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Abstract

The Convolutional Neural Networks (CNNs) have laid the foundation for many
techniques in various applications. Despite achieving remarkable performance in
some tasks, the 3D viewpoint generalizability of CNNs is still far behind humans
visual capabilities. Although recent efforts, such as the Capsule Networks, have
been made to address this issue, these new models are either hard to train and/or
incompatible with existing CNN-based techniques specialized for different appli-
cations. Observing that humans use binocular vision to understand the world, we
study in this paper whether the 3D viewpoint generalizability of CNNs can be
achieved via a binocular vision. We propose CNN2, a CNN that takes two images as
input, which resembles the process of an object being viewed from the left eye and
the right eye. CNN2 uses novel augmentation, pooling, and convolutional layers to
learn a sense of three-dimensionality in a recursive manner. Empirical evaluation
shows that CNN2 has improved viewpoint generalizability compared to vanilla
CNNs. Furthermore, CNN2 is easy to implement and train, and is compatible with
existing CNN-based specialized techniques for different applications.

1 Introduction

Convolutional Neural Networks (CNNs, LeCun et al. (1989, 1998)) are models inspired by how the
animal visual cortex works (Hubel and Wiesel (1962)) and are computationally modelled (Fukushima
and Miyake (1982)) based on local connectivities between neurons and hierarchically organized
transformations of an image. CNNs have greatly advanced the state-of-the-art performance of visual
recognition tasks, such as image classification (Real et al. (2018); He et al. (2016); Krizhevsky et al.
(2012)), localization and detection (Lin et al. (2017b); Redmon et al. (2016)), segmentation (He
et al. (2017); Long et al. (2015)), and have driven the development of various specialized techniques
for applications in natural language processing (Gehring et al. (2017a,b)), search (McDonald et al.
(2018); Dai et al. (2018)), mapping (Liu et al. (2017); Zhu et al. (2017)), medicine (Esteva et al.
(2019)), drones (Kim et al. (2017); Kyrkou et al. (2018)), and self-driving cars (Codevilla et al.
(2018); Bojarski et al. (2016)).

Despite giving impressive performance in many applications, CNNs still have a long way to go in
terms of being comparable to human’s visual ability. One important aspects where vanilla CNNs
fall short is referred to as transformation generalizability—the ability to generalize what have been
learned from training images to understand the transformed images at test time. While there are
many studies (Jaderberg et al. (2015); Maninis et al. (2016); Cheng et al. (2016); Laptev et al. (2016);
Worrall et al. (2017); Hinton et al. (2018); Cheng et al. (2019); Ecker et al. (2019)) that address 2D
transformations (e.g., rotation, scaling, and sheering), few efforts have been made towards a more
challenging goal called 3D viewpoint generalization; that is, to understand images of 3D objects with
unseen viewpoint translation at test time.
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Figure 1: A simple extension (LeCun et al. (2004)) of the CNN architecture for binocular images.
The two images from the left eye and the right eye are merged and then fed into regular CNN layers.

A well-known branch of studies targeting 3D viewpoint generalizability is the capsule networks
(Hinton et al. (2011); Sabour et al. (2017); Hinton et al. (2018)), which represent an object or a
part of an object as a collection of neurons called a capsule. It organizes different capsules in a
parse tree where the output of lower-level capsules is dynamically routed to upper-level capsules
using an agreement protocol. The capsule networks show some promising results that deserve
further investigation. Some researchers who have done so, such as Peer et al. (2018), found out
that capsule networks are harder to train than conventional CNNs, because the capsules increase the
number of model parameters. Also, the iterative routing-by-agreement algorithm used for training
is time consuming and does not ensure the emergence of a parse tree in the network. Additionally,
the architecture of capsule networks is not compatible with CNNs, which prevents the large CNN
ecosystem from being able to add values to and benefit from the capsule nets.

The above drawbacks motivate us to seek for a more generalizable model that is compatible with
existing CNN-based techniques. An obvious difference between how humans and machines view
an object is that humans visualize using two eyes. Fortunately nowadays, binocular images can be
easily collected. For instance, majority of people are using their smartphones, which are now usually
equipped with dual or more lens (Moura et al. (2014)), as cameras to record daily events. As another
example, one can extract two nearby frames in online videos to construct a large binocular image
dataset.

In this paper, we propose CNN2, a convolutional neural network with improved 3D viewpoint
generalizability by taking two binocular images as input. Unlike a simple CNN extension (LeCun
et al. (2004), as shown in Figure 1) that stacks up two images along the channel dimension and then
feeds them to a regular CNN network, CNN2 explicitly models some priors from binocular vision.
We apply contrastive channel augmentation to the respective images so they are scanned by filters
(or kernels) in two parallel, complementary feedforward pathways. This resembles the dual-path
central visual pathways (Wurtz et al. (2000); Milner and Goodale (2006)) in human brains. After
the augmentation, the CNN2 employs a novel concentric multi-scale pooling layers that are applied
before the convolutional layers to learn the in-focus and out-of-focus features. Such a design is
inspired by the interactions between the V1 and V2 visual cortices in human visual cortex system
(Biederman (1987); Reid and Alonso (1995); Murphy et al. (1999)). We conduct experiments using
binocular images from the SmallNORB (LeCun et al. (2004)), ModelNet (Wu et al. (2015)) and
larger-scale RGB-D Object (Lai et al. (2011)) datasets. The results demonstrate that CNN2 can learn
a sense of three-dimensionality in a recursive manner and has improved 3D viewpoint generalizability.
Furthermore, CNN2 is easy to implement and train, and is compatible with existing CNN-based
specialized techniques for different vision applications.

2 Model Design of CNN2

For ease of presentation, we consider a supervised learning task: given a task model f and a binocular
image set D = (X ,Y) = {(x(i)

L ,x
(i)
R ,y(i))}i where each x

(i)
L and x

(i)
R represent the images taken

from the left eye and the right eye viewpoints, respectively. Our goal is to design an embedding
model g such that, after being trained using D, it can help ŷ′ = f(g(x′L,x

′
R)) predict the correct

label y′ of a pair (x′L,x
′
R) of binocular images taken from an unseen viewpoint at test time.
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Figure 2: CNN2 model architecture that has two feedforward pathways providing the dual parallax
augmentation at different abstraction levels. h ∈ RW×H×C : raw feature map. h̃ ∈ RW×H×2C :
parallax augmented feature map. ḣ ∈ RW×H×2CS : output of the concentric multi-scale (CM)
pooling, where S is the number of scales.

One naive idea to improve the 3D viewpoint generalizability is to learn a depth map (Godard et al.
(2017); Kendall et al. (2017)) from a pair of binocular images, treat the depth map as a new channel
in the input (left or right eye) image, and feed the augmented image to a regular CNN just like the
one shown in Figure 1. However, the depth information is only a subset of the knowledge that can be
learned from binocular vision. Studies in neuroscience have found out that human’s visual system
can detect stereoscopic edges (Von Der Heydt et al. (2000)), foreground and background (Qiu and
Von Der Heydt (2005); Maruko et al. (2008)), and illusory contours of objects extrapolated from seen
angles (von der Heydt et al. (1984); Anzai et al. (2007)) from binocular images. Hence, our goal is to
design a model g that is able to capture these generic patterns.

Next, we present the CNN2 that is able to recognize generic binocular vision patterns recursively at
different layers. It can be jointly trained with the task model f in an end-to-end manner.

Dual Feedforward Pathways. Figure 2 shows the architecture of CNN2. Unlike a regular CNN that
has only one feedforward pathway, the CNN2 employs two parallel, yet complementary, feedforward
pathways for the left and right eye images, respectively. At each layer, the binocular images or
feature maps are combined and then split by following the dual parallax augmentation procedure.
Specifically, given a pair of binocular images or feature maps (hL ∈ RW×H×C ,hR ∈ RW×H×C),
we augment hL by adding the parallax hR − hL as new channels. Similarly, we augment hR by
hL − hR. The two augmented maps (h̃L ∈ RW×H×2C , h̃R ∈ RW×H×2C) contain the information
from both eyes, but on different bases (defined by the three original channels). Then each augmented
map is fed into the next layer either through the left or right pathway. This allows the filters (or
kernels) in convolutional layers to recursively detect stereoscopic features at different abstraction
levels by looking into the parallax. The small differences between the two input images at the pixel
level and at shallow layers may add up to a big difference at a deeper layer, as discovered in human
visual system (Biederman (1987); Murphy et al. (1999); Reid and Alonso (1995)).

Concentric Multi-Scale Pooling: Human and camera lens both reflect the light following the
principles of optics, and objects become blurry when they are out of focus. In addition to parallax
augmentation, by comparing clear and blurred features from the previous layer, we allow a filter
to detect stereoscopic patterns. We introduce a new type of pooling layers, called the concentric
multi-scale (CM) pooling. Figure 3 shows how the CM pooling works. Formally, let h̃ ∈ RW×H×2C

be an augmented image or feature map and suppose there are S given scales. At each scale s =
0, 1, · · · , S − 1, we first obtain a temporary map e(s) ∈ RW×H×2C (assuming zero padding), where

e
(s)
i,j,c = poolp,q:i−s≤p≤i+s and j−s≤q≤j+s{h̃p,q,c}

and pool{·} is a pooling operation (e.g., max{·} or avg{·}). Then, these temporary maps are stacked
up along the channel dimension to produce ḣ ∈ RW×H×2CS . Unlike conventional pooling layers
that come after the convolutional layers, the CM pooling layers are placed before the convolutional
layers. This aids the filter in the next layer to easily detect stereoscopic patterns, by contrasting
blurry features with clear features. The translation invariance created by an e(s) at a large scale (s)
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detects blurry features in the background, while an e(s) at a small scale detects clear features in the
foreground.

h̃ 
e
(S−1)

e
(1)

e
(0)

Figure 3: Concentric multi-scale pooling that is
placed before a convolution in the CNN2. It en-
ables a filter to easily detect stereoscopic patterns
by contrasting in-focus features with out-of-focus
features.

Note that the feature map ḣ produced by a
CM pooling layer is equivariant to input trans-
lation. The CNN2 does not use conventional
pooling layers that are known to introduce
translation invariance and decrease viewpoint
generalizability (Hinton et al. (2011); Sabour
et al. (2017)). A drawback of the CNN2 is
that a feature map at a hidden layer will have
the same (large) width and height as that of
the input image, which could slow down the
speed of computation. Additionally, there is
an increase in the number of filter weights
due to a larger number of channels (2CS) in
ḣ. These problems can be mitigated by us-
ing fewer filters at each layer. Empirically, we
found that the CNN2 requires much fewer filters
than the conventional CNNs for the same sat-
isfactory performance. Also note that CNN2

does not modify the convolutional layers in
regular CNNs. This means that the CNN2 is compatible with the existing convolution-based
enhancement techniques and can contribute to and benefit from the rich CNN ecosystem.

Optic Nerve

Optic Chiasm 

Lateral Geniculate 
 Nucleus (LGN) 

Visual Cortex 
 System 

Figure 4: Visual system of mammals (Wurtz et al.
(2000); Milner and Goodale (2006)). The elec-
trical pulses from the two eyes are merged at the
optic chiasma and then sent to the right and left
brains separately following two visual pathways.
The pulses will then finally reach the visual cor-
tex system (Biederman (1987); Reid and Alonso
(1995); Murphy et al. (1999); Gotts et al. (2013))
where the visual image is heavily processed by the
interaction between the right and left brains with
respective bias.

Inspiration from Human Visual System.
While the effectiveness of the CNN2 solely
depends on engineering efforts, the design of
CNN2 model is loosely inspired by how the
human visual system works. Figure 4 shows
an oversimplified version of the mammals’ vi-
sual system (Wurtz et al. (2000); Milner and
Goodale (2006)). The visual information mainly
flows through the central visual pathways in the
brain. Although recent studies (Kheradpisheh
et al. (2016); Wallis et al. (2017); Laskar et al.
(2018); Long and Konkle (2018)) have found
correspondence between the activations of CNN
layers and the neuron responses in human’s vi-
sual cortex system, the CNNs are still differ-
ent from human visual system in many ways.
One key difference is that the CNNs have only
one feedforward pathway. On the other hand,
the CNN2 employs two feedforward pathways,
which resembles the left and right halves of the
central visual pathway in two sides of our brains.
The dual parallax augmentation at the input layer
of the CNN2 corresponds to the optic chiasma
in human visual system, where the information
coming from both eyes is combined, augmented,
and then split. At deep layers, it resembles the
interactions between the left and right sides of
the brain which are known to have their own bias (Gotts et al. (2013)). For more discussion about the
correspondency between the CNN2 components and human visual system, please refer to Section 2
of the supplementary materials.
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(a) (b) (c)

Figure 5: Examples of left eye images taken from different viewpoints in (a) ModelNet2D dataset
(chairs), (b) SmallNORB dataset (humans), and (c) RGB-D Object dataset (flashlights).

3 Further Related Work

Here, we review further related works that are not mentioned in Sections 1 and 2. For a complete
discussion of the related work, please refer to Section 1 of the supplementary materials.

3D Viewpoint Generalization. In addition to the capsule networks (Hinton et al. (2011); Sabour et al.
(2017); Hinton et al. (2018)), another way to viewpoint generalization is using voxel discretization
(Su et al. (2015); Qi et al. (2016); Yan et al. (2016); Qi et al. (2017)), which reconstructs manifold
(and non-manifold) surfaces in the 3D space from point clouds using voxels as an intermediate
representation . However, these models require either the voxel-level supervision or omnidirectional
images as input, which are both expensive to collect in practice. Binocular Vision. Binocular images
have been used for learning the depth information. Godard et al. (2017) utilize binocular images
to make a model learn the depth map in an unsupervised manner. Kendall et al. (2017) exploit the
geometry and context information in binocular images to let a model learn the disparity map of a
stereogram. However, few studies (LeCun et al. (2004), whose architecture is shown in Figure 1)
have been made to understand the impact of binocular vision on CNN generalizability. Multi-Scale
Feature Representations. A CNN2 layer extracts features at multiple scales, thus is related to the
work on multi-scale feature learning (Yang and Ramanan (2015); Cai et al. (2016); Lin et al. (2017a);
Chen et al. (2019)). Unlike most existing models that concatenate the multi-scale features to learn
patterns, CNN2 pools (via the CM pooling) multi-scale features to make them of equal size and then
stack them up along the channel dimension. The location information encoded in different feature
maps are aligned. This allows the next convolutional layer to learn location independent patterns (and
a sense of 3D dimensionality) by contracting the features at different scales. Pooling Strategies. Our
CM pooling is cosmetically similar to some existing pooling techniques (He et al. (2014); Gong et al.
(2014); Qi et al. (2018)). The spatial pyramid pooling (He et al. (2014)) pools image pixels using
predefined patches, which require domain-specific knowledge to define. The multi-scale orderless
pooling (Gong et al. (2014)) outputs feature maps of different sizes, but these maps are not “zoomed”
to equal size and then stacked up along the channel dimension to help the filters contract features at
different scales at the same location. Qi et al. (2018) propose a concentric circle pooling strategy to
achieve rotation invariance, where multiple filters scan an image or feature map following concentric
window-sliding paths. Their term “concentric” is different from ours.

4 Experiments

In this section, we evaluate the performance of CNN2 using three binocular image datasets: 1) the
ModelNet2D dataset rendered from ModelNet40 (Wu et al. (2015)) following the settings used by
LeCun et al. (2004), 2) the SmallNORB dataset (LeCun et al. (2004)), and 3) the RGB-D Object
dataset (Lai et al. (2011)), which consist of 12,311 grayscale, 48,600 grayscale, and 250,000 color
images taken from different azimuths with 5-, 20-, and 10-degree ticks, respectively. Figure 5 shows
some example images from these datasets. Only the SmallNORB dataset provides binocular images.
For the rest of the datasets, we use pairs of images having successive azimuths degrees to simulate
binocular images. We also sample 5 classes of objects from each dataset that look different from each
other in any azimuths degree. For more information about the datasets and preprocessing, please refer
to Section 3.1 of the supplementary materials. Note that 3D viewpoint generalization is a difficult and
challenging problem, wherein majority of existing work were only evaluated on grayscale datasets.
To the best of our knowledge, this is the first work that conducted experiments on colored datasets for
3D viewpoint generalization.

We implement CNN2 and the following baselines using TensorFlow (Abadi et al. (2016)). Vanilla
CNN. This is a simple CNN extension (LeCun et al. (2004)) whose architecture is shown in Figure
1. CapsuleNet. This is capsule network with EM routing (Hinton et al. (2018)). It uses the matrix
capsules to capture the activation along with a pose matrix. PTN. The perspective transformer
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Table 1: The number of parameters in different models for the grayscale (ModelNet2D and Small-
NORB) and RGB-D Object datasets.

Vanilla CNN BL-Net Monodepth PTN CapsuleNet CNN2 CNN2+BL
Grayscale 333K 411K 19M+333K 12M 362K 341K 407K

RGB-D Object 421K 489K 19M+427K 12M 568K 493K 506K

Table 2: Average test accuracy of different models over unseen viewpoints and the time required to
train these models. The pair of numbers in Monodepth denotes the training time for the depth map
generator (stage 1) and CNN (stage 2), respectively. The training of PTN and CapsuleNet on the
RGB-D dataset did not converge.

ModelNet2D SmallNORB RGB-D Object
Models Acc. (Unseen) Time (min) Acc. (Unseen) Time (min) Acc. (Unseen) Time (min)

Vanilla CNN 0.907 138 0.722 231 0.795 313
BL-Net 0.903 109 0.751 192 0.829 288

Monodepth 0.910 143+127 0.783 168+150 0.802 612+301
PTN 0.879 159 0.714 273 0.427 -

CapsuleNet 0.921 478 0.835 1328 0.476 -
CNN2 0.941 91 0.865 121 0.868 236

CNN2+BL 0.918 115 0.787 251 0.778 315

network (Yan et al. (2016)) that outputs 3D voxels. The original paper assumes omnidirectional
images of an object as the input. Here, we feed only the images within a particular range of view
angles that is available at training time (see Section 4.1 for more details about the range) to the
network to get output voxels. Then, we feed the voxels into a 3D convolutional neural network for
classification. We follow the settings described in the original paper (Yan et al. (2016)) and the study
(Maturana and Scherer (2015)) to train the entire model from end to end. Monodepth. A model
based on the depth information, which is explicitly learned from the binocular images. The original
Monodepth network (Godard et al. (2017)) is a model that outputs the depth map for a given pair
of binocular images. It can be trained in an unsupervised manner. We create a two-stage training
process here. In the first stage (pre-training stage), we train a Monodepth network and use it to
generate a depth map. Then, in the second stage, we add the depth map into the the left eye image as
an additional channel and feed the augmented image to a CNN. The CNN architecture is the same as
that used in Vanilla CNN. We follow the settings described in the Monodepth network paper (Godard
et al. (2017)) to train the model for stage one. BL-Net. This network is composed of a concatenation
of Big-Little module (BL-module), which aims to extract multi-scale feature representations with
a good trade-off between speed and accuracy. Here, we extend the Vanilla CNN by replacing its
architecture with the Big-Little network following the settings in Chen et al. (2019). CNN2+BL. To
see whether our CM pooling can help a model learn beyond the multi-scale features, we also replace
the blocks of layers of CNN2 with the BL-modules, while keeping the dual feedforward pathways
and parallax augmentation.

We conduct experiments on a computer with an Intel Core i7-6900K CPU, 64 GB RAM, and an
NVIDIA Geforce GTX 1070 GPU. We did not augment the data at training time in order to observe
the unbiased generalizability of different models. For each of the above models, we search for the
best architecture for a given dataset. Table 1 shows the number of parameters in different models.
Please see Section 3.2 of the supplementary materials for more details.

4.1 3D Viewpoint Generalization

To test the 3D viewpoint generalizability of different models, we train the models using (binocular)
images taken from a limited range of view angles and then test the model performance using images
taken from unlimited view angles. On the ModelNet2D dataset, we use the images taken from
azimuths of degrees from 50 to 125 as the training set, degrees from 30 to 45 and from 130 to 145
as the validation set, and unlimited degrees as the test set. On the SmallNORB dataset, we use the
images taken from azimuths of degrees from 20 to 80 as the training set, degrees at 0 and 100 as
the validation set, and the rest as the test set. On the RGB-D Object dataset, images of different
objects are taken from different viewpoints. So, we use images taken from one third of continuous
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Figure 6: 3D viewpoint generalizability of models trained on each dataset. (a)-(c) Test accuracy at
different view angles with about two third of the view angles that are not seen at training time. (d)-(f)
Learning curve (early stopped or truncated at 120 mins).

viewpoints of each object as the training set and the remaining images as the test set. We further split
one third of the training images having continuous viewpoints as the validation set.

The average test accuracy of different models over all unseen angles and the time required to train
these models is shown in Table 2. It can be seen that CNN2 achieves higher accuracy than all
the baseline models. It also converges faster during the training process. Figure 6 shows how the
accuracy of different models varies at different view angles and how the models learn over time. On
grayscale datasets (ModelNet2D and SmallNORB), both the CapsuleNet and CNN2 give significantly
better performance than the other baselines at challenging view angles where the objects look very
different from what they appeared at training time. However, the CNN2 is much faster to train
than the CapsuleNet. In fact, the learning speed of the CNN2 is even faster than the Vanilla CNN.
Note that the CNN2 uses much fewer filters (50) than the Vanilla CNN (112). This justifies that the
patterns detected by CNN2 filters are useful for 3D viewpoint generalization. Also, by comparing
the performance of CNN2 and CNN2+BL, we know that the performance gain is not from merely
extracting the multi-scale features. The CM pooling indeed helps the CNN2 filters learn generic
stereoscopic features by contracting the features at different scales. On the colored RGB-D Object
dataset, the CNN2 still outperforms other baselines. The CapsuleNet and PTN perform poorly in this
case. We have searched different architectures for these models for better performance, but failed
(see Section 3.2 of the supplementary materials). Our findings about the CapsuleNet is consistent
with Peer et al. (2018), who pointed out that the capsule networks are harder to train and the iterative
routing-by-agreement algorithm used for training does not ensure the emergence of a parse tree in the
networks. As for the (voxel-based) PTN, we suspect that it has too high sample complexity to easily
learn from a color binocular dataset.

4.2 Backward Compatibility

2D Rotation Generalizability. The CNN2 does not change the convolution operation, which makes
it compatible with the rich CNN ecosystem. To see how this can be beneficial, we design a more
challenging task where the models are asked to predict the labels of images taken from unseen view
angles and unseen 2D rotations at test time. We train and validate the models using the images
from the ModelNet2D dataset that have 50% chance to be rotated 90 degrees clockwisely. At test
time, we feed the model with the images that is rotated either 180 or 270 degrees clockwisely (in
addition to viewpoint shift described in Section 4.1). Without data augmentation and specialized
techniques, the convolution-based methods, including CNN2, give degraded performance in this
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Figure 7: Backward compatibility. (a) 3D viewpoint + 2D rotation generalizability of models trained
on the ModelNet2D dataset. Test accuracy for objects with unseen rotations (180 and 270 degrees) at
different view angles. Angles outside [50, 125] are unseen. See Figure 6 for the legends. (b) CNN2 is
backward compatible with existing CNN-based techniques and can be readily enhanced to have 2D
rotation generalizability. (c) Performance of CNN2 with monocular images from the RGB-D Object
dataset. CNN2 is also backward compatible with single-eye image classification tasks.

task, as shown in Figure 7(a). Only the non-convolutional CapsuleNet achieves stable performance
across viewpoints and rotations. However, there exists many CNN-based techniques that target 2D
rotation generalizability, such as the spatial transformer networks (STN, Jaderberg et al. (2015)),
group equivariant convolutional neural networks (GCNN, Cohen and Welling (2016)), and harmonic
networks (HN, Worrall et al. (2017)). We integrate these methods into the CNN2 and get significantly
better performance, as shown in Figure 7(b). The performance boost is consistent on other datasets
(see Section 3.3 of the supplementary materials). This demonstrates the potential of CNN2 for
benefitting from, and contributing to, many applications where CNNs thrive. Monocular Images.
With monocular images, the parallax channels contain all zeros, therefore the CNN2 degenerates into
a conventional CNN gracefully. Figure 7(c) shows the performance of degenerated CNN2 with the
single-eye images from the RGB-D Object dataset. Although the degenerated CNN2 with monocular
images does not outperform the fully functional CNN2 with binocular inputs due to the lack of
binocular information, its performance is comparable with (if not surpasses) that of vanilla CNN
because it models more prior than vanilla CNN. The CNN2 is compatible with single-eye image
classification tasks.

4.3 More Experiments

Ablation Study. Here, we investigate whether each designed component used by the CNN2 improves
3D viewpoint generalizability. Following the settings described in Section 4.1, we compare the CNN2

with its variant where the weights along the dual feedforward pathways are tied. The results, as
shown in Figure 8(a), indicate that having two feedforward pathways is indeed beneficial. Next, we
compare the CNN2 with another version where parallax augmentation is dropped. As we can see
from Figure 8(b), the parallax augmentation can improve the model generalizability at challenging
view angles. Next, we test whether the concentric multi-scale (CM) pooling contributes to 3D
viewpoint generalizability. We compare the CNN2 with a variant where the CM pooling layers are
replaced by conventional max pooling layers. The results, which are shown in Figure 8(c), confirm
its effectiveness. We can also see from Figure 8(d) that the standalone CM pooling is sufficient
to improve the generalizability of vanilla CNN. Pooling before Convolution. We also have an
interesting observation: while placing the pooling layers after the convolution layers give better
performance in regular CNNs, it hurts the generalizability of CNN2, as shown in Figure 8(e). This
reminds us that something we took for granted in monocular vision may not be the best choice for
the binocular cases. Fusion of the Two Feedforward Pathways. To show that the fusion (i.e., dual
parallax augmentation) of the two feedforward pathways at each layer is beneficial, we compare
CNN2 with two new baselines that perform early and late fusion in only the first and last layer,
respectively. Figure 8(f) shows the results on the RGB-D Object dataset. CNN2 outperforms other
baselines because it has fusion at all layers, which allows small differences between the feature maps
in two paths to add up to a big difference at a deeper layer. Backbone Choices. The CNN2 can
work with different backbone architectures. To show this, we compare the performance of CNN2

with ResNet-50 and a toy ResNet as the backbone on the SmallNORB dataset. The toy ResNet is
consisted of 2 residual blocks and has similar number of parameters as CNN2. The results are shown
in Figure 9(a). Although the SmallNORB dataset contains only grayscale images and looks easy,
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Figure 8: Ablation Study. (a) Single (weight-tied) vs. dual feedforward pathways. (b) CNN2 with vs.
without parallax augmentation. (c) Max pooling (before convolution) vs. CM pooling. (d) The CM
pooling, by itself, can improve the performance of vanilla CNN on the RGB-D Object dataset. (e)
Performing pooling before convolution improves performance in CNN2, but not in vanilla CNN. (f)
Performance of CNN2 variants with different fusion strategies on the RGB-D Object dataset.
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Figure 9: (a) Performance of different models with stronger network backbone (ResNet) on the
SmallNORB dataset. (b)(c) Confusion matrices of the predictions made by CNN and CNN2 on the
RGBD-Object dataset.

neither of the ResNet variants generalizes better than CNN2. A backbone like ResNet that is strong
to make predictions at seen angles does not imply that it is strong at unseen angles, and it can still
benefit from CNN2 to have improved 3D viewpoint generalizability. Confusion Matrices. Finally,
we investigate how the predictions made by CNN2 differ from those of vanilla CNN. Figures 9(b)(c)
show the confusion matrices of the predictions made by CNN and CNN2 at unseen view angles on
the RGBD-Object dataset. The CNN2 outperforms CNN in most cases, except when classifying the
classes 1 (flashlight) and 4 (stapler) that are similar in shape but different in texture at certain view
angles. This suggests that the CNN2 relies more on shapes than textures to generalize, a bias that
humans have been shown to possess (Geirhos et al. (2019)).

5 Conclusion

We propose the CNN2 that gives improved 3D viewpoint generalizability of CNNs via a binocular
vision. The CNN2 uses dual feedforward pathways, recursive parallax augmentation, and the
concentric multi-scale pooling to learn stereoscopic features. One important research direction
following our work is to understand and visualize what have been learned by the filters and how
they relate to that of human visualization. Furthermore, it would be interesting to apply CNN2 to
applications wherein a generalized vision system is highly in-demand, such as in self-driving cars.
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