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This document gives details that are omitted in the main paper due to space limitation. Specifically,
Section 1 shows that the trade-o↵ holds under various conditions, and Section 2 gives more experimental results
of the pre-training backdoor defenses. Also, the code for the experiments is available at https://github.com/
nthu-datalab/On.the.Trade-off.between.Adversarial.and.Backdoor.Robustness/settings. The model
weights trained by di↵erent datasets can be found at

• MNIST: https://drive.google.com/file/d/1F1ykVvmqZ9gNhIPRtx3qWgFv-RcX9j8a/view?usp=sharing

• CIFAR-10: https://drive.google.com/file/d/1OOY4eTPeSKmRgs_rscMDhTSLVpi0DiN4/view?usp=

sharing

• ImageNet: https://drive.google.com/file/d/1M3DRe6O7kgIC02RWCQRwrTznbVYVmWyR/view?usp=

sharing

1 The Trade-o↵ under Various Conditions

1.1 Attack Models and Strengths

An attack model is used by both the adversarial training and evaluation of adversarial robustness. To see
whether the trade-o↵ holds for di↵erent attack models, we experiment with di↵erent PGD settings as well
as the FGSM attack [2]. In the former case, we adjust either the number of descent iterations or epsilon
(i.e., the maximum allowable amount of perturbations) of PGD when generating an adversarial example.
Table 1 summarizes the results, which show that the trade-o↵ holds in spite of di↵erent settings of the PGD
attack. Note that the second and following rows for each dataset should not be compared to each other
because increasing epsilon or the number of iterations does not necessarily lead to a more adversarially robust
model [5]. They should only be compared to the first row corresponding to the regular training. In the latter
case, we replace the PGD with the FGSM attack. To avoid the label leaking problem [4], we use the targeted
FGSM. Table 2 shows the results, and we can still see the existence of the trade-o↵.

1.2 Tolerance Measures of Adversarial Perturbations

Next, we study whether using di↵erent p-norms (that is, the tolerance measures of adversarial perturbations)
in the adversarial training and evaluation will invalidate the trade-o↵. We run a new set of experiments using
the l2-norm and summarize the results in Table 3. Again, the trade-o↵ holds in spite of di↵erent tolerance
measures of adversarial perturbations.

1.3 Model Capacities

Finally, we test whether the capacity of a model has an influence on our finding. We run a new set of
experiments by doubling the number of filters in each layer of a network. Table 4 shows the results, and we
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Table 1: The trade-o↵ holds across di↵erent PGD settings.

Dataset Epsilon #Iter. Adv. Defense Accuracy
Adv.
Robustness

Backdoor
Succ. Rate

MNIST

N/A N/A None (Std. Training) 99.1% 0% 17.2%
0.15 10 Adv. Training 99.3% 94.8% 37.7%
0.3 10 Adv. Training 93.4% 93.4% 67.2%
0.3 20 Adv. Training 94.7% 94.7% 57.7%

CIFAR10

N/A N/A None 90% 0% 64.1%
8 5 Adv. Training 79.3% 48.9% 99.9%
8 10 Adv. Training 76.5% 43.8% 100%
16 10 Adv. Training 62.8% 31.4% 100%

ImageNet

N/A N/A None (Std. Training) 72.4% 0.1% 3.9%
8 5 Adv. Training 55.5% 18.4% 65.4%
8 10 Adv. Training 53.2% 14.0% 72.1%
16 10 Adv. Training 50.3% 7.4% 70.2%

Table 2: The trade-of holds when the FGSM attack is used by the adversarial training and the evaluation of
adversarial robustness.

Dataset Adv. Defense Accuracy
FGSM Adv.
Robustness

Backdoor
Success Rate

MNIST
None (Std. Training) 99.1% 4.1% 17.2%
FGSM Adv. Training 98.8% 98.5% 44.7%

CIFAR10
None (Std. Training) 90% 22.1% 64.1%
FGSM Adv. Training 84.9% 65.1% 83.7%

ImageNet
None (Std. Training) 72.4% 11.3% 3.9%
FGSM Adv. Training 65.2% 52.3% 18.8%

Table 3: The trade-o↵ holds across di↵erent tolerance measures of adversarial perturbations.

Dataset p-Norm Adv. Defense Accuracy
Adv.
Robustness

Backdoor
Success
Rate

CIFAR10
l1

None (Std. Training) 90% 0% 64.1%
Adv. Training 79.3% 48.9% 99.9%

l2
None (Std. Training) 90% 0.4% 64.1%
Adv. Training 79.7% 48.3% 99.9%

ImageNet
l1

None (Std. Training) 72.4% 0.1% 3.9%
Adv. Training 55.5% 18.4% 65.4%

l2
None (Std. Training) 72.4% 0.7% 3.9%
Adv. Training 61.3% 23.1% 54.1%
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Table 4: The trade-o↵ holds regardless of model capacities.

Dataset
Model
Architecture

Adv. Defense Accuracy
Adv.
Robustness

Backdoor
Success
Rate

CIFAR10
[16,16,32,64]

None (Std. Training) 90% 0% 64.1%
Adv. Training 79.3% 48.9% 99.9%

[32,32,64,128]
None (Std. Training) 91.5% 0% 52.6%
Adv. Training 83.7% 50.4% 99.8%

ImageNet
[64,128,256,512]

None (Std. Training) 72.4% 0.1% 3.9%
Adv. Training 55.5% 18.4% 65.4%

[128,256,512,1024]
None (Std. Training) 71.1% 0.7% 16.8%
Adv. Training 57.0% 20.6% 68.5%

can see that that model capacity does not seem to a↵ect the trade-o↵.
The above results, together with the results shown in the main paper, demonstrate the widespread existence

of the trade-o↵ between adversarial and backdoor robustness.

2 Pre-Training Backdoor Defenses

Here, we provide more experimental results to support the claims in Section 4.2 of the main paper.

2.1 Spectral Signatures

Following Section 4.2 of the main paper, we conduct experiments to evaluate the performance of the pre-
training defense based on spectral signatures [6]. We apply the defense to the two networks, where one is
regularly trained by data with the dirty-label backdoor triggers [3] and another is adversarially trained by
data with the newly proposed clean-label attack. Table 5(a) shows the results. As we can see, the backdoor
robustness of the adversarially trained network is not significantly improved by the defense, although the
mean deviation of the spectral signatures of remaining examples from the center does reduce greatly. This
is due to a low detection rate—the defense can only detect about 50% of the poisoned examples with the
clean-label triggers. As shown in Table 3(a) of the main paper, the detection rate becomes even lower when
the poisoned data rate decreases. This leaves many non-detected triggers in the pruned training set, and they
can still successfully inject backdoors into the adversarially trained network.

2.2 Activation Clustering

Table 5(b) shows the performance of the pre-training defense based on activation clustering [1]. As we can
see, the defense does not significantly improve the backdoor robustness of the adversarially trained network
on CIFAR-10. Again, this is because of a low detection rate, which drops below 50% as compared to the
100% given by the regularly trained network under the dirty-label attack.

On ImageNet, the backdoor robustness of the adversarially trained network seems to be improved as the
success rate of the backdoor attack is reduced from 65.4% to 11.9%. However, the detection rate remains
low (47.8%), and we speculate that the improvement is due to the fact that the defense removes too many
(benign) examples of the target label, therefore making the training data imbalanced. In this case, the trained
model will predict other classes more often than the target label, which increases backdoor robustness but
degrades the recall of benign test data of the target class. To verify our hypothesis, we test and observe a
recall of 8% for the target class given by the adversarially trained model with the defense, which is much
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Table 5: The success rates of the backdoor attacks against the pre-training defenses based on (a) spectral
signatures [6] and (b) activation clustering [1].

Dataset Backdoor Attack
Succ. Rate
w/o Defense

Succ. Rate
w/ Defense

Detection
Rate

Deviation

CIFAR10
Dirty-Label Sticker + Std. Training 100% 98.9% 81.6% 16.7
Clean-Label Sticker + Adv. Training 99.9% 97.1% 50.1% 0.08

ImageNet
Dirty-Label Sticker + Std. Training 98.1% 0.1% 100% 151.7
Clean-Label Sticker + Adv. Training 65.4% 58.7% 50.5% 2.39

(a)

Dataset Backdoor Attack
Succ. Rate
w/o Defense

Succ. Rate
w/ Defense

Detection
Rate

CIFAR-10
Dirty-Label Sticker + Std. Training 100% 0.7% 100%
Clean-Label Sticker + Adv. Training 99.9% 97.5% 48.2%

ImageNet
Dirty-Label Sticker + Std. Training 98.1% 0.1% 100%
Clean-Label Sticker + Adv. Training 65.4% 11.9% 47.8%

(b)

lower than the 38% recall given by the model without the defense. In summary, the backdoor robustness is
improved at the cost of degraded performance for clean data.
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