
Optimizing Active Ranges for Consistent Dynamic Map Labeling

Ken Been∗ Martin Nöllenburg† Sheung-Hung Poon‡ Alexander Wolff§

Abstract

Map labeling encounters unique issues in the con-
text of dynamic maps with continuous zooming and
panning—an application with increasing practical im-
portance. In consistent dynamic map labeling, dis-
tracting behavior such as popping and jumping is
avoided. In our model a dynamic label placement is
a continuous function that assigns a 2d-label to each
scale. This defines a 3d-solid, with scale as the third
dimension. To avoid popping, we truncate each solid
to a single scale range, called its active range. This
range corresponds to the interval of scales at which the
label is visible. The active range optimization (ARO)
problem is to select active ranges so that no two trun-
cated solids overlap and the sum of the active ranges
is maximized. We show that the ARO problem is NP-
complete, even for quite simple solid shapes, and we
present constant-factor approximations for different
variants of the problem.

1 Introduction

Recent years have seen tremendous improvements
in Internet-based, geographic visualization systems
that provide continuous zooming and panning (e.g.,
Google Earth), but relatively little attention has been
paid to special issues faced by map labeling in such
contexts. In addition to the need for interactive speed,
several desiderata for a consistent dynamic labeling
were identified in [1]: labels do not pop in and out or
jump (suddenly change position or size) during pan-
ning and zooming, and the labeling is a function of
scale and view area—it does not depend on the user’s
navigation history.

Model. We adapt the following labeling model
from [1], with slight changes. In static labeling, the
key operations are selection and placement—select a
subset of the labels that can be placed without over-
lap. A static placement of a label L is a transforma-
tion πL, composed of translation, rotation, and dila-

∗Computer Science Department, Yeshiva University, New
York, NY, U.S.A. kbeen@yu.edu

†Fakultät für Informatik, Universität Karlsruhe, Germany.
noellenburg@iti.uka.de

‡Department of Computer Science, National Tsing Hua Uni-
versity, Hsin-Chu, Taiwan. spoon@cs.nthu.edu.tw

§Faculteit Wiskunde en Informatica, Technische Universiteit
Eindhoven, The Netherlands. http://www.win.tue.nl/˜awolff

tion, that takes L’s canonical shape into world coordi-
nates. Once all labels are placed, a viewing transfor-
mation takes world coordinates to map coordinates.

In dynamic labeling we take scale as an additional
dimension. As with [1, 4], we define scale as the in-
verse of cartographic scale, so that it increases when
zooming out. A dynamic placement of L is a function
that assigns a static placement πL

s to each scale s ≥ 0.
The translation, rotation and dilation components of
the dynamic placement must each be continuous func-
tions of scale. This eliminates jumping and popping
during panning, and dependence on navigation his-
tory. Dynamic selection is similarly a Boolean func-
tion of scale. To eliminate popping during zooming
we require that each label Li, 1 ≤ i ≤ n, is selected
precisely on a single interval of scales, [ai, Ai], which
is called the active range of Li. Thus all consistency
desiderata can be satisfied by adhering to this model.

x

y

s

Figure 1: A dyna-
mic label placement
is a solid in world
coordinates.

Let Smax be a universal
maximum scale for all la-
bels. We define the available
range of Li to be an interval
of scales, [si, Si] ⊆ [0, Smax],
in which label Li “wants”
to be selected. We require
[ai, Ai] ⊆ [si, Si]. Since the
dynamic placement is con-
tinuous with scale, Ei =⋃

s∈[si,Si]
πLi

s (Li) is a solid
defined by sweeping the la-
bel shape along a continu-
ous curve that is monotonic
in scale, see Fig. 1. We call Ei the extrusion of Li

and Ti =
⋃

s∈[ai,Ai]
πLi

s (Li) its truncated extrusion.
The extrusion shapes are determined by the la-

bel shape and the translation, rotation and dila-
tion functions that compose the dynamic placement.
We restrict our attention to certain classes of extru-
sions. Our labels are rectangular. For translation,
we consider only invariant point placements, in which
a particular point on the label always maps to the
same location in world coordinates, so the label never
“slides”. Our rotation functions are constant, and
yield axis-aligned labels. We consider two classes of
dilation functions DL. If DL(s) = bs for a constant
b > 0, then label size is fixed on screen and propor-
tional to scale in world coordinates. The solid is then
a label-shaped cone with apex at s = 0 as in Fig. 1.
With invariant point placements, the cone contains

1



extrusion shape ARO dilation approx. running time reference

congruent square cones bs 1/4 O((k + n) log2 n) Theorem 4
congruent square cones simple bs 1/8 O(n log3 n) Corollary 8
arbitrary square cones bs 1/24 O(n log3 n) Theorem 7
segments of congruent square cones bs 1/4 O((k + n) log2 n) Theorem 4
congruent frusta

general
bs + c 1/(4W ) O(n4) Theorem 3

Table 1: Results attained in this paper, where k is the number of pairwise intersections between extrusions and
W is the width ratio of top over bottom side.

the vertical line through its apex. The cone might
be symmetric to that line (e.g., for labeling a region)
or might have a vertical side incident to it (e.g., for
labeling a point). Secondly, we consider, in a more
general setting, functions of the form DL(s) = bs + c
for constants b > 0 and c 6= 0. The solid in this case
is a portion of a cone with apex at −c/b.

Objective. Let E denote the set of all extrusions,
and assume we are given an available range for each.
For a set T of truncated extrusions, define H(T ) =∑n

i=1(Ai−ai) to be the total active range height. This
is the same as integrating over all scales the func-
tion f(s) that counts the number of labels selected
at scale s. The (general) active range optimization
(ARO) problem is to choose the active ranges so as
to maximize H, subject to the constraint that no two
truncated extrusions overlap. This is the dynamic
analogue of placing the maximum number of labels
without overlap in the static case. We call any set
of active ranges that correspond to non-overlapping
truncated extrusions a solution. It is of both theoret-
ical and practical interest to also consider a version of
the problem in which [si, Si] = [0, Smax] and ai = 0
for all i. We call this variant of ARO simple. In this
version all labels want to be selected at all scales, and
a label is never deselected when zooming in.

Already the simple ARO problem is NP-complete.
Table 1 summarizes the approximation results ob-
tained in this paper. In the full version we also con-
sider 1d-labels, which are segments on the x-axis. The
1d-problem can be seen as a scheduling problem with
geometric constraints and is closely related to geomet-
ric maximum independent set problems.

Previous Work. Map labeling has been the focus
of extensive algorithmic investigation, see the map-
labeling bibliography [5]. However, the majority of
the research efforts cover static labeling. For dynamic
labeling, Petzold et al. [2, 3] use a preprocessing phase
to generate a data structure that is searched during
interaction to produce a labeling for the current scale
and view area. Poon and Shin [4] build a hierarchy
of precomputed solutions, and interpolation between
these produces a solution for any scale. Neither of

these approaches satisfies the consistency desiderata.
In addition to introducing consistency for dynamic
map labeling, Been et al. [1] show that simple ARO is
NP-complete for star-shaped labels, and implement a
simple heuristic solution in a working system.

2 Complexity

Already the simple ARO problem for congruent
square cones as extrusion shape is NP-complete. The
proof is by reduction from Planar3SAT using 3d-
gadgets. We omit it here due to space constraints.

Theorem 1 Simple ARO with proportional dilation
is NP-complete, i.e., given a real K > 0 and a set
{E1, . . . , En} of congruent square cones, it is NP-
complete to decide whether there is a set of truncated
extrusions T = {T1, . . . , Tn} with T1 ⊆ E1, . . . , Tn ⊆
En and H(T ) ≥ K.

3 Approximation algorithms

In this section we give two algorithms that yield
constant-factor approximations for a number of dif-
ferent variants of the ARO problem. The first algo-
rithm in Sect. 3.1 is based on sweeping the extrusions
from top to bottom and the second one in Sect. 3.2
is a level-based greedy algorithm. Due to space con-
straints we omit the proofs of the running times.

3.1 Top-to-bottom fill-down sweep

Algorithm 1 below is based on the idea to sweep down
over the extrusions in E , and if Ei ∈ E is selected
at some height s, we “fill” Ei from s down to its
bottom—i.e., we set [ai, Ai] = [si, s]. Thus we have
ai = si for every Ei that contributes to the objective
function H at all.

Say that Ei is available if its available range in-
cludes the current sweep scale s, and active if its ac-
tive range has already been set and covers s. We are
interested in event points at which the conflict graph
over the available extrusions changes. This happens
at each Si and si, and with some extrusion shapes it
also happens at additional heights. If Ei and Ej are
both available at s and at s′ > s, and they intersect

2



at s′ but not at s, then let sij refer to the lowest scale
at which they intersect. Let k be the number of sij

events over E . We make use of a subroutine, “try to
pick” Ei, which means, “if Ei does not intersect the
interior of any extrusion already chosen to be active
at the current sweep height s, then make Ei active
and set [ai, Ai] = [si, s]”.

Algorithm 1 Top-to-bottom sweep algorithm.

Sweep a plane from top to bottom. At each event
point of type Si, si, or sij , try to pick each avail-
able but inactive extrusion Ej , in non-increasing
order of Sj .

The following lemma will help proving approxima-
tion factors. Let A = {(ai, Ai)} be the solution com-
puted by Algorithm 1. Say that Ej blocks Ei at scale s
under a given solution if Ei and Ej overlap (i.e., their
interiors intersect) at s and s ∈ [aj , Aj ]. Note that
this implies that s /∈ [ai, Ai]. Say that two extru-
sions are independent at s if their restrictions to the
horizontal plane at height s are non-overlapping.

Lemma 2 If, for any E ∈ E and s ≥ 0, E can block
no more than c pairwise independent extrusions at s,
then A is a (1/c)-approximation for the maximum
total active range height of E .

Proof. Suppose that E ∈ E is inactive at scale s
under A. Then E must be blocked at the nearest
event point above (or at) s, since otherwise it would
be picked by Algorithm 1. Since the extrusion conflict
graph only changes at event points, E is blocked at s.
Thus, in A, if E is inactive at any scale s then E is
blocked at s.

If at any scale no extrusion can block more than c
pairwise independent extrusions, and in A every inac-
tive extrusion is blocked, then at any scale the number
of active extrusions in an optimal solution can be no
more than c times the number in A. Integrating over
all scales proves the lemma. ¤

Congruent frusta. The top-to-bottom nature of Al-
gorithm 1 ensures that if a frustum Ej blocks another
frustum Ei at scale s then Ei intersects a side face
of Ej . The number of independent frusta that can
intersect a single face depends on W , the ratio of the
side length of the top face of each frustum to that of
the bottom face.

Theorem 3 Algorithm 1 computes a 1/(4W )-ap-
proximation for the maximum total active range
height of a set of n congruent frusta in O(n4) time.

Frustal segments of congruent square cones. For
congruent underlying square cones the size of all
squares is the same at each scale. Thus any extrusion
blocked by an extrusion E at scale s must intersect

one of the four corner edges of E at s, so at most four
such extrusions can be independent. The approxima-
tion factor in Theorem 4 follows from Lemma 2.

Theorem 4 Given a set of n frustal segments of axis-
aligned unit square cones, Algorithm 1 computes a
(1/4)-approximation for the maximum total active
range height in O((n + k) log2 n) time.

Note that simple ARO with congruent square cones
is a special case of the above where each [si, Si] =
[0, Smax], so that Theorem 4 still holds in this case.

3.2 Level-based small-to-large greedy algorithm

In this section we give an algorithm for simple ARO
with square cones. It computes a 1/8-approxima-
tion when the cones are congruent, and a (1/24)-
approximation otherwise. The algorithm intersects
the given cones with O(log n) horizontal planes, start-
ing at Smax and proceeding downward.

Algorithm 2 Level-based algorithm for 3d-cones

Initially no extrusion is active. In phase i, i =
0, . . . , dlog ne, let πi be the horizontal plane at
scale s = Smax/2i. Let Ei

j be the intersection of
extrusion Ej with πi and call Ei

j active if Ej is
already active. As long as there is an inactive ob-
ject Ei

j that does not intersect any active object,
choose the smallest such object Ei

j? and make Ej?

(and Ei
j?) active by setting Aj? = s.

We first consider arbitrary square cones that are
symmetric to the vertical axes passing through their
apexes. When the algorithm terminates, all squares
at level i that are not active must intersect an active
square—they are blocked. We associate each blocked
square Ei

j to one of the active squares in the follow-
ing way: (i) If Ei

j was not blocked at the beginning
of phase i but became blocked by a newly activated
square Ei

k, then associate Ei
j to Ei

k. (ii) If Ei
j was

blocked in the beginning of phase i then associate Ei
j

to any of its blocking squares that were active at the
beginning of phase i. Next, we show that the squares
associated to an active square cannot be arbitrarily
small.

Lemma 5 Let Ei
j be an active square at level i with

side length `i
j . Then any square associated to Ei

j has

side length at least `i
j/3 and intersects the boundary

of Ei
j .

Proof. Let Ei
k be associated to Ei

j with `i
k < `i

j . By
the greedy choice of the algorithm, all squares associ-
ated to a newly active square are larger than it. This
implies that Ej must have been activated at a higher
level, and that Ek must have been reassigned to Ej

at some level h ≤ i. Thus, at level h− 1 square Eh−1
k

3



πh−1

E
h−1

j

E
h−1

k

E
h−1

l

(a) Squares at level h− 1.

πh

E
h
j

E
h
k

E
h
l

(b) Squares at level h.

E
i
j

Figure 2: Intersection behavior of Ej , Ek, El at two consecutive levels.
Figure 3: At most 12 indepen-
dent squares intersect Ei

j .

was associated to another square Eh−1
l . Note that

for this reassignment to take place at level h, Eh−1
j

must have been active. Thus we know that Eh−1
j and

Eh−1
l do not intersect, but they both intersect Eh−1

k ;
see Fig. 2a. At level h the reassignment takes place
because Eh

k no longer intersects Eh
l but still intersects

Eh
j ; see Fig. 2b. Now suppose `h

k < `h
j /3. Then by

going from level h to h − 1 the side lengths of the
squares are doubled and it is easy to verify that Eh−1

k

would be contained in Eh−1
j , a contradiction to the

fact that Eh−1
k ∩ Eh−1

l 6= ∅. As `h
k ≥ `h

j /3 this also
holds for level i, and since Eh−1

k intersects the bound-
ary of Eh−1

j this is also still true for level i. ¤

Let πdlog ne+1 be the plane s = 0, and denote the
active segments of the extrusions in the optimal solu-
tion S and our algorithm’s solution A between planes
πi−1 and πi by Si and Ai, respectively. We charge
the active range height H(Si) to that of H(Ai+1).

Lemma 6 For i ∈ 1, . . . , dlog ne − 1 it holds that
H(Ai+1) ≥ 1/24 H(Si).

Proof. Let square Ei
j be active in A and consider

the set D(Ei
j) of squares in πi associated to it. The

squares in D(Ei
j) that correspond to active extrusions

in Si cannot intersect each other.
By Lemma 5, all squares in D(Ei

j) have side length
at least `i

j/3 and intersect the boundary of Ei
j . Thus,

at most 12 of those squares can be independent in πi

and hence active in Si like in Fig. 3. Now the height
between levels i and i− 1 is twice the height between
levels i + 1 and i. Hence the active height of Ej in
Ai+1 is at least 1/24 times the sum of heights of active
extrusions in Si whose squares at level i are associated
to Ei

j . It follows that H(Ai+1) ≥ 1/24 H(Si). ¤

Theorem 7 Algorithm 2 computes a (1/24)-approx-
imation to the maximum total active range height of
a set of arbitrary square cones in O(n log3 n) time.

Proof. From Lemma 6, it remains to compare
H(Sdlog ne)+H(Sdlog ne+1) to H(Adlog ne+1)+H(A1).
The height of πdlog ne−1 is at most 2Smax/n and obvi-
ously there are at most n active cone segments in S

below πdlog ne−1, so their total active range height is
at most 2Smax. On the other hand, there is at least
one active cone segment in A1 of height Smax/2. Thus
the approximation factor is indeed 1/24. ¤

With congruent square cones, all squares at each
level are the same size, so at most four rather than 12
independent squares can intersect a given square. A
similar argument gives the following corollary.

Corollary 8 Algorithm 2 computes a (1/8)-approx-
imation to the maximum total active range height of
a set of congruent square cones in O(n log3 n) time.

4 Conclusions

ARO is an exciting new problem inspired by inter-
active web-based mapping applications and we have
given approximation algorithms for some variants. It
remains open whether any of the problems admits a
PTAS. Also, mapping applications in practice often
require more complex extrusion shapes.

References

[1] K. Been, E. Daiches, and C. Yap. Dynamic map la-
beling. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):773–780, 2006.

[2] I. Petzold, G. Gröger, and L. Plümer. Fast screen map
labeling—data-structures and algorithms. In Proc.
23rd Internat. Cartographic Conf. (ICC’03), pages
288–298, Durban, South Africa, 2003.

[3] I. Petzold, L. Plümer, and M. Heber. Label placement
for dynamically generated screen maps. In Proc. 19th
Internat. Cartographic Conf. (ICC’99), pages 893–903,
1999.

[4] S.-H. Poon and C.-S. Shin. Adaptive zooming in point
set labeling. In M. Lískiewicz and R. Reischuk, editors,
Proc. 15th Internat. Sympos. Fundam. Comput. The-
ory (FCT’05), volume 3623 of Lecture Notes Comput.
Sci., pages 233–244. Springer-Verlag, 2005.

[5] A. Wolff and T. Strijk. The Map-Labeling Bibli-
ography. http://i11www.ira.uka.de/map-labeling/
bibliography, 1996.

4


