserted into the event list at Step 27. After that, the simulation

proceeds to Step 3.

Reading: The MS awakes from the sleep mode and the server state is reset reading. In addition,

the length of sleep period within the To period Ts is incremented by the time period that the

MS experiences in the sleep state at Step 28. At the end of the listening period, the MS has

to determine whether going back to sleep mode or entering to active mode. Consequently,

4

Step 29 generates the Wakeup event according to a fixed reading period τ and inserts into

the event list. Finally, the simulation returns to Step 3.

Wakeup: The MS utilizes the received traffic indication from BS to check the status of the RNC

buffer at Step 30. If there are no packets in the RNC buffer at Step 30, the simulation

proceeds to Step 27. Otherwise, the server changes to busy state at Step 31, and Steps 16-18

are executed as described in Packet departure case.

2 E[W ′
1,3|2] for Given tΛ

E[W ′
1,3|2] =

(

1

λD

− tΛ

)

+ (E[N ′
1,3|2] − 1)

1

2

(

1

λD

− tΛ

)

+ E





N ′
1,3|2

∑

k=1

(k − 1)
1

λx





=

(

1

λD

− tΛ

)

+ (E[N ′
1,3|2] − 1)

1

2

(

1

λD

− tΛ

)

+

(

1

λx

)

E

[

N ′
1,3|2(N

′
1,3|2 − 1)

2

]

=

(

1

λD

− tΛ

)

+ (E[N ′
1,3|2] − 1)

1

2

(

1

λD

− tΛ

)

+

(

1

2λx

)

(E[N ′2
1,3|2] − E[N ′

1,3|2]),

where E[N ′
1,3|2] and E[N ′2

1,3|2] are given in (27).

3 E[W ′′
1,3|2] for Given tΛ

E[W ′′
1,3|2] = E





N ′′
1,3|2

∑

k=1

{

N ′
1,3|2

λx

+
k − 1

λx

−
k

λip

}





=

(

1

λx

)

E[N ′′
1,3|2]E[N ′

1,3|2] −

(

1

λip

)

E[N ′′
1,3|2] +

(

1

λx

−
1

λip

)

E

[

N ′′
1,3|2(N

′′
1,3|2 − 1)

2

]

=

(

1

λx

)

E[N ′′
1,3|2]E[N ′

1,3|2] −

(

1

λip

)

E[N ′′
1,3|2] +

1

2

(

1

λx

−
1

λip

)

(E[N ′′2
1,3|2] − E[N ′′

1,3|2]),

where E[N ′
1,3|2], E[N ′′

1,3|2] and E[N ′′2
1,3|2] are given in (27) and (29).

5

4 E[tΥ|tΛ] and E[t2Υ|tΛ]

E[tΥ|tΛ] = tΛ +

[

1

1 − e
−

λip

µp
(1

λD
−tΛ)

]

[

µp

λip

−

(

1

λD

− tΛ +
µp

λip

)

e
−

λip

µp
(1

λD
−tΛ)

]

E[t2Υ|tΛ] = t2Λ +

[

1

1 − e
−

λip

µp
(1

λD
−tΛ)

]{

2tΛ

(

µp

λip

)

+ 2

(

µp

λip

)2

−

[

2tΛ

(

1

λD

− tΛ +
µp

λip

)

+2

(

µp

λip

)2

+ 2

(

µp

λip

)(

1

λD

− tΛ

)

+

(

1

λD

− tΛ

)2
]

e
−

λip

µp
(1

λD
−tΛ)

}

References

[1] Banks, J., Carson, J.S. II., Nelson, B.L. Discrete-Event System Simulation. John Wiley& Sons,

1972.

6

