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Abstract

Semi-supervised clustering algorithms have been proposed to identify data clusters
that align with user perceived ones via the aid of side information such as seeds or
pairwise constrains. However, traditional side information is mostly at the instance
level and subject to the sampling bias, where non-randomly sampled instances
in the supervision can mislead the algorithms to wrong clusters. In this paper,
we propose learning from the feature-level supervision. We show that this kind
of supervision can be easily obtained in the form of perception vectors in many
applications. Then we present novel algorithms, called Perception Embedded (PE)
clustering, that exploit the perception vectors as well as traditional side information
to find clusters perceived by the user. Extensive experiments are conducted on real
datasets and the results demonstrate the effectiveness of PE empirically.

1 Introduction

Data clustering [21], one of the most important unsupervised learning tasks, has found numerous
applications in different domains, including computer vision [14], information retrieval [4, 20],
recommender systems [17], etc. Given a dataset, the goal is to find groups of instances, called
clusters, such that instances in the same cluster are more “similar” (based on a certain similarity
metric) to each other than to those in other clusters. We call the clusters found by a clustering
algorithm the data-driven clusters.

In practice, different users may look the same dataset differently and may cluster instances in their
own ways. We call such clusters the user-perceived clusters. Due to its unsupervised nature, data
clustering is an ill-posed problem [16] that may not be able to capture the variety of user perception.
Semi-supervised clustering [28] is proposed to address this limitation by allowing individual users to
provide side information about their perceived clusters. The side information can have different forms,
such as the seeds, i.e., instances that must belong to certain clusters, or the pairwise must-link/cannot-
link constraints respectively ensuring/preventing two instances to go/from going to the same cluster.
Most of the existing studies on semi-supervised clustering focus on finding clusters that align with
the side information, by either modifying the clustering algorithms [28, 18, 29, 19, 10, 30, 23, 15, 25]
or similarity metric [13, 3, 2, 27, 31, 8, 5, 33]. However, few studies have investigated how close are
the data-driven clusters to the user-perceived clusters in real situations.

In this paper, we conduct experiments on Amazon Mechanical Turk platform to obtain the user-
perceived clusters, compare them with the data-driven clusters returned by existing semi-supervised
clustering algorithms, and observe a large gap—in many cases, only about half of the instances in
a user-perceived cluster can be successfully identified by the closest data-driven cluster. This is
mainly due to the sampling bias: with limited resources (e.g., time, budget, etc.), the seeds/constraints
provided by a user usually apply to only a small portion of instances in the dataset. These instances,
when locating at ambiguous positions (in the feature space) such as the cluster boundaries or
overlapping areas, can mislead the semi-supervised clustering algorithms to results that align poorly
with actual user perception. This can be illustrated by Figures 1(a)-(c). The performance of existing
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semi-supervised clustering algorithms depends largely on the sampling of the seeded/constrained
instances.

Unfortunately, the sampling of seeded/constrained instances may be hard to control due to many
practical reasons. For example, when recommending products to a user in an e-commerce system
based on the product clusters seeded by those products viewed/rated/liked by the user, the seeds
are unlikely to be uniformly distributed within each user-perceived cluster because the user may
choose to interact with the products following a particular order such as the price or bestselling
scores, etc. Similar difficulties can be identified in other applications, and get even worse in big or
high-dimensional datasets known to be multifaceted. It is crucial to bridge the current gap between
user-perceived and data-driven clusters.

Observing that a user usually provides the seeds/constraints based on certain reasons he/she perceives,
we assume these reasons can be captured as another side information called perception vectors, and
study the following problem:

Problem 1. Given a dataset X = {x; »_, of instances x; € R4, an integer k, and some side
information (e.g., the seeds S = {S;}_;, S; C X or pairwise must-link Loue = {(6, ) }iz;

and cannot-link £,,o; = {(%, j) }ix, constraints, 1 < ¢, j < n) along with the associated perception
|S] OF |Lipuwst|+|Lmust]
j=1

vectors P = {pj} .Pj € R? or null, provided by a user that partially reveal the

unknown user-perceived clusters D = {D;}¢_,, D; C X. Find k clusters C = {C;}f_,, C; C X,
aligning with D most.
Note that a user need not know the entire D in advance to pro-
vide the perception vectors P, as P is only associated with the
seeds/constraints. Also, a seed or pairwise constraint need not have o .
a perception vector, if the user experience difficulty in providing the /50 98la) O—O;g?(,\
latter. Furthermore, the features of instances and those of perception e (oo 0 %"
vectors need not lie in the same space. For example, when cluster- = &
ing images, the instance features may be the RGB values while the (a) (b)
perception features may be the names of objects in images. How- X
ever, we argue that the perception features are usually correlated to 5
the instance features and can be helpful in finding better alignment s /./;g?wox\
between C and the unknown D. Lpﬁé?gﬁii‘

O
The perception vectors can be easily obtained in many practical
cases, either explicitly or implicitly. For example, whenever a user 4 () (d)

is giving a seed set S;, we can ask the user to write down explicitly

the reasons behind. In this case, p; can be the bags of the written Figure 1: Sampling bias. (a)

words. When clustering musics/videos for making recommendations
to a user, one may extract p; implicitly from the title/description of a
YouTube playlist organized by the user. Similarly, the p; can also be
extracted implicitly from the name/description of a Facebook group
(when clustering people), or even search keywords associated with
a click stream (when clustering web pages). For more discussions
about the availability and extraction of perception vectors, please
refer to Section 1 of the supplementary materials.

To solve Problem 1, we generalize the spectral embedded clustering
[12] (which covers popular k-means variants) and propose a family
of new algorithms, called the Perception Embedded (PE) clustering
that allows the perception vectors to act as the feature-level super-
vision complementing traditional instance-level supervision (i.e.,
seeds/constraints), which are subject to the biased instance sampling.
Extensive experiments are conducted and the results show that PE
significantly reduces the occurrence of “bad” data-driven clusters
due to sampling bias and can lead to up to 63% improvement in
F-score as compared to user-perceived clusters in the ground truth.

User-perceived clusters. (b) Data-
driven clusters with misleading
seeds. (c¢) Data-driven clusters
with representative seeds. (d)
Data-driven clusters found by PE
with misleading seeds and percep-
tion vectors. Through the novel
embedding, PE knows that the
first data feature (x1) cannot ex-
plain the blue seeds and only prop-
agates the blue cluster labels to
other instances that look similar
in the second data feature (x2).
Similarly, PE propagates the or-
ange cluster labels only along the
first data feature.

Further Related Work. Poon et al. [24] propose an active framework that iteratively asks the user to
select a subset of instance features to mitigate the impact of initial sampling of supervised instances.
But this framework is infeasible to applications where the questions (and their sampling) are not



allowed. Being orthogonal and compatible to this approach, PE asks the user just once (to provide P
and other side information) and learns from the “best” instance features automatically via a better
embedding guided by P.

2 Perception Gap

In this section, we investigate how users per-
ceive the clusters differently from existing semi- [ ceepmnce Grteria: The rauping reasonsiuies shouid be chear and obIecive.
supervised clustering algorithms. To collect the | it s
user-perceived clusters directly from users, we
conduct a series of experiments on the Ama- 3 _._; B
zon Mechanical Turk platform using an image b Ed ! H 3%

datatset X ; called the Mturk image dataset. In ﬁ ﬁ m i?\ s Qﬂ H

each experiment e, a human worker is asked to

cluster the images in X based on his/her own - Sy S El A ! m

opinion, as shown in Figure 2, to provide the
user-perceived clusters D(©) as well as the per- = el a ‘ ﬂ .

ception vectors P(¢). To make the experiments
manageable for human workers, we create X’ by Al

randomly selecting 180 images from the NUS- ’é h ;P < Vi g .“:ﬂ ‘
WIDE [6] image database. Each image @; € X’ |iusacts e conree vouvusos st wree o your v ressonsinses r i g pspecivety
has 500 features consisting of the bag of words
based on SIFT descriptions. We control the qual-
ity of data collection by 1) making tutorials that
encourage the workers to provide independent
clusters; 2) skipping spoilers; 3) eliminating low-
quality clusters; and 4) carefully preprocessing
the raw perception features, including stop-word
elimination and stemming, etc.. Finally, we get
325 user-perceived clusters from 100 users (whose accept rates are greater or equal to 95%) and their
corresponding perception vectors consisting of 108 features. Statistics of the ground truth clusters
D(©) are shown in Table 1 in supplementary. In average, each perception vector has about 2 words
(i.e., non-zero feature values), which is sparse (among 108).

I_

Figure 2: Screenshot of an experiment, where a worker
is asked to 1) identify at least 3 image groups by drag-
ging the randomly ordered pictures into different green
boxes (each forming a user-perceived cluster D;) with
replacement; and 2) write down some words about each
identified group (forming a perception vector p,).

We study the difference between the user-perceived and data-driven clusters when the latter are found
by the semi-supervised clustering algorithms with seeds. For each set D(¢) of clusters perceived
by a user from experiment e, we calculate F(C, D(*)) € [0, 1], an F-score indicating how similar
the clusters in C and D(®) are. The precise definition of F'(C, D)) is given in Section 4. For each

cluster D;P’) € D(©), we randomly pick two instances as seeds and move them to the seed set SJ(P”S),
where s denotes a particular choice of the seeds. We then modify the Overlapping k-Means (OKM)
algorithm [7]! to a seeded version, denoted as OKM*, by following the technique proposed by [28],

and use it along with S ;e’s) to find the data-driven clusters C(**). Figure 3(a) shows the histogram

of L3 F(C(*9,D)’s over all e’s. We can see that OKM* with side information (light blue
bars) does improve the overall performance as compared to OKM (dark blue bars), by increasing the
average F'-score (across different users) from 0.4 to 0.5. However, when looking into the histogram
of F(C (e:5) D(e))’s over a randomly picked e and all s’s , as shown in Figure 3(b) (blue bars),> we
find that there still exists a fair amount of seed sets that lead to F'-score as low as 0.3. Some seeds are
clearly not helpful, justifying the existence of sampling bias. We observe similar results for different
clustering algorithms and different experiments e’s.? Clearly, there is still a large gap between what
users want and what existing semi-supervised clustering algorithms can provide.

'"The reason we choose an overlapping clustering algorithm is that from our experiments, the clusters
perceived by a user can overlap. This observation is consistent with previous studies [1, 7]. During each
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Figure 3: (a) Histogram of F-scores when comparing C and D’s of different users, where C is found using a
clustering algorithm. (b) Histogram of F'-scores when comparing C’s and D of a randomly picked user, where
C’s are found using a seeded clustering algorithm given different seed sets S’s.

3 PE Clustering

In this section, we introduce the Perception Embedded (PE) clustering to solve Problem 1. The goal
is to turn the perception vectors given by a user into the feature-level supervision that identifies the
data-features which the user really cares about. This new kind of supervision complements existing
instance-level supervision (i.e., seeds/constraints) vulnerable to uncontrollable instance sampling.
The above goal is challenging because the perception features and data features may not be linearly
correlated. For example, a (binary) perception feature “car” is likely to be nonlinearly correlated with
the (numeric) RGB features of an image. We propose two specialized PE algorithms, named Linear
PE (LPE) and Nonlinear PE (NPE), to deal with the linear and nonlinear correlations respectively.

3.1 Linear PE (LPE)

The basic idea of LPE is to embed the space of data features into that of the perception features, so
the perception features can guide the embedding. This gives the following regularized objective:

arg omin NIXW 1,67~ Fll + BIIS(F - P)ll7., )
where X =[xy, ,®,]" € R"? s the data feature matrix, F = [fy, -+, f,] € R"™*Yisa
latent representation matrix whose each row f; € R® denotes the latent representation of the instance
i. The (space of) X is embedded into (that of) F' via a linear embedding parametrized by W € R4*x?
and b € R?, which respectively denote the weight matrix and intercept vector. The 1,, € R" is a
vector of all 1’s and || - || denotes the Frobenius norm. The P € R™*? is the perception matrix
whose each row p; denotes the perception vector associated with the instance i, and S € R"*™ is a
diagonal matrix whose each entry S; ; equals 1 if the i-th instance is a seed or pairwise constrained
and 0 otherwise, and (3 is a hyperparameter.

The first term of Eq. (1) is identical to the loss term of Spectral Embedded Clustering (SEC) [12],
which is known to be a generalization of the discriminative k-means clustering. To model the
instance-level supervision like pairwise constraints, we add a term that penalizes the dissimilarity of
latent representation of instances having must-link constraints, as below:

IXW + 1,67 — Fli + o| MF| % + 5| S(F — P)||7, @

arg min
F>O,W>0,b>0

where M € R"* %" isa pairwise comparison matrix, whose each row M ) . corresponds to some
pair (s,t) € Lust and M (5 4y; = 1ifi = s, —1if i = ¢, and 0 otherwise, and « is a hyperparameter.

experiment, we replace an image back to X" each time after it is put into a user-perceived cluster. So the user can
decide whether it should be included in another user-perceived cluster.
2In this experiment, the user from the picked experiment identifies 3 clusters with size 4, 6, 4 respectively, so

thereare( : )x( S )x( N ):540seedsets.

3For more details, please refer to Section 4.2 of the supplementary materials.



To model the seed sets S = {Sl}le, we can simply transform them into the pairwise must-link
constraints L,y = {(4,7) : 4 # j and (z;, ;) € S; for some [}

Further Refinement. We regularize the norm of W in Eq. (2) to prefer simpler embedding that is
more robust to noise. Also, we discard the second term as its effect can be covered by the third term.

The details are left to Section 2 of the supplementary to avoid distraction. The final LPE objective
becomes:

2
arg |XW 16" —F|| +BISE - P+~ W ©

min
F>0,W>0,b>0
Note that the entries of F', W, and b need to be non-negative to preserve the clustering interpretation
[11]. With these non-negative constrains, the final LPE objective is hard to solve using traditional
first- or second-order methods. We will describe our training steps later.

3.2 Nonlinear PE (NPE)

When the perception features are nonlinearly correlated with data features, the above linear embedding
may be too simple to capture the correlation and identify the data features that the user really cares
about. Next, we show that LPE can be readily kernelized to achieve nonlinear embedding.

We first map each instance  to a function ®(x), ®(x)(-) = k(x, -) where k is a given kernel function,
in a high dimensional Reproducing Kernel Hilbert Space (RKHS) 7. Consider a function w; € ‘H
that embeds the instances to a single perception feature j. We have w;(x) = (w;, $(x)) € R due
to the reproducing property of an RKHS. So, the embedding is nonlinear if the kernel function & is
nonlinear (e.g., Gaussian RBF kernel). Following the concept of perception embedding behind Eq.
(3), we want w; (z;) to be as close to the true perception feature p; ; as possible (if p;_ ; is presented).
We let w; be the minimizer of the following regularized functional:

n

arg  min Z (w;(x:) — Fij)> + 8 Z (Sii(Fij— Pi i) +7|lw, ||§%KHS . 4)
i=1

F. ;j>0,w;eH =
Theorem 2. Given any F'. ; > 0, the solution w; of Eq. (4) admits the form w; = Y| ¢; ;®(x;).

Proof: Observe that any w; € H can be represented as w;(-) = > .-, ¢ jk(x;,- ) + w (-), where
k(x;,-) = ®(x;) and w, € H is orthogonal to k(x;,-) fori = 1,2, ---  n. By the Reproducing
properties and (w , k(x;, -)) = 0 for any 4, we have

wi(@:) = (wy, k(i) =Y a k(@ @) + (wi, k(@) = > k(e o). 5)
=1 =1

Next, let Ly, (®;) = Y21 (wj(@;) — Fi j)* + 831, (Si.i(Fij — Pij))°. Suppose w} € H is the

minimizer of L, (x;) 4+ ||wj||;KHS and has the form w3 (-) = >21° ¢j ;k(zi, ) + wi (). We

show that the function w;E() = Y1 1¢i jk(z,) will always be a better solution, a contradiction.

Based on Eq. (5) we have w (@)= Y_)1, ¢} jk(@r, @) +w’ (@) = 2210 of jk(x, @) = wj(m,),

implying Ly (x;) = wa (z;). Then we have

ng(mi) +7 wji I Fexc rrs= Loy (®i) + v 20— e el k(@i @)
< Lo (®i) + v 220 =y ci el k(@i ) + || wi |Rxrs= Loy (@) +7 || w} kxas -
That is, the objective score of Eq. (4) given by w§ is always smaller than that given by w?. ]

The above theorem shows that instead of w;, we can find ¢; ;’s for all ¢ (and F'. ;) to solve Eq. (4).
Now consider embedding instances to all b perception features via wy, wo, - - - , wp. We find ¢; ;s for
all ¢ and j. This gives the NPE objective:

arg min |KC — F||; + 8 |S(F — P)|[;. + v tx(CTKC), ©)
where K € R"*" is the kernel matrix and C' = [c1, -+, ¢;] € R™*? whose each column ¢; =
[c1j,¢a,, " »Cn, ] € R™. Again, the non-negative constraint of F' makes this objective hard to

solve using traditional methods.



3.3 Training

To solve the non-negative F', b and W in LPE, we followed the multiplicative update rules proposed
by Long et al. [22] to update F', b and W iteratively. To solve the non-negative F' and C' in NPE,
we first observe that both K and F' have non-negative elements. So, to be efficient, we narrow the
search space of C' down to the positive matrices. We then apply the multiplicative update rules [22]
to update F' and C iteratively. Due to the space limitation, the update rules and algorithms are left to
Section 3 of the supplementary.

4 Performance Evaluation

Baselines and Settings. We compare PE with other semi-supervised clustering algorithms that
support seeds. Recall that in Section 2, we find that users tend to perceive overlapping clusters,
so the data-driven clusters should be overlapping as well. We consider clustering algorithms that
1) accept seeds and 2) deal with overlapping clusters. However, few algorithms achieve these two
goals off-the-shelf. We therefore modify existing seeded/overlapping clustering methods when
necessary. We name the modified version of a clustering algorithm by appending a star “*” to its
original name. We first consider the seeded versions of overlapping clustering algorithms. We
modify the Overlapping k-Means (OKM) [7] and and Model-based Overlapping Clustering (MOC)
[1] by using the technique proposed in [28] so they take the seeds as input. On the other hand,
we consider the overlapping versions of semi-supervised clustering algorithms. We extend the
seeded Spectral Embedded Clustering (SEC) [12] and the Constrained Clustering by Spectral Kernel
Learning (CCSKL) [18] by employing the OKM (instead of the ordinary k-means) in their last step
so they can produce overlapping clusters. Note that we also consider other semi-supervised clustering
algorithms [9, 32] but it turns out that they have convergence problems and/or perform poorly in our
experiments, as their models assume a relatively large portion of seed/constraints among the dataset.
This assumption does not hold in many real-world applications as a user often have limited resources
(e.g., time) thus could only annotate a tiny portion of the possibly huge dataset (otherwise, the user
could have just clustered the dataset manually to get perfect user-perceived clusters). So, we set the
portion of seeds relatively small (specifically, each cluster contains only 2 seeds or one must-link
constraint, making the problem very challenging) and do not show the results of these studies [9, 32].
We adopt the Gaussian RBF kernel for NPE. For detailed setups such as hyperparameter tuning,
please see Section 4.1 of the supplementary.

Evaluation Metrics. Both LPE and NPE can pair up with each of the above baselines to output final
clusters. We compare the performance of the baselines with the pairings. To evaluate the quality
of the founded clusters C. We compare them with the user-perceived clusters D using the F'-score:

F(C, D) = 2irecsonCOlect &2 € [0, 1. We define recall(C, D) = + 325, [Cj+ N Dy| /Dy

and precision(C, D) = Zle |Cj« N D;| /|Cj= N D|,* where Cj« € C denotes a data-driven
cluster with the best index j* maximizing recall or precision (we try out all possible permutation
of the clusters in C to determine the best index j*). The higher F'(C, D), the more similar between
clusters in C and D.

Datasets. In addition to the Mturk image dataset, we consider the song [26] and citation (Citation
Prediction Task of KDD Cup 2003) datasets as well in our experiments. Song Dataset. The song
dataset is adapted from the MusiClef 2012 Multimodal Music dataset [26], which contains 1355
music songs. The song dataset contains the low-level audio features, block-level features and PS09
features (please refer to the origin paper [26]), and high-level tags on the songs. The songs are
tagged by professional music annotators with respect to genre and mood aspects. There are totally 94
distinct tags such as “acoustic”, “punk”, and “slow”, etc. Each song has multiple tags. We simulate
users and their clusters as follows. There are 10 users. Each user has 3 clusters. And each cluster
has 2 randomly assigned tags as perception features. The songs that have the corresponding tags
belong to the corresponding cluster. So, among all tags, we randomly select 20 pairs of tags as the
perception features. Meanwhile, we ensure that size of each cluster is greater than 10. Note that there

*Note that the traditional formula for precision should use |Cj~ | as the denominator. Such precision may be
very small since the number of instances picked by a user in D is usually much smaller than the number of all
instances. And the precision would get smaller along with the increasing of the dataset size. Therefore, in order
to get meaningful precision, we calculate the precision only based on the instances that the user picked.



are totally 30 clusters, but there are only 20 pairs of tags. This means that some clusters have the
same perception features. We randomly assign clusters to users while ensuring that clusters of the
same user do not have the same perceptions and the cluster combinations are distinct among all the
users. Finally, we get 30 clusters from 10 users, 530 songs, 10,783 data features, and 26 perception
features. Citation Dataset. The citation dataset is adapted from the Citation Prediction Task of KDD
Cup 2003. This dataset contains the IATEX sources of about 29,000 papers in the hep-th portion of the
arXiv until May 1, 2003. We parse papers in 2003, which are expected to cite more arXiv hep-th
papers in the past, and form the user-perceived clusters from the citation groups—sets of arXiv hep-th
papers that are cited together (i.e., bracketed in the same tex citation syntax) by other papers. Each
citation group in a paper is viewed as a user-perceived cluster identified by the authors of that paper.
To avoid extreme situations, we exclude the citation groups that contain less than 2 arXiv hep-th
papers and the papers that contain less than 2 citation groups. For each seed in a citation group,
we extract its perception vector from the surrounding sentences of that group. If the same citation
group appeared multiple times in the paper, all surrounding sentences are used. The features of each
instance (a cited paper) is the bag of words of its title and abstract. Finally, we get 547 clusters
from 97 papers, 232 cited papers, 2227 data features, and 2465 perception features. Note that the
perception vectors in these datasets may contain noise.

Data Augmentation. The above baselines, when used as standalone clustering algorithms, do not
utilize the perception vectors by default. To achieve fair comparison, we augment the datasets with
perception features for these standalone baselines so every algorithm considered in our experiments
has an equal amount of information as input. The augmented input for user u is X, € R?*(¢+bu),
Each instance has d + b,, features. The last b, features are the perception features given by user u.
Only the instances with seeds/constraints have non-zero values in the last b,, features, which are the
union of the perception features over the clusters which the respective instances belong to.

General Results. We first compare the recalls, precisions, and F-scores of the 12 algorithm combi-
nations on real datasets. We randomly select 2 instances from each of the user-perceived cluster as
seeds. The results are shown in Table 1. With Mturk image and song datasets where the perception
features represent higher-level concepts (i.e., reasons and tags respectively), NPE is able to yield
35%~63% improvement in F'-score when paired up with different baselines. The only exception
is MOC* on Mturk dataset, with which NPE gives 10% improvement. We believe this is because
that MOC*, a generative model, makes stronger assumption on feature distributions and, when the
assumption holds, can give superior performance than discriminative methods. On the other hand,
MOCH* is less stable as its performance degrades when the assumption does not hold. We can see this
by the drop on the song dataset. Preceding MOC* by NPE makes the performance of MOC* stable
and gives up to 45% improvement in F'-score (on song dataset).

With the citation dataset where the perception features and data features are at the same semantic
level (i.e., words), both LPE and NPE are able to give 9%~14% improvement. In this case, the
perception features and data features are likely to be linearly correlated. Therefore, LPE suffices
to make good use of the perception features. Generally, LPE takes less time to train than NPE as
there is no hyperparameter from the kernel function to tune. Note that the data features of all datasets
are augmented with perception features so the standalone baselines have perception features as
input. However, through its novel objective formulation, PE can make much better use of perception
vectors—by turning them into the feature-level supervision.

Back to the Case Study. In Section 2, we have shown a case of large gap between the user-perceived
clusters and data-driven clusters. We study how PE helps in this case. Figure 3(a) shows that, when
taking perception features into account, both LPE and NPE capture user-perceived clusters more
precisely, and there is 84% and 100% reduction in the number of users who get F-score lower than
or equal to 0.5 respectively. Next, we study how PE copes with the sampling bias. Figure 3(b) shows
the F-score histogram of the clusters found by LPE and NPE for a randomly picked user given
different seed sets. Preceding OKM* by LPE and NPE respectively gives 94% and 100% reduction
in the occurrence of data-driven clusters whose F'-scores are lower than or equal to 0.5 due to “bad”
seed sets. The sampling of seeds no longer plays a crucial role in performance. We observe similar
advantages when pairing up PE with other baselines. See Section 4.2 of the supplementary.



Table 1: The recalls and precisions given by different algorithms on different real datasets.

Mturk (Image) Song Citation (Text)
Recall Prec. F-score || Recall Prec. F'-score || Recall Prec. F'-score
OKM* 0.461 0.523 0.490 0.575 0.358 0.441 0.889 0.713 0.792

LPE+OKM* 0.679 0566 | 0.625 0.611 0356 | 0.450 0925 0.809 | 0.863
NPE+OKM* 0.782  0.694 | 0.735 0.771  0.664 | 0.713 0920 0.856 | 0.887

SEC* 0476 0526 | 0.500 0.547 0394 | 0.458 0.927 0.693 0.793
LPE+SEC* 0.754 0.646 | 0.696 0.739 0.371 0.494 0951 0.898 | 0.925
NPE+SEC* 0.769 0.727 | 0.748 0.714  0.780 | 0.745 0937 0915 | 0.926

CCSKL* 0429 0.441 0.435 0.404  0.353 0.377 0.890 0.667 0.762
LPE+CCSKL* | 0.654 0.527 0.584 0.489  0.361 0.415 0913 0.759 | 0.834
NPE+CCSKL* | 0.642  0.545 0.589 0.627 0.449 | 0.525 0.899 0.766 | 0.827

MOC* 0.655 0576 | 0.614 0.555 0.383 0.453 0.849  0.752 | 0.798
LPE+MOC* 0.610 0.621 0.615 0.646  0.393 0.489 0901 0.856 | 0.878
NPE+MOC* 0.667 0.685 0.676 0.767 0.568 | 0.655 0.895 0925 | 0.910

5 Conclusions

We demonstrate a gap between data-driven and user-perceived clusters due to the sampling bias,
and propose LPE and NPE to bridge the gap by exploiting the feature level supervision in the
form of perception vectors. To the best of our knowledge, this is the first study that proposes
learning from the perception vectors to improve clustering and opens up numerous research directions.
For example, it is important to investigate the theoretical performance guarantee and how the
improvement is bounded when different numbers of perception vectors/features are available. It
is also worth studying how different kernel functions affect the performance of NPE. These are
matters of our future inquiry. To facilitate such exploration, we make our Mturk dataset public at
http://cs.nthu.edu.tw/~shwu/datasets/shwu-mturk-16.zip.
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