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Abstract

Deep neural networks are shown to be susceptible to both adversarial attacks
and backdoor attacks. Although many defenses against an individual type of the
above attacks have been proposed, the interactions between the vulnerabilities of
a network to both types of attacks have not been carefully investigated yet. In
this paper, we conduct experiments to study whether adversarial robustness and
backdoor robustness can affect each other and find a trade-off—by increasing
the robustness of a network to adversarial examples, the network becomes more
vulnerable to backdoor attacks. We then investigate the cause and show how such
a trade-off can be exploited for either good or bad purposes. Our findings suggest
that future research on defense should take both adversarial and backdoor attacks
into account when designing algorithms or robustness measures to avoid pitfalls
and a false sense of security.

1 Introduction

Deep neural networks (DNNs) have achieved impressive performance in many domains such as
computer vision, natural language processing, speech, and robotics, etc. However, DNNs are shown
to be susceptible to both adversarial attacks [14, 34] and backdoor attacks [7, 16, 25]. Adversarial
attacks aim at fooling a model using examples (which are called adversarial examples) that are nearly
indistinguishable from regular examples in human eyes or some distance measures in the input space.
An adversarial example can be generated by slightly perturbing the input of a regular example in
directions where the output of the model gives the highest loss. On the other hand, backdoor attacks
aim at fooling the model with pre-mediated inputs. An attacker can “poison” training data by adding
crafted triggers in some data points of a specific label. So, a model trained with poisoned data will
perform well on a benign test set but behaves wrongly when the triggers are present in test data.
The vulnerabilities of DNNs to these attacks raise concern about the robustness of security-critical
machine learning applications, such as autonomous cars and speech recognition authorization.

Many defenses against adversarial or backdoor attacks have been proposed. In particular, the certified
robustness [2,3,8,10–13,15,21,28,35,40–43] and adversarial training [14,17,19,20,24,26,29,32,44]
are theoretically grounded and empirically strong methods, respectively, for defending adversarial
attacks. To defend backdoor attacks, efforts have been made to detect and remove poisoned data
(before training) [6, 36] or to fine-tune the model (after training) to unlearn backdoors [30, 39].

However, most existing defense methods are designed for one type of attacks only. The interactions
between the vulnerabilities of a network to adversarial and backdoor attacks have not been carefully
investigated yet. In practice, a model may be trained using the data collected from the public. It
may also be deployed in an open environment where the input at runtime is accessible to the third
party. As attackers could manipulate both training and testing data, it is crucial to understand how the
interactions, if existing, will impact the current defenses.
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In this paper, we conduct experiments to study whether the adversarial and backdoor robustness has
an influence on each other. The answer is yes as we find a trade-off—by increasing the robustness of
a network to adversarial examples via adversarial training, the network becomes more vulnerable to
backdoor attacks. This finding is consistent on all the real-world datasets, including MNIST [23],
CIFAR-10 [22], and ImageNet [9], and across all the settings we have tested. The trade-off delivers
an important message: studying and defending one type of attacks at a time is dangerous because it
may lead to a false sense of security. To elaborate this, we further show that new, subtle backdoor
attacks can be created by exploiting the trade-off and that some well-known backdoor defenses [6,36]
are not applicable to an adversarially robust model.

The trade-off is not entirely detrimental to existing defenses. We found that it conversely enhances a
classes of backdoor defenses [30, 39] that let a model unlearn backdoors after training. The following
summarizes our contributions:

• We find that the adversarial robustness of a DNN is at odds with the backdoor robustness.
• We show, by conducting extensive experiments, that such a trade-off holds across various

settings, including attack/defense methods, model architectures, datasets, etc.
• We investigate the reasons behind the trade-off by visualizing what is learned by the network.
• We demonstrate how an adversary can exploit the trade-off to create more concealed

backdoor attacks and to make some existing backdoor defenses infeasible. Conversely, the
trade-off also strengthens some other defenses.

Our findings have implications for both existing and future research. In particular, they give a
guide on how to combine existing adversarial and backdoor defenses to achieve adversarial and
backdoor robustness simultaneously. In addition, they open a door for joint adversarial and backdoor
attack/defense in the future.

2 Related Works

Adversarial attack and defense. Studies [14, 34] show that DNNs are vulnerable to adversarial
examples. Based on different hypotheses about the cause of adversarial examples, a plethora
of defense techniques against adversarial attacks has been proposed. Many of these methods,
however, have been shown to fail [1, 4, 5]. The adversarial training [14, 26] is one of the few
surviving approaches and has shown to work well under many conditions empirically. Many recent
defenses [17, 19, 20, 24, 29, 32, 44] are designed to work with or to improve adversarial training.
Another major stream of defenses is the certified robustness [2, 3, 8, 12, 21, 35], which provides
theoretical bounds of adversarial robustness. Recent efforts [10,11,13,15,28,40–43] have been made
to scale the certified robustness to larger networks and/or datasets at the cost of loose bounds.
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Figure 1: An example dirty-label backdoor attack
on the MNIST dataset. (a) Benign (green) and
poisoned (red) training data. (b) A test data in-
stance without trigger will be correctly classified
by the model. (c) A test instance with trigger (at
the bottom-right corner) will always be predicted
as the target label “7.”

Backdoor attack and defense. Studies [7, 16,
25] show that a model can be injected backdoors
(or “trojans”) if it is trained by poisoned data,
where some examples of a specific class con-
tain crafted triggers, and behaves wrongly when
the triggers are present in test data (see Figure
1). Depending on whether a trigger changes
the label of an example or not, existing back-
door attacks can be divided into the dirty-label
ones [7, 16, 25] and clean-label ones [31, 38, 45].
Generally, the clean-label attacks are preferred
by adversaries because the poisoned examples
have correct labels and therefore are harder to de-
tect during data preprocessing or by a defender.
However, a trigger of clean-label attacks, which
is added to the input only, needs to be stronger
(i.e., more learnable) to bias the model. Cur-
rently, most existing clean-label attacks either
assume the model is pertained [31, 45] or use
an auxiliary model [38] to understand what features will be learned by the model and then use
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these features to enhance the trigger. The trigger enhancements in [38] look similar to adversarial
perturbations, but they are static during the training phase and do not improve adversarial robustness.

Some techniques have been proposed to defend backdoor attacks, which can be roughly divided
into the pre-training and post-training defenses. The pre-training approaches [6, 36] detect and
remove poisoned data so a model can be properly trained. On the other hand, the post-training
defenses [30, 39] reverse-engineers the potential triggers from a model with backdoors and then
fine-tunes the model using a newly created dataset where the potential triggers are applied to data
points of all classes. So, during the fine-tuning, the model will find the triggers useless for making
correct predictions and thus unlearn backdoors.

Interactions. There are relatively few studies that take both adversarial and backdoor attack/defense
into account. The study [27] shows that data poisoning can also be used to degrade the adversarial
robustness of a model. Another study [33] uses backdoors as a honeypot that lures adversarial attacks
into generating easy-to-detect adversarial examples. However, none of the above works studies a
fundamental question: does the adversarial and backdoor robustness of a network affect each other?

3 The Trade-off and Its Cause

In this section, we show that simultaneous adversarial and backdoor robustness cannot be trivially
achieved because there exists a trade-off between them. We also investigate the cause of the trade-off.

3.1 Experiments

As the adversarial training is currently commonly used to defend adversarial attacks, it is important to
understand whether it affects backdoor robustness. To begin with, we train two networks of the same
architecture using regular and adversarial training, respectively, and compare the backdoor robustness
of the two models after training. We run the experiment on the MNIST, CIFAR-10, and ImageNet
datasets.

Settings. We follow the settings used by [26] to configure the networks and training algorithms.
Specifically, we use the projected gradient descent (PGD) with an l1-norm constraint as the attack
model of the adversarial training algorithm and set its parameters epsilon (✏)/step size/number of
iterations to 0.3/0.05/10 for MNIST, 8/2/5 for CIFAR-10, and 8/2/5 for ImageNet, respectively. In
terms of network architecture, we use a naive CNN for MNIST, ResNet-32 for CIFAR-10, and
pretrained ResNet-50 for ImageNet. We implement all the models using TensorFlow and train them
on a cluster of machines with 80 NVIDIA Tesla V100 GPUs.1

(a) (b) (c)

Figure 2: The backdoor triggers for (a) MNIST,
(b) CIFAR-10, and (c) ImageNet used by our weak
clean-label backdoor attack.

Evaluation. To measure the backdoor robust-
ness of the two networks, we devise a new clean-
label backdoor attack, whose triggers are shown
in Figure 2. We use different triggers for dif-
ferent datasets. The sizes of triggers are set to
3 ⇥ 3 pixels for MNIST and CIFAR-10, and
21 ⇥ 21 pixels for ImageNet. Note that this
attack is weaker than the state-of-the-art clean-
label backdoor attacks [31, 38, 45] because it
does not use the weights of a pretrained or auxil-
iary model to “enhance” a trigger (i.e., to make
the trigger easier to learn). However, the lack of
the enhancement process prevents our backdoor
attack from interfering in the adversarial training. We randomly poison 5% of training examples by
adding a backdoor trigger at the bottom-right corner of each poisoned image. The poisoned examples
are sampled from the target class without label modification. After training the two networks using
poisoned data, we evaluate the performance of the two networks by 1) (clean) accuracy on the benign
test set, 2) adversarial robustness, that is, the accuracy on an adversarial test set generated by PGD, 3)
success rate of the backdoor attack, which records the proportion of the poisoned test examples that
are wrongly predicted as the target label by a model to all poisoned test examples.

1Our code is available at https://github.com/nthu-datalab/On.the.Trade-off.between.

Adversarial.and.Backdoor.Robustness.
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Table 1: The trade-off between adversarial and backdoor robustness given different defenses against
adversarial attacks. (a) Adversarial training and its enhancements. (b) Certified robustness.

Dataset Adv. Defense Accuracy Adv.
Robustness

Backdoor
Success Rate

MNIST

None (Std. Training) 99.1% 0% 17.2%
Adv. Training 98.8% 93.4% 67.2%
Lipschitz Reg. 99.3% 0% 5.7%
Lipschitz Reg. + Adv. Training 98.7% 93.6% 52.1%
Denoising Layer 96.9% 0% 9.6%
Denoising Layer + Adv. Training 98.3% 90.6% 20.8%

CIFAR10

None 90% 0% 64.1%
Adv. Training 79.3% 48.9% 99.9%
Lipschitz Reg. 88.2% 0% 75.6%
Lipschitz Reg. + Adv. Training 79.3% 48.5% 99.5%
Denoising Layer 90.8% 0% 99.6%
Denoising Layer + Adv. Training 79.4% 49% 100%

ImageNet

None 72.4% 0.1% 3.9%
Adv. Training 55.5% 18.4% 65.4%
Denoising Layers 71.9% 0.1% 6.9%
Denoising Layers + Adv. Training 55.6% 18.1% 68%

(a)

Dataset Poisoned
Data Rate Adv. Defense Accuracy Certified

Robustness
Adv.
Robustness

Backdoor
Succ. Rate

MNIST 5% None 99.4% N/A 0% 36.3%
IBP 97.5% 84.1% 94.6% 92.4%

CIFAR10
5% None 87.9% N/A 0% 99.9%

IBP 47.7% 24% 35.3% 100%

0.5% None 88.7% N/A 0% 81.8%
IBP 50.8% 25.8% 35.7% 100%

(b)

Results. Table 1(a) shows the results of our experiment. By comparing the rows of standard and
adversarial training, we can see that although the adversarial training improves adversarial robustness,
it also degrades backdoor robustness—the success rate of the backdoor attack increases on all the
MNIST, CIFAR-10, and ImageNet datasets. Specifically, our weak backdoor attack achieves more
than 50% success rates on all datasets when applied to the adversarially trained network. This raises
concern about the security of existing adversarially trained models. If their training data can be
manipulated by an attacker, the models will have a high chance to predict whatever input as the target
label set by the adversary.

Does the trade-off hold for other adversarial defenses? We implement two additional adversarial
defenses, namely the Lipschitz regularization [17] and feature denoising layers [44], and test their
performance.2 The results, which are shown in Table 1(a) as well, show that 1) these two defenses do
not work well when applied standalone, and 2) when paired up with the adversarial training, they
results in the same trade-off.

We also examine the performance of the certified robustness defense IBP [15]. Although being
relatively more scalable than other certified robustness defenses, the IBP still cannot scale to very
deep networks and large datasets, including the ResNets and ImageNet dataset we used. So, we
only conduct the experiments on the MNIST and CIFAR-10 datasets using the network and settings
(✏ = 0.4 on MNIST) described in the original paper [15]. The results are shown in Table 1(b). Note

2We did not run Lipschitz regularization [17] on ImageNet because its memory requirement does not scale to
1000 classes.
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(a) (b) (c)

Figure 3: The saliency maps of the regularly and adversarially trained networks. (a) Benign (left)
and poisoned (right) images from the ImageNet dataset. (b) Saliency maps of the regularly trained
network given the benign (left) and poisoned (right) images. (c) Saliency maps of the adversarially
trained network given the benign (left) and poisoned (right) images.

that the backdoor success rates saturate on CIFAR-10 when the poisoned data rate is 5%. Therefore,
we reduce the poisoning rate to 0.5%. The results confirm the existence of the trade-off as well.

We further experiment with different settings, including the attack strengths and types, tolerance
measures of adversarial perturbations, and model capacities. We also study additional backdoor
triggers and their effects in Section 4. All the results reveal the same trend. For more details, please
refer to Section 1 of the supplementary materials.

3.2 The Cause

To understand why an adversarially robust model is more vulnerable to backdoor attacks, we investi-
gate what was learned by the model using visualization techniques. Figure 3 shows the saliency maps
(i.e., the gradients of a model prediction with respect to the input) of the regularly and adversarially
trained networks given a benign and poisoned image from the ImageNet, respectively. We can see that
the adversarially trained network relies more on high-level features, which better align with human
perception, to make a prediction. This is consistent with previous findings [18, 37] that adversarial
examples can be partially attributed to the presence of non-robust features (i.e., features that are
highly predictive, yet brittle and incomprehensible to humans) in real-world datasets.

As an adversarially strong network relies more on robust, high-level features to make predictions, it
also tends to learn from a backdoor trigger because the trigger provides robust features that are made
to be strongly correlated with the target label. This explains the widespread existence of the trade-off
we have discovered.

Note, however, that the above does not suggest that the high-level triggers are the only way to inject
backdoors into an adversarially robust network. As we will see in Section 4, the channel triggers
based on non-robust high-frequency pixel-level features can still successfully inject backdoors.

4 Exploiting the Trade-off

(a) (b)

Figure 4: Example clean-label backdoor
triggers of different types: (a) watermark
and (b) channel. The channel trigger is
added in the same position as the sticker
trigger shown in Figure 2(b).

We show in this section how the trade-off discovered in
Section 3 can be exploited for either good or bad purposes.

4.1 More Concealed Backdoor Triggers

A backdoor attacker needs to successfully place triggers in
the training set in order to inject backdoors into a model.
The triggers, however, may be detected and removed by
humans or algorithms during data preprocessing. Here we
study how the trade-off can be used to create backdoor
triggers that are more subtle for humans to perceive. We
will discuss how to evade the detection algorithms in the
next subsection.

The backdoor attack used in Section 3 is a clean-label
attack, which is already harder to detect than the dirty-
labels ones [7,16,25]. In addition to using clean labels, we
show that an adversary can make a trigger more subtle by
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Table 2: The success rates of clean-label backdoor attacks given different (a) trigger types, (b) trigger
sizes, (c) rates of poisoned data with the sticker triggers, and (d) trigger positions.

Dataset
Adv.
Defense

MNIST

None
Adv. Training

None
Adv. Training

CIFAR10

None
Adv. Training

None
Adv. Training

ImageNet

None
Adv. Training

None
Adv. Training

Trigger
Type

Succ.
Rate

Watermark
17.7%
84.9%

Channel
N/A
N/A

Watermark
84.2%
90.9%

Channel
33.5%
72.4%

Watermark
13.4%
46.8%

Channel
1.1%
16.4%

Trigger
Size

Succ.
Rate

2 ⇥ 2
15%
62.5%

1 ⇥ 1
12.2%
57%

2 ⇥ 2
47.1%
99.9%

1 ⇥ 1
31.1%
69.8%

14⇥14
3.2%
49.6%

7 ⇥ 7
3.7%
18.2%

Poisoned
Data

Succ.
Rate

2.5%
11.4%
58%

1%
8.4%
52.6%

2.5%
30.8%
95.4%

1%
15.2%
88.9%

2.5%
1.6%
46.6%

1%
0.6%
20.8%

Trigger
Pos.

Succ.
Rate

Fixed
17.2%
67.2%

Random
4.6%
59.9%

Fixed
64.1%
99.9%

Random
31.4%
95.1%

Fixed
3.9%
65.4%

Random
3.4%
63.5%

(a) (b) (c) (d)

adjusting 1) trigger type, 2) trigger size, 3) poisoned data rate, and 4) trigger position, to be discussed
later. We apply all the trigger variants to both the regularly and adversarially trained networks using
the same settings described in Section 3 and then evaluate the performance of the networks. We
find that the adversarial robustness of the two networks does not vary much given different triggers.
Therefore, we focus on backdoor robustness. Note that all these trigger variants are of clean labels,
and none of them has been reported to work without additional feature engineering [31, 38, 45] in the
literature.

Trigger type. In addition to the “sticker” trigger type (see Figure 2), we consider two new types,
namely the “watermark” and “channel” triggers, as shown in Figure 4. A channel trigger zeros out
the blue channel of the pixels in a specific region. Table 2(a) shows the backdoor robustness of the
two networks trained with these triggers.3 By exploiting the trade-off, all types of triggers can be
used to inject backdoors into the adversarially trained network. Note that the channel triggers, despite
being non-robust from the human perspective, can still benefit from the trade-off to become a threat.

Trigger size. We also study how small can a trigger be to create a valid backdoor attack. We reduce
the trigger sizes to 2⇥ 2 and 1⇥ 1 on MNIST and CIFAR-10, and to 14⇥ 14 and 7⇥ 7 on ImageNet,
respectively. The results, which are summarized in Table 2(b), show that tiny triggers can still
successfully inject backdoors into the adversarially trained network. Surprisingly, even the smallest
possible triggers of size 1⇥ 1 achieve above 50% success rates on MNIST and CIFAR-10.

Poisoned data rate. Next, we see if an adversary can inject backdoors into the models when fewer
examples are accessible. We reduce the poisoned data rates to 2.5% and 1% and use the sticker
triggers to attack the two networks. As Table 2(c) shows, the trade-off greatly improves the efficiency
of the backdoor attack against the adversarially trained network.

Trigger position. Finally, we study whether it is possible to create a backdoor attack by using the
triggers that are placed at random corners of the training images. Table 2(d) shows the results. The
attack works nicely against the adversarially trained network regardless of the trigger positions.

The clean-label, veiled backdoor attacks above, which are shown to work for the first time, motivate
us to examine the effectiveness of existing backdoor defenses.

4.2 Making the Pre-Training Backdoor Defenses Infeasible

We consider three well-known backdoor defenses [6, 36, 39] and, to our surprise, find that two of
them [6, 36] fail to defend the clean-label attacks in an adversarially trained network. Note that this

3We do not apply the channel triggers to MNIST images because the images have only one channel.

6



Table 3: The performance of the (a)(b) pre-training backdoor defenses [6, 36] that detect and remove
poisoned training data, and (c) post-training backdoor defense [39] that cleanses neurons.

Dataset Backdoor Attack Detection Rate

PR=5% 1% 0.5%

CIFAR10 Dirty-Label Sticker + Std. Training 81.6% 24.4% 2.4%
Clean-Label Sticker + Adv. Training 50.1% 10.6% 5.2%

ImageNet Dirty-Label Sticker + Std. Training 100% 84.6% 100%
Clean-Label Sticker + Adv. Training 50.5% 13.1% 9.23%

Detection Rate

5% 1% 0.5%

100% 100% 5.58%
48.2% 9.59% 5.01%

100% 100% 100%
47.8% 9.67% 3.72%

(a) (b)

Dataset Trigger Type Trigger
Label

Training
Algorithm

Succ. Rate
w/o Defense

Succ. Rate
w/ Defense

CIFAR10
Sticker Dirty Std. Training 100% 0.1%

Clean Adv. Training 99.9% 0%

Complex Watermark Dirty Std. Training 99.7% 39.3%
Clean Adv. Training 92.7% 1.2%

ImageNet
Sticker Dirty Std. Training 98.1% 2.3%

Clean Adv. Training 65.4% 1.1%

Complex Watermark Dirty Std. Training 96.3% 39.8%
Clean Adv. Training 49.7% 4.0%

(c)

does not imply the two defenses are broken. They are just not applicable to an adversarially robust
network.
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Figure 5: Distributions of benign (green) and poi-
soned (red) examples of the target label from Im-
ageNet in the 2D-projected (using ICA) latent
spaces of different models with backdoors.

The two works are both pre-training defenses
(see Section 2 for the categorization of existing
backdoor defenses) whose goal is to detect and
remove poisoned data before training. A net-
work with backdoors behaves normally when
taking benign examples as input but wrongly
predicts instances with triggers as the target la-
bel. This implies that there may be some neu-
rons in the network that are activated by trigger
features while others become active when nor-
mal features are present. Therefore, the distribu-
tions of neuron activations may be different for
benign and poisoned examples. This enables the
detection of poisoned examples by examining
activations.

Spectral signatures. The work [36] first trains
an auxiliary network using all examples, pos-
sibly with triggers, in a dataset. By assuming
that the target label used by an attacker is known
(which favors a defense), the defense 1) com-
putes a vector of neuron activations in a hidden
layer of the auxiliary network for each example
of the target label, 2) extracts a spectral signature
from each activation vector via the independent
component analysis (ICA), and 3) identifies the examples whose spectral signatures deviate most
from the “center” (i.e., the average of all spectral signatures) as poisoned examples. Then, the final
model can be trained by data excluding the detected examples. We implement the defense by using
the activations of the third and fourth convolutional blocks to compute the spectral signature for each
example on CIFAR-10 and ImageNet, respectively. Following the settings in Section 3, we apply it to
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two networks where one is regularly trained by data with the dirty-label backdoor triggers [16] and
another is adversarially trained by data with the clean-label attack shown in Figure 1. However, we
found that, although improving the backdoor robustness of the regularly trained network, the defense
does not significantly improve the backdoor robustness of the adversarially trained network against
our newly proposed clean-label attack. See Section 2.1 of the supplementary file for more details.
This is because of a degraded detection rate, i.e., the proportion of identified poisoned examples to all
removed examples. Table 3(a) shows the detection rates of the defense given different poisoned data
rates (PRs). The drop in the detection rates indicates that our newly proposed clean-label triggers are
harder to detect. Taking advantage of the improved efficiency shown in Table 2(c), the non-detected
triggers can still successfully inject backdoors into the adversarially trained network.

Activation clustering. The work [6] shares a similar idea to the above except it does not use the
spectral signatures of neuron activations to detect triggers. Instead, it clusters examples into two
groups based on a similarity measure in an activation space and then removes the group that is
found suspicious by humans or algorithms. We implement this defense by removing the group that
has more poisoned examples in the ground truth. After adversarially training a network using the
pruned training set, we see little improvement in the backdoor robustness but a high cost of degraded
performance for clean data. See Section 2.2 of the supplementary file for more details. Again, the
poor detection rate is the cause, as shown in 3(b). Figure 5 shows the clusters found by the defense
given a poisoned data rate of 1%. The poisoned data with clean-label triggers look very similar to the
begin examples and can easily evade detection. In addition, there are many false positives, which
decrease the number of benign training examples in the target class, creating data imbalance.

4.3 Enhancing the Post-Training Backdoor Defenses

(a) (b) (c)

Figure 6: Reverse-engineered backdoor triggers
on ImageNet. (a) Original complex watermark
trigger used to poison training data. (b) Trig-
ger reverse-engineered by [39] from the regularly
trained network under the dirty-label backdoor at-
tack. (c) Reverse-engineered trigger from the ad-
versarially trained network under the clean-label
backdoor attack.

Conversely, we found that the trade-off strength-
ens the defenses based on the neural cleans-
ing [39], as shown in Table 3(c). The neural
cleansing reverse-engineers potential triggers
from a model with backdoors and then fine-tunes
the model using the data containing potential
triggers paired up with random labels to teach
the model to unlearn backdoors (and cleanse
neurons). Interestingly, it is currently consid-
ered to be weak for regularly trained models
because it cannot reverse-engineer complex trig-
gers [30]. While Table 3(c) confirms this (see
the rows with complex, dirty-label triggers and
regularly trained models), it also shows that the
defense becomes strong when applied to the ad-
versarially trained network. Figure 6 shows the
complex backdoor trigger we used, and how the
defense can successfully reverse-engineer it (at
least to a certain extent) from the adversarially trained network without using advanced enhancement
techniques such as [30]. For now, pairing up adversarial training with neural cleansing (or its variants)
seems to be a quick way to achieve adversarial and backdoor robustness simultaneously. The above
also opens a door for joint adversarial and backdoor defense in the future.

5 Conclusion

In this paper, we showed, by using extensive experiments, the widespread existence of the trade-off
between the adversarial and backdoor robustness of a DNN. We investigated the cause of the trade-off
and demonstrated how an adversary can exploit it to create more concealed backdoor attacks and to
make some pre-training backdoor defenses infeasible. Conversely, the trade-off strengthens some post-
training backdoor defenses, which sheds light on joint adversarial and backdoor defense. As our future
work, we plan to study algorithms and measures for joint adversarial and backdoor attack/defense.
We will also study how the trade-off impacts real-world applications, such as self-driving cars, where
the security of a machine learning system is in high demand.
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Broader Impact

Currently, the adversarial learning communities are aware of the adversarial attacks, backdoor attacks,
and their respective defenses. However, the interactions between the vulnerabilities of a network
to both types of attacks have not been carefully investigated yet. Our findings in this paper have
implications for both existing systems and future research in adversarial learning. The Bad. The
trade-off between the adversarial and backdoor robustness could be exploited by an adversary to
create stronger and/or sneak attacks against existing security-critical machine learning systems and
applications. Future research on defense should take both adversarial and backdoor attacks into
account when designing algorithms or robustness measures to avoid pitfalls and a false sense of
security. The Good. On the other hand, our findings give a guide on the selection of existing
adversarial and backdoor defenses to achieve simultaneous adversarial and backdoor robustness.
In addition, our finding that the trade-off improves the post-training backdoor defenses based on
neural cleansing [39] also opens a door for joint adversarial and backdoor defense in the future.
In particular, the “adversarial complement” of the work [30] on reverse-engineering triggers via
generative distribution modeling seems to be a promising direction.
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