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A CORRECTNESS & FAULT TOLERANCE
According to [3], a migration technique must ensure migration safety
and liveness.

DEFINITION A.1. Safety. A migration technique is safe if it
meets the following conditions: (1) Transactional correctness: Se-
rializability is guaranteed among transactions during migrations;
(2) Transactional durability: updates made by committed transac-
tions are persistent; and (3) Migration Consistency: a failure during
migrations does not leave the system and data in a inconsistent state.

DEFINITION A.2. Liveness. A migration technique ensures live-
ness if it meets the following conditions: (1) Termination: if the nodes
participating in a migration are not faulty and can communicate
with each other for a sufficiently long period during the migration,
the process will terminate; and (2) Starvation Freedom: in the pres-
ence of one or more failures, each migrating data set always has at
least one node that can execute its transaction.

Hermes migrates data records when performing data fusion. Thus,
in this section, we prove that Hermes ensures migration safety and
liveness. Our failure model tolerates node crash failures and network
partitions. We assume that there is no malicious node behavior and
no data lost on persistent storage.

A.1 Correctness & Consistency
THEOREM A.1. Transactional correctness: Hermes guarantees

serializability during migrations.

PROOF. Calvin uses conservative ordered locking [7, 8] to ensure
serializability with the total order determined by the sequencers.
First, the locking protocol is known to be deadlock-free and to
have no phantom problem [4]. Second, all transactions including
migration transactions for cold data are processed by the sequencers
and thus are totally ordered and follow the same locking protocol.
Therefore, these transactions run under the same restrictions and are
guaranteed to be serializable. □

Calvin provides the following guarantees:

AXIOM A.1. Run to complete: a transaction always commits
or aborts due to its deterministic transaction logic.

AXIOM A.2. Determinism: by giving the same sequence of
transaction requests in a total order, the system and data state are
deterministic on each node.

With the above axioms, we prove the durability and consistency.
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THEOREM A.2. Transaction durability: Changes made by com-
mitted transactions are persistent, even in the presence of any series
of failures.

PROOF. Because Hermes ensures that all transactions are totally
ordered, and all the requests are logged, we can ensure transaction
durability by applying Calvin’s recovery algorithm [8] as follows.
First, we roll back the system to a consistent state by performing
UNDO. Then, with Axiom A.2, we recover the updates of the com-
mitted transactions by replaying the transactions in the request log
in order. The axiom ensures that the data always meet the same
states. □

THEOREM A.3. Migration consistency: Hermes ensures that
(1) the updates made by transactions during the migrations are
consistent; and (2) all the nodes have a consistent view of migration
states at any logical time in the presence of any sequence of failures.

PROOF. We prove the first guarantee by contradiction. There are
two possibilities causing inconsistent states: (1) inconsistent updates
made by transactions; and (2) aborts due to the system control.
Because all transactions including the migration transactions for
cold data have to acquire locks by following conservative ordered
locking protocol before writing any value, with the serializability
guarantee of Theorem A.1, there is no inconsistent writes made by
transactions. Hence, the only possibility is the aborts due to the
system. However, Axiom A.1 ensures no system abort, and thus it is
impossible to have inconsistent writes.

The second guarantee will be proved by the following arguments.
The only migration state that Hermes maintains is the ownership
of the data. Hermes stores the ownership of hot data in the fusion
table during the prescient routing and the ownership of cold data in
the migration controller during cold migrations. According to the
algorithm described in Section 3.2 and 3.3 in the main paper, all the
queries and updates to these states are performed in the scheduler. By
replaying the request log in order, with Axiom A.2, Hermes ensures
that all the nodes have a deterministic and the same consistent view.
Hence the proof. □

With Theorem A.1, A.3, and A.2, Hermes ensures safety during
data migrations.

A.2 Liveness
THEOREM A.4. Termination: For either a hot migration (data

fusion) or a cold migration, if the nodes participating in the mi-
gration are not faulty and can communicate with each other for
a sufficiently long period during the migration, the process will
terminate.

PROOF. We discuss hot migrations and cold migrations sepa-
rately.
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Parameter Default Value
Total Number of Records 200,000,000
Number of Client Threads 4,000

Number of Servers 20
Buffer Pool Size per Server 6 GB

Number of Records Accessed per Txn. 2
Distributed Txn. Rate 50%
Read-write Txn. Rate 50%

Zipfian Parameter 0.99
Batch Size of Hermes 1000

Sink Size of T-Part 1000
The Size Limit of The Fusion Table 10,000,000

Table 1: Default parameters of the experiments under the
Google workload.

Because each hot migration created by data fusion in Hermes is a
single migration, which is performed by an individual transaction,
the migration terminates as long as the transaction finishes. We also
know that, according to Axiom A.1, a transaction in a determinis-
tic database system always commits or aborts. In either situation,
Hermes ensures that the transaction always migrates the data to the
destination. Hence, a hot migration always terminates.

A cold migration terminates if all the chunks in the given migra-
tion plan are migrated. As described in Section 3.3 in the main paper,
we migrate each chunk using a dedicated migration transaction. The
limited number of data chunks guarantees the limited number of
migration transactions. Since a transaction always runs to comple-
tion in a deterministic database system, the cold migration always
terminates. If a failure happens, Theorems A.2 and A.3 ensures that
the system and data eventually recover to the latest states. Hence, a
cold migration will terminate even in the presence of failures. □

THEOREM A.5. Starvation Freedom: in the presence of one or
more failures, each migrating data set always has at least one node
that can execute its transaction.

PROOF. First, Theorem A.3 guarantees that all the nodes have a
consistent view of migration states, which includes the ownership
states, in any logical time even if a series of failures happens. In
addition, since the prescient routing is a deterministic algorithm,
the scheduler on every node always generate the same routing plan,
which always assign each transaction a node to run on. Therefore,
the assigned node is always aware of the responsibility of executing
the transaction. Hence the proof. □

With Theorems A.4 and A.5, Hermes ensures liveness for migra-
tions.

B MORE EXPERIMENTS
In this section, we present the additional experiments that provide
more scenarios and aspects than the experiments in the paper.

B.1 Details of Google Workloads
First, we provide more details about how we obtained the timelines
of loads from the logs of Google’s clusters and the idea behind the
complex Google workload.

In order to retrieve the loads of Google’s machines, we down-
loaded a collection of logs from Google’s website [6]. However, we
found that the logs only record i) when a task starts and ends, ii)
which machine the task was performed on, and iii) some matrices for
overall usage of the machine such as average CPU usage. To obtain
the timeline of CPU usage for each machine, we summed up all the
CPU usage of the tasks running on the machine at every logged time
point. Please refer to Figure 1 in Section 1 of the paper for some
samples of our results. After we have the timelines, we followed the
design described in Section 5.2.2 in the paper to create the complex
Google workload. Table 1 summarizes the default parameters for the
Google workload.

The idea behind the workload is the daily access patterns of on-
line shopping websites and stock trading systems. For example, an
on-line shopping website usually has multiple categories of products,
each of which contains some popular products, which can be mod-
eled by a Zipfian distribution in YCSB. A local YCSB transaction
models a user who puts two products from the same category into
his shopping cart. On the other hand, a distributed YCSB transac-
tion models a user who puts a product from a category and another
product from all possible categories (which can be modeled by a
global Zipfian distribution) to his cart. In addition, each category
may also has a different degree of hotness. We model the hotness
among categories using the load traces that we obtained above to
create varying and unpredictable patterns. As another example, this
workload can also model the behaviors in stock trading systems. For
example, a local YCSB transaction can represent two users who
trade their stocks from the same broker so that the system needs
to update their records from the same partition; and a distributed
YCSB transaction can represent two users who trade stocks from
two different brokers. Each broker may have a different degree of
hotness like the categories of an on-line shopping website. We can
simulate all above patterns in our complex Google workload.

B.2 More Experiments under Complex Workloads
Now, we present additional experiments under the Google workload
that are not shown in Section 5.2 of the paper due to space limitation.

B.2.1 Impact of Distributed Transactions. In the first set of
experiments, in order to investigate the impact of distributed transac-
tions, we varied the ratio of distributed transactions in the Google
workload. As we can see in Figure 1(a), Hermes leads with an 18-
300% speedup when more than 25% transactions are distributed. The
improvement becomes significant when there are more distributed
transactions, thus showing that Hermes is much more capable of
handling distributed transactions because the prescient routing finds
a better data placement to localize these transactions. On the other
hand, when there are no distributed transaction, the throughput of
Hermes is slightly lower than that of G-Store and LEAP. This is
because the original partitioning plan works best in this scenario,
but the prescient routing and data fusion may move some records
for load balancing, which may create some distributed transactions.
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Figure 1: The impact of varying (a) the distributed transaction
ratio and (b) the read-write transaction ratio of Google work-
loads.
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Figure 2: The changing of throughput during the consolidation
scenario. The first solid vertical line indicates the event of start-
ing to remove a node, the second solid vertical line indicates
the end of data migration in Hermes, and the dash and dotted
vertical lines indicate the end of the migration in Squall and
Clay+Squall, respectively.

Nevertheless, the throughput is still comparable to those of Calvin
and the other baselines.

B.2.2 Impact of Read-write Transactions. Next, we conducted
the experiments of varying the ratio of read-write transactions. Fig-
ure 1(b) shows the impact of different ratios of read-write transac-
tions. We can clearly observe that Hermes outperforms with a 6-70%
speedup over the baselines when there are read-write transactions,
but the throughput decreases when the read-write ratio comes to 0%.
This is because we implement an optimization described in Section
3.2 of the paper that the system only updates data partitions when a
transaction performs writes, and thus there is no change in data parti-
tion on the read-only workloads. Nevertheless, Hermes still performs
slightly better than the other baselines since the prescient routing
can still find a better routing plan that balances the transaction loads.

B.3 Dynamic Machine Provisioning with
Consolidation Scenario

In Section 5.4 of the paper, we compared the system performance
of Hermes with other baselines during the scale-out scenario of
dynamic machine provisioning. We now test the performance during
the consolidation of the system from 4 nodes to 3 nodes. We use the
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Figure 3: The impact of the capacity of the fusion table. The
horizontal dash line indicates the throughput of our baseline,
Calvin.
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Figure 4: The impact of the tolerance setting of the prescient
routing.

same workload as we described in Section 5.4 but make the system
under loaded by letting each client wait 100 milliseconds before
issuing a new request, and the goal is to migrate the tenant that was
migrated out from the first node during the scale-out back to the first
node. As we can see in Figure 2, the throughput does not change
after the migrations because the machines are under-loaded in the
first place. We observe that, as in the scale-out experiment, Squall
and Clay also experience severe performance degradation because
they migrate some hot records that may block normal transactions.
Although the machines are not fully loaded, this stall still hurts
the throughput of the system due to the increase in latency. On the
other hand, Hermes keeps the throughput smooth and stable. This
shows that the cold data migrations of Hermes have a very negligible
impact to transaction throughput in the consolidation scenario as
well.

B.4 Sensitivity Analysis
In order to understand how each parameter of the prescient routing
affects the performance of Hermes, we ran the following experiments
by varying the parameters with the Google workload.

B.4.1 The Capacity of the Fusion Table. In Section 4.1 of the
paper, we described an algorithm that condenses the size of the
fusion table in order to control its memory footprint. We tested dif-
ferent capacity of the table and compared the resulting performances.
As Figure 3 shows, although a larger capacity does lead to better
performance (because Hermes can migrate more data for better data
partitions), it suffices to have a fusion table of 50K keys, which
consists of only 0.25% of all keys in the database. This is due to that
most transactions in the workload only access a small portion of the
database, a common scenario in real-world workloads [9].

B.4.2 The Tolerance Parameter. In Section 3.2 of the paper,
we introduce a configurable parameter 𝛼 for the prescient routing to
decide a constraint that controls how balanced the loads of machines
should be. As the value of 𝛼 increases, it is easier for the routing
algorithm to find a routing plan with less remote edges under the
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Figure 5: Impact of dynamic batch sizes.

constraint, but it also has higher chance to dispatch more transactions
to a small portion of machines. Now, we evaluate how sensitive the
prescient routing is to this parameter. As we can see in Figure 4,
the algorithm is able to find an effective routing plan that manages
a good throughput when 𝛼 ≤ 2. Although the scheduler can find a
plan with less remote edges as we relax the constraint, it may also
stress more loads on a few machines. This is why we do not see any
significant improvement in throughput when 𝛼 ≤ 2. When 𝛼 > 2,
the impact of overloaded machines becomes significant so that the
overall throughput decreases.

B.4.3 Dynamic Batch Size. In Section 5.2.7, we presented the
experiment that demonstrates how the size of a batch used by the
prescient transaction routing significantly affects the system per-
formance. However, if the batch size was not fixed, would it also
affect the performance? To answer this question, we conducted a
new experiment with the Google workload but added an interval be-
tween the requests such that the workload becomes sporadic and the
batch size for the prescient routing varies from 10 to 1000 over time.
Figure 5 shows the system throughput under the Google workload
described in Section 5.2.2 of the paper. As we can see, Hermes still
outperforms (up to 133%) all other baselines. This exceeds our ex-
pectations because the small batches would have made the prescient
routing less effective. Looking into the resulting data partitions, we
found that the routing plans generated by the large batches (even if
they do not appear often) are enough to properly partition data. Note
that the large batches together contain much more transactions than
the small batches and thus have a stronger impact on performance.

B.4.4 Single-Request Batches. Hermes relies on batching to
explore possible data partitions for the incoming transactions. If
Hermes did not batch transactions, it would degenerate to LEAP,
which does not batch but fuses records together for each transaction.
In order to verify this statement, we ran two more experiments
where the batch size is fixed to 1. In the first experiment, we used the
normal Google workload described in the paper. Figure 6(a) shows
the results. As one may expect, Hermes degenerates into LEAP
because there is no future knowledge for Hermes to exploit when
the batch size is 1. In the second experiment, we assume that the
single-transaction batches are due to a light workload. We increase
the intervals between the requests in the Google workload such that
Hermes can only process a batch of size 1 at a time. Figure 6(b)
shows the results. In this case, all approaches perform the same.
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Figure 6: The comparison with Hermes, LEAP and Calvin under
(a) the normal (heavy) Google workload and (b) the light Google
workload.
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Figure 7: The impact of batch sizes under the TPC-C workload.

B.4.5 The Batch Size for the TPC-C benchmark. We have
tested how batch size affects performance under the Google work-
load. Next, we evaluate how this parameter impacts the performance
under the TPC-C benchmark. We ran an experiment as shown in Fig-
ure 7. We found that the best batch size for TPC-C is much smaller
than that for the Google workload. In particular, under the TPC-C
workload with 90% skewness, Hermes gives 67% improvement in
throughput when we reduce the batch size from 1000 to 200. This
shows that a larger batch i) does not provide additional useful in-
formation than a small batch because the TPC-C workload is static,
and ii) introduces more overhead (e.g., CPU computation) to the
prescient routing.

B.5 Considering More Factors in the Prescient
Transaction Routing

The prescient transaction routing of Hermes reduces the number of
distributed transactions and balances the loads among machine with
fine-grained transaction scheduling. It also avoids the ping-pong
problem that we described in Section 1 of the paper. In order to keep
the routing algorithm fast, we design a simple algorithm that only
models the number of remote edges and the number of accessed
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Figure 8: The performance of Hermes with the original prescient
routing algorithm (marked as “Hermes”) and the modified al-
gorithm that considers transaction length (marked as “Hermes
TL”) under the complex Google workloads.

records for each transaction. However, it is possible to model more
characteristics of a transaction into the algorithm. In this section,
we add a few different possible factors to the algorithm and test the
effectiveness of these modified algorithms with the Google workload
described in Section 5.2.2 of the paper.

B.5.1 Considering Transaction Lengths. A transaction may
access different number of records, which leads to different lengths
of execution time. The current routing algorithm assumes that each
transaction accesses the same number of records while balancing
the loads among machines. This assumption may make the routing
algorithm unable to distribute the loads accurately. Therefore, we
modified the algorithm such that it can take the number of accessed
records into account for each transaction during the load balancing.
Note that it is easy to obtain the read-set and write-set of a transaction
in advance in a deterministic database system as we described in
Section 2 of the paper, so there is lightweight to estimate the number
of accessed records.

In order to compare the modified algorithm with the original algo-
rithm under a complex workload with diverse transaction length, we
alter the transactions of the Google workload such that the number
of records accessed by each transaction is randomly sampled from
a Gaussian distribution with mean = 20 and std = 10. We choose
this mean and standard deviation because this distribution is similar
to the distribution of transaction lengths in the TPC-C benchmark.
Figure 8 shows the system throughput given by the two algorithms
over time. The modified version does not outperform the original
algorithm. This is because that OLTP transactions are generally
short and access only a small set of total records, and therefore the
main bottlenecks are the communication and synchronization cost
of distributed transactions.

B.5.2 Considering Record Size. Hermes uses data fusion to
migrate records for each transaction such that the latter transactions
may benefit from the temporal locality. However, the prescient rout-
ing models the cost of data migrations simply through the number
of remote edges. This may not be accurate because each record
may have different size in bytes. In order to understand whether
it is necessary to consider size of records in the prescient routing.
We modified the routing algorithm such that it weights the cost of
moving remote records by the size of the records. We also modified
the database of the Google workload so that each partition has a
table with different size of records ranging from 200 Bytes to 1KB.
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Figure 9: The performance of Hermes with the original prescient
routing algorithm (marked as “Hermes”) and the modified al-
gorithm that considers the size of records (marked as “Hermes
RS”) under the complex Google workloads.

Figure 9 shows the results. Surprisingly, the modified algorithm
does not improve the performance. After profiling the system, we
found that the modified algorithm tends to move small records rather
than large ones. This prevents the large but hot records from moving
freely, and in turn leads to imbalanced buffer usage across machines.
The machines having more large but hot records by chance would
become overloaded easily because the records consumes more buffer
space and incurs more I/Os. Since the bottlenecks of Hermes are
the synchronization cost between machines, the overloaded machine
slows down the entire system.

C MORE RELATED WORK
In this section, we review more previous studies related to Hermes
that are not be able to be put in Section 6 of the paper due to space
limitation.

Some shared-storage systems such as MemSQL [1] and NuoDB
[2] designate transaction execution and data storage to separate
machine nodes. To execute a transaction, a transaction execution
(TE) node has to pull requested records from storage nodes. A
TE node can cache records to gain benefit from temporal locality,
which is similar to other data-fusion techniques. However, to ensure
consistency while modifying a tuple, a TE node has to acquire write
locks from all other TE nodes. Hermes relies on a deterministic
architecture so that it does not need to coordinate with other nodes
during transaction execution.

STAR [5] is a work that merges the idea of data-fusion and data-
fission together. It first divides a database into partitions and then
stores two replicas of the database in two different way. The multi-
machine replica stores each partition on a separate machine while the
single-machine replica stores all the partitions on a single machine.
STAR then classifies transactions to single-partition transactions and
multi-partition transactions by considering whether a transaction
accesses the records stored on more than one partition. During the
execution of transactions, it firsts executes single-partition trans-
actions on the multi-machine replica, synchronize the records of
both of replicas, and then execute multi-partition transactions on the
single-machine replica. This scheme eliminates the need of coor-
dination for distributed transactions, thus it significantly improves
scalability. However, this scheme requires the memory of the ma-
chine that stores the single-machine replica to be big enough to store
the entire database, which may not hold in practice. Hermes uses the
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prescient routing and data-fusion to (re-)partition database on the fly
without such memory requirement.
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