On Unfolding Trees and Polygons on Various Lattices

Author: Sheung-Hung Poon,

Presented by: Elena Mumford

> Technical University of Eindhoven (TU/e), The Netherlands

The 19th Canadian Conference on Computational Geometry (CCCG), August 20-22, 2007

Introduction

- Rigid edges can rotate around vertex w/o crossing other edges.
- "Straightening" = move rigid edges to lie on a straight line.

- "Convexifying" = move rigid edges until polygon becomes convex.

- "locking" = cannot be straightened or convexified.

Introduction

- Rigid edges can rotate around vertex w/o crossing other edges.
- "Straightening" = move rigid edges to lie on a straight line.

"Convexifying" $=$ move rigid edges until polygon becomes convex.

- "locking" = cannot be straightened or convexified.

Introduction

- Rigid edges can rotate around vertex w/o crossing other edges.
- "Straightening" = move rigid edges to lie on a straight line.

- "Convexifying" = move rigid edges until polygon becomes convex.

- "locking" = cannot be straightened or convexified.

Introduction

- Rigid edges can rotate around vertex w/o crossing other edges.
- "Straightening" = move rigid edges to lie on a straight line.

- "Convexifying" = move rigid edges until polygon becomes convex.

- "locking" = cannot be straightened or convexified.

- Applications:

- movements of robot arms,

- molecular conformation,
- wire bending,
- rigidity \& knot theory,

- Applications:

- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,

- Applications:

- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,

- Applications:

- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,

- Applications:

- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,

- Applications:

- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,
- Applications:
- movements of robot arms,

- molecular conformation,

(Borrowed from Univ. College London)
- wire bending,
- rigidity \& knot theory,

Definition of Lattice Polygons/Trees

In this talk, we mainly consider lattice polygons/trees.

- A unit polygon/tree = with all its edges of unit-length.

- A lattice polygon/tree = with all its edges from a lattice.

Definition of Lattice Polygons/Trees

In this talk, we mainly consider lattice polygons/trees.

- A unit polygon/tree = with all its edges of unit-length.

- A lattice polygon/tree = with all its edges from a lattice.

Square lattice tree

Hexagonal lattice tree

Triangular lattice tree

Previous Work

- Carpenter's Rule Conjecture (solved): Chains (polygons) in 2D can be straightened (convexified). [Connelly, Demaine and Rote '00][Strienu '00]
- Trees (polygons) in 4D+ can be straightened (convexified). [Cocan and O'Rourke '01]
- A tree in 2D \& a 5-chain in 3D) can lock.
[Biedl et al '01]

Previous Work

- Carpenter's Rule Conjecture (solved): Chains (polygons) in 2D can be straightened (convexified). [Connelly, Demaine and Rote '00][Strienu '00]
- Trees (polygons) in 4D+ can be straightened (convexified). [Cocan and O'Rourke '01]
- A tree in 2D \& a 5-chain in 3D can lock. [Biedl et al '01]

Previous Work

- Carpenter's Rule Conjecture (solved): Chains (polygons) in 2D can be straightened (convexified). [Connelly, Demaine and Rote '00][Strienu '00]
- Trees (polygons) in 4D+ can be straightened (convexified). [Cocan and O'Rourke '01]
- A tree in 2D \& a 5-chain in 3D can lock. [Biedl et al '01]

(a) A locked tree in 2D.
(b) A locked 5-chain in 3D
- PSPACE-complete: to reconfigure 2D-trees or 3D-chains. [Alt et al. '03]

- A unit tree of diameter 4 can always be straightened.

[Poon '05]

- A 2D/3D lattice tree can always be straightened, and A 2D lattice polygon can always be convexified. [Poon '06]
- PSPACE-complete: to reconfigure 2D-trees or 3D-chains. [Alt et al. '03]
- A unit tree of diameter 4 can always be straightened. [Poon '05]
- A 2D/3D lattice tree can always be straightened, and A 2D lattice polygon can always be convexified. [Poon '06]
- PSPACE-complete: to reconfigure 2D-trees or 3D-chains. [Alt et al. '03]
- A unit tree of diameter 4 can always be straightened.
[Poon '05]
- A 2D/3D lattice tree can always be straightened, and A 2D lattice polygon can always be convexified. [Poon '06]

Our Results

A "move" = a monotonic increase/decrease of angle at a vertex.

Theorem

- A hexagonal/triangular lattice chain can be straightened in $O(n)$ moves and time ($n=n o$. of edges).

Theorem

A hexagonal/triangular lattice tree can be straightened in $O\left(n^{2}\right)$ moves and time.

Theorem

A hexaaona/triangular lattice polygon can be convexified in $O\left(n^{2}\right)$ moves and time.

Our Results

A "move" = a monotonic increase/decrease of angle at a vertex.

Theorem

- A hexagonal/triangular lattice chain can be straightened in $O(n)$ moves and time ($n=n o$. of edges).

Theorem

- A hexagonal/triangular lattice tree can be straightened in $O\left(n^{2}\right)$ moves and time.

Theorem
 A hexagonal/triangular lattice polygon can be convexified in $O\left(n^{2}\right)$ moves and time.

Our Results

A "move" = a monotonic increase/decrease of angle at a vertex.

Theorem

- A hexagonal/triangular lattice chain can be straightened in $O(n)$ moves and time ($n=n o$. of edges).

Theorem

- A hexagonal/triangular lattice tree can be straightened in $O\left(n^{2}\right)$ moves and time.

Theorem

- A hexagonal/triangular lattice polygon can be convexified in $O\left(n^{2}\right)$ moves and time.

Hexagonal Lattice Chains

Algorithm:

- Fold up the end edges of the chain iteratively.
- Unfold the final folded spring/zig-zag path.

PS. The algorithm is similar to that for square lattice.

Hexagonal Lattice Trees

- Given a hexagonal lattice tree P.
- Let r be root $=$ the leftmost vertex of P.

Algorithm:

- Our algorithm proceeds by pulling P to the left successively until the whole tree is straightened.
- In each pulling step:
- Each vertex v is pulled along its edge connecting to its parent;
- The motion of v stops when v is coincident with its parent in the previous step.
- In each pulling step:
- Each vertex v is pulled along its edge connecting to its parent;
- The motion of v stops when v is coincident with its parent in the previous step.

- The pulling step is repeated n times so that, finally, tree P is straightened.

- Each pulling step takes $O(n)$ moves. Thus n pulling steps take $O\left(n^{2}\right)$ moves in total.

Hexagonal Lattice Polygons

- Use similar technique of block-collapsing as square lattice.
- New definition: A block = a hexagonal cell.

Algorithm:

Collapse leftmost collapsible block iteratively.

Case $1 a$

Case $1 b$

Case 2

Case 3

- Observe: operation in Case 3, no edges are reduced.
- After at most $O(n)$ operations of Case 3, we reach one Case 1 or Case 2.
- Thus whole algorithm takes $O\left(n^{2}\right)$ moves and time.

Triangular Lattice Chains

- Use similar technique as for square \& hexagonal lattice.

Algorithm:

- Fold up the end edges of the chain iteratively.
- Unfold the final folded spring/zig-zag path.

Cases to handle:
(1) When angle $\alpha \%$ end edge \& its adjacent edge is $\pi / 3$:

(a)
(b)
(2) When angle $\alpha=2 \pi / 3$ or π, we can handle similarly.

Triangular Lattice Trees

- Given a triangular lattice tree P.
- Let r be root $=$ the leftmost vertex of P.

Algorithm:

- Our algorithm proceeds by pulling P to the left successively until the whole tree is straightened.
- In each pulling step:
- Each vertex v is pulled along its edge (or its extension) connecting to its parent;
- The motion of v stops when v is coincident with its parent in the previous step.
- In each pulling step:
- Each vertex v is pulled along its edge connecting to its parent;
- The motion of v stops when v is coincident with its parent in the previous step.

- During motion, a vertex never exceed middle point of an extension edge(dashed blue). So no edge crossings occur.
- Each pulling step takes $O(n)$ moves, and thus the whole algorithm takes $O\left(n^{2}\right)$ moves and time.

Triangular Lattice Polygons

- We extend block-collapsing technique for square/hexagonal lattice.

New definition:

A block $=\mathbf{a}(a)$ parallelogram, (b) trapezoidal or (c) triangular block.

Algorithm:

Collapse leftmost collapsible block iteratively.
Cases to handle:
(a) Collapse a parallelogram block;
(b) Collapse two trapezoidal/triangular blocks; and
(c) Collapse an extended triangular/trapezoidal block.

Conclusions

- We obtain results for chains/trees/polygons on hexagonal or triangular lattice can be straightened/covexified.

Conjecture:
A unit tree in two dimensions can always be straightened.

Conclusions

- We obtain results for chains/trees/polygons on hexagonal or triangular lattice can be straightened/covexified.
- Conjecture:

A unit tree in two dimensions can always be straightened.

