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1 Availability of Perception Vectors

It might not be feasible in some applications to ask users for their explicit perception as in our Mturk
experiment. If so, the perception vectors can be obtained implicitly, just as how we get them from
the DBLP citation dataset. For example, in Youtube or Spotify, a user may have maintained his/her
own playlists. Each playlist has a title, which can be treated as the perception about why the user
put certain videos/songs (i.e., seeds or must-linked instances) together in the playlist. So, to cluster
videos/songs and align to that user’s perception, one can extract the perception vectors from the titles.
We can easily transfer this idea to other applications:

e To cluster images in Flickr: we can use the descriptions of photo albums as the perception
vectors.

o To cluster users in Facebook: Facebook provides the “group” pages. Each group in Facebook
has a name and description. The name and the description can be considered as the reasons
why the group members joined the group. Thus, the name and the description of the
Facebook groups can be the perception vectors we need to cluster users.

o To cluster web pages or products in a search engine: in Google or Amazon product searcher,
the query typed by users can be the perception vectors of the seed set containing the
webpages/products the users clicked among the search results.

There are lots of similar ways to extract the perception vectors in more applications.

2 Objective, Regularizers, and Unsmoothness

In Eq. (2) of the main text, the effect of the second term is covered by the third term, as two instances
constrained by a must-link are associated to the same perception vectors (recall that a perception
annotates a must link). So, requiring the latent representation of the two instances to be similar to
the same perception vector (in the third term) implies requiring the latent representation of the two
instances to be similar (in the second term). We obtain a simplified objective:

arg min | XW +1,b" —F|2+8|S(F-P)|%, )

This objective can further be regularized to increase performance. Generally, we prefer the linear
embedding to as simple as possible to maximize the propagation effects. Also, since entries of P are
non-negative, we require F', W, and b be non-negative as well. This leads to the final LPE objective,
as shown by the Eq. (3) of the main text.

Note that, unlike most spectral clustering algorithms [1, 2, 4], we do not regularize F'. This is
because such regularization makes F' (so are the final clusters) generalizable to different users.
In unsupervised clustering, this makes sense since the user perception is undefined, and the best
policy is to maximize the generalizability to make everyone happy. However, in semi-supervised
clustering whose goal is to approximate some unknown perception of a particular user, a better
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Figure 1: Unsmoothness. (a) Histogram of overlapping scores when comparing two clusters having
at least two common seeds. (b) Histogram of overlapping scores when comparing two clusters having
identical perception features.

Algorithm 1 Training algorithm for LPE.

Input: data X, seeds S, perception features P, and stopping criteria ¢;

Output: C;

Initialize F', b, W randomly and set ¢t = 1;

repeat
Update F', b, and W using Eqgs. (2), (3), and (4) respectively
VD | XTW + 1,07 — F|3. + B|IS(F — P)|5 +~ W7
t+—t+1;

until v() — (D) < ¢

Compute C by applying an overlapping (seeded) clustering algorithm to F'.

policy would be to exploit the supervision of the user to maximize specificity. To justify this, we show
an example using the Mturk image dataset collected from Section 2 of the main paper. For each pair
of clusters D; and D; perceived by two different users 4 and j, we calculate an overlapping score by
overlap(D;, D;) = |D; N D;|/|D; U Dj|. Figures 1(a) and (b) show the histograms of overlapping
scores for those pairs having at least two common seeds and identical perception features respectively.
As we can see, two users may perceived very different clusters even they give some common seeds or
identical perception features. In this case, regularizing F' can actually hurt performance.

3 Training

LPE. To solve the non-negative F', b and W', we followed the multiplicative update rules proposed
by Long et al. [3] to update F', b and W iteratively. The update rules are given as follows:
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where operator o denotes element-wise product, % denotes the elemental-wise division, and +/
denotes elemental-wise square root. And the training steps are shown in Algorithm 1.

NPE. To solve the non-negative F' and C, we first observe that both K and F' have non-negative
elements. So, to be efficient, we narrow the search space of C down to the positive matrices. We
then apply the multiplicative update rules [3] to update F' and C iteratively. The update rules are

given as follows:
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Algorithm 2 Training algorithm for NPE.

Input: data X, seeds S, perception features P, kernel function k, and stopping criteria €;
Output: C;
Initialize F', C randomly and set ¢ = 1;
Calculate the kernel matrix K of X based on k;
repeat
Update F' and C using Egs. (5) and (6) respectively
v — ||KC - F|7 + B|S(F — P)|7 + 7 tx(CTKC);
t<—t+1;
until v — (D < ¢
Compute C by applying an overlapping (seeded) clustering algorithm to F'.

Table 1: Statistics of the user-perceived clusters (ground truth) of the Mturk image dataset, song
dataset, and citation dataset.

Mturk (Image) Song Citation (Text)
Min Max Avg. || Min Max Avg. || Min Max Avg.
Number of clusters per user 2 7 33 3 3 3 2 12 421
Cluster size 2 128 21.8 10 181 36 2 23 425
Number of clusters per instance | 5 91 393 1 10 2 1 27 235
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The training steps are shown in Algorithm 2.

Producing Final Clusters. After obtaining F', PE can then paired with any existing unsupervised
or semi-supervised clustering algorithms to produce the final clusters C’s. Since the user-perceived
clusters are observed to be overlapping (see Section 2 of the main paper), we focus on the overlapping
clustering algorithms. Furthermore, although ideally a seeded semi-supervised clustering algorithm
should be adopted to ensure the one-to-one correspondence between the seed sets S;’s and the found
clusters C;’s, we observe that in most case, an unsupervised clustering algorithm can also lead to the
one-to-one correspondence.

4 More on Experiments

4.1 Details of Settings

For parameter tuning, in SEC* and CCSKL* we need to specify an affinity matrix A and tune o

PR . 2 .
to obtain a proper distance metric exp(—”‘“—og’i). We follow the self-tuning method proposed

by [5]. For hyperparameters ;i and v in SEC*, we consider y from {1072,10°, 102}, ~ from
{107%,1072,10°, 102,10}, and report the best result form all combinations. In CCSKL*, m, the
number of eigenvectors preserved, needed to be determined. We set m = 20 by following settings
in the original paper. However, when paired up with LPE, the data dimension is mapped into a
lower dimension, k. Therefore, we set m = k in this case. We give the hyperparameter 5 in LPE a
sufficiently large number so that the final clusters align with the seeds.

All of the algorithms considered in this paper have non-convex objectives. So their performance
depend on the initialization points in the training process.! For each reported performance, we repeat
the training process 10 times with random initialization and record the result with the lowest objective
score.

Table 1 summarizes some statistics of the ground truth clusters in our real datasets.
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Figure 2: The F-Score histogram of (a) SEC* alone, LPE+SEC*, and NPE+SEC*; (b) CCSKL*
alone, LPE+CCSKL*, and NPE+CCSKL¥*; (c) MOC*, LPE+MOC#*, and NPE+MOC* applied to the
Mturk dataset.

4.2 Recall Histograms

Continuing the discussion in Section 4 of the main text, , we study the recall histograms given by
various algorithms, which are shown in Figure 2. In most cases, the low quality data-driven clusters
(whose F-scores are lower than or equal to 0.3) due to “bad” seeds can be eliminated by LPE and
NPE. The only exception is LPE+MOC#*, which gives relatively little improvement. We believe this
is because of the strong assumption about the feature distribution employed by MOC*. Recall that
MOC* is a generative model and its assumption seems to hold in the Mturk dataset (regarding data
features). The feature-level supervision may conflict with such an assumption, but not strong enough
to change the behavior of MOC*.
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!"The only exception is OKM*, which initializes at seeds.



