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ABSTRACT
Object detection based on pre-trained deep neural networks (DNNs)
has achieved impressive performance and enabled many applica-
tions. However, DNN-based object detectors are shown to be vul-
nerable to physical adversarial attacks. Despite that recent e�orts
have been made to defend against these attacks, they either use
strong assumptions or become less e�ective with pre-trained ob-
ject detectors. In this paper, we propose adversarial pixel masking
(APM), a defense against physical attacks, which is designed specif-
ically for pre-trained object detectors. APM does not require any
assumptions beyond the “patch-like” nature of a physical attack
and can work with di�erent pre-trained object detectors of di�erent
architectures and weights, making it a practical solution in many
applications. We conduct extensive experiments, and the empirical
results show that APM can signi�cantly improve model robustness
without signi�cantly degrading clean performance.
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1 INTRODUCTION
Object detection based on deep neural networks (DNNs) [3, 12, 23,
25, 32–34, 42] has achieved impressive performance in recent years.
Due to the large amount of time and computing resources required
to train an object detector, a lot of pre-trained object detectors
have been released on the Internet, which simpli�es application
development and casts a huge impact in the industry. However,
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Figure 1: Example physical attack and corresponding mask.
(a) An input image with adversarial patches generated by
a physical attack that makes a pre-trained YOLOv3 output
nothing. (b) The mask generated by APM. (c) Detection re-
sult of the pre-trained YOLOv3 given the masked image.

DNNs have shown to be vulnerable to adversarial attacks [14, 41],
which aim to mislead model prediction by perturbing the input
(an image) while keeping the input nearly indistinguishable from
regular examples in human eyes or some distance measures in
the input space. Depending on the types of perturbations, existing
adversarial attacks for images can be roughly divided into two
categories: digital attacks [6, 14, 26, 30] and physical attacks [2, 5, 8,
13, 19, 21, 22, 39, 43, 45, 50, 55, 57]. A digital attack slightly perturbs
all pixels of a clean image to make it adversarial. On the other hand,
a physical attack perturbs the pixels only within one or few small
regions in an image, but the pixels can be completely changed, as
shown in Figure 1.

The perturbations made by a physical attack are “patch-like”
and thus can be printed and attached to real-world objects, such
as tra�c signs or human clothes [2]. This poses threats to object
detectors [8, 21, 39, 43, 45, 50, 55, 57] and their security-sensitive
applications such as self-driving cars [13] and face recognition
systems [38]. Studies have shown that, by using physical attacks,
an attacker can evade object detectors [43, 45, 50], pretend to be
someone else in front of a face recognition system [38], or even
change a tra�c sign seen by a self-driving car [8, 13, 39, 57]. Since a
pre-trained object detector may not have considered these threats,
it is crucial to develop a technique that can improve the adversarial
robustness of pre-trained object detectors.

However, existing defenses against the physical attacks either
rely on strong assumptions that may not hold in practice [10, 15, 27,
28, 36, 46, 51, 56, 59] or do not work well with pre-trained models
[31, 44, 54]. Aswewill show in Section 4, an attacker can easily work
around the assumptions to break the former defenses. The latter
studies [31, 44, 54] adapt adversarial training, a technique originally
proposed to defend against digital attacks [26], to physical attacks.



Nevertheless, adversarial training does not work well with a well-
trained model due to a trade-o� between adversarial robustness and
clean performance [20, 47].1 Our experimental results also show
that it does not generalize to defending against stronger adversarial
patches at test time. There is a crucial need for a new defense
designed speci�cally for pre-trained object detectors to protect
downstream applications.

In this paper, we take practicability into account and propose a
simple, yet e�ective defense, called adversarial pixel masking (APM),
against physical attacks for pre-trained object detectors. The APM
alters adversarial training by prepending a data-preprocessing net-
work, called MaskNet, to a given object detector. During adversar-
ial training, we �x the weights of the object detector and let the
MaskNet learn to mask adversarial patches, if existing, in input
images. Our method does not require any assumption beyond the
“patch-like” nature of a physical attack (i.e., a small region whose
pixels can be arbitrarily changed by an attacker). Furthermore, it is
agnostic to the architecture and weights of the object detector and
thus can be applied to a wide range of downstream applications.
We conduct extensive experiments to verify the e�ectiveness of
APM, and the results show that APM can signi�cantly improve
the adversarial robustness of a pre-trained object detector without
degrading clean performance in di�erent learning tasks. Further-
more, APM takes little inference time and can support video frame
rate above 30 fps on the INRIA dataset. Following summarizes our
contributions:

• We propose a new defense called adversarial pixel masking
(APM) that helps a pre-trained object detector defend against
physical attacks.

• The APM does not use the expansive assumptions made
by some existing heuristic-based defenses and thus is much
more widely applicable to di�erent downstream applications.

• Unlike adversarial training, the APM avoids the trade-o�
between adversarial robustness and clean performance. This
make it applicable to mission-critical applications requiring
high clean performance.

• We conduct extensive experiments to verify the e�ectiveness
of APM. The experimental results show that APM can sig-
ni�cantly improve the robustness of a pre-trained YOLOv3
in either normal or transfer learning tasks.

Our study has implications for other downstream media processing
tasks. In particular, the masks produced by the MaskNet, as shown
in Figure 1, can help localize/segment adversarial patches or analyze
the factors in the input space that a�ect model predictions. They
can also be used to explain the robustness or clean performance of
an object detector.

2 RELATEDWORK
An object detector, denoted by f (· ;θ ) and parametrized by θ , nor-
mally detects objects only when the patterns in an input image are
of high objectiveness and classi�cation scores [3, 23, 25, 32–34]. In
this paper, we consider physical adversarial attacks that manipulate
the objectiveness scores [21, 43, 45, 55, 57], classi�cation scores
[8, 39], or both [43]. Next, we review existing defenses against

1To work around this, existing defenses usually start adversarial training from half-
trained model weights [31, 44, 54].

physical attacks. Based on the underlying techniques, we roughly
divide them into three categories.

Pixel-level Detection and Removal. Xu et al. [51] and Hayes
et al. [15] employ the saliency map to detect the adversarial patches
in an input image and then restore the pixels within the detected
patches using an image inpainting technique. These approaches
were proposed to enhance the robustness of classi�cation models,
as the saliency map of a classi�cation model can be easily derived
from the gradients of an output logit with regard to the input image
or by the help of advanced interpretability methods such as guided
backpropagation [40] or CAM [58]. However, it is non-trivial to
apply such techniques to object detection tasks because an attacker
can choose to lower the objectiveness scores to evade detection.

Guangzhi et al. [59] and Naseer et al. [28] observed that adversar-
ial patches often consist of high-frequency noises and are relatively
non-smooth compared to the rest of an image. They propose to
make use of image analysis tools, such as the discrete entropy or
image gradient, to locate and remove abnormally high-frequency
areas in input images. However, smooth, low-frequency adversarial
patches are still possible (see Section 4), which limit the applicability
of these approaches.

Limited Receptive Field. The receptive �eld of a neuron at
a deep layer of a convolutional neural network (CNN) is usually
designed to be large in order to help the network make predictions
by leveraging more information in the image. However, Saha et al.
[36], Zhang et al. [56], and Chong et al. [46] believe that a large
receptive �eld is a reasonwhy deep CNNs are susceptible to physical
adversarial attacks. Assuming that the adversarial patches do not
overlap with the objects being detected, Zhang et al. [56] and Chong
et al. [46] propose to employ a deep CNNwith small receptive �elds,
such as BagNet [4], to prevent the network from using adversarial
features. Saha et al. [36] also design a regularization term that
encourages an object detector to only make use of the features
inside a proposed bounding box. Nevertheless, the assumption does
not hold in many real-world situations, such when an adversarial
patch is attached to a tra�c sign being detected by a self-driving
car [8, 39, 55, 57], or when a patch is attached to the clothes of
people being detected by a surveillance system [43, 45, 52].

Adversarial Training.Adversarial training [16–18, 26, 37], which
enhances model robustness by adding adversarial examples during
training, is one of the most popular defenses against digital attacks
due to its e�ectiveness and openness to di�erent attacks. It has the
following objective:

argmin
θ
E(x ,y)⇠D


max
p 2T

L(f (x 0;θ ),Ä)
�
, (1)

where D is the underlying data distribution, (x,Ä) is an example,
L(·, ·) is a loss function, and x 0 = x +p is an adversarially perturbed
image with the perturbationp whose allowable values are governed
by a threat model T . Recently, Wu et al. [44], Sukrut et al. [31],
and Zhang et al. [54] adapt adversarial training to either physical
attacks or object detection tasks. However, adversarial training has
shown to be less e�ective when the model is well-trained [20] and
could result in a trade-o� between adversarial robustness and clean
performance [47].

Today, many real-world applications use well-trained object
detectors for high clean performance. The above limitations in



Figure 2: The feedforward �ow of APM (left: an input image x 0 = x + p containing adversarial patches p; middle: masked
image x 0 � д(x 0; ξ ); right: detection results f (x 0 � д(x 0; ξ );θ )). During adversarial training, the weights θ of the pre-trained
object detector are �xed, and both θ and ξ are accessible to the threat model T that generates p.

existing defenses raise the concern about the integrity of these
applications, which may seriously impact our lives. As such, it is
crucial to develop a new defense for pre-trained object detectors.

3 ADVERSARIAL PIXEL MASKING
The reason why adversarial training becomes less e�ective with
a well-trained model is because of the data distribution shift from
clean examples to adversarial examples. Although looking similar
to human eyes, adversarial and clean examples are very di�erent in
the feature space of a DNN [48]. This leads to a trade-o� between
robustness and clean performance. To mitigate the trade-o�, exist-
ing adversarial training schemes usually add adversarial examples
in the beginning [26] or middle [20] of training. Recently, Xie et
al. [47] propose to use additional, dedicated batch norm layers for
adversarial examples, trying to prevent the clean and adversarial
examples from interfering with each other. However, the above
approaches are not applicable to pre-trained models whose weights
have been highly optimized and the architectures are �xed.

Here, we take another approach that leaves the pre-trainedmodel
as it is. We instead propose adversarial pixel masking (APM) that
removes adversarial patches in images so that the distribution shift
can be mitigated in pixel space (and therefore a feature space too).

The APM prepends a MaskNet parametrized by ξ , denoted by
д(· , ξ ), to a pre-trained object detector, as shown in Figure 2. The
MaskNet takes an image x 0 = x + p 2 RW ⇥H⇥C as the input and
outputs a mask д(x 0; ξ ) 2 [0, 1]W ⇥H⇥1, whereW , H , and C denote
the width, height, and number of channels andp denotes adversarial
patches that completely replace overlapping pixels in a begin image
x . The MaskNet uses the Logistic function as the non-linearity in its
output layer. Once having the mask, APM feeds the masked image
x 0 � д(x 0; ξ ) 2 RW ⇥H⇥C into the object detector, where � denotes
per-channel element-wise multiplications. Note that the design of
hidden layers of MaskNet depends on applications. Empirically, we
�nd that the U-Net [35] architecture works generally well due to
its superior capabilities of handling pixel-level tasks.

To let theMaskNet learn to detect and remove adversarial patches,
we alter adversarial training and solve the following objective dur-
ing training:

argmin
ξ
E(x ,y)⇠D


max
p 2T

L(f (x 0 � д(x 0; ξ );θ ),Ä)
�
. (2)

Algorithm 1 Adversarial Pixel Masking

1: procedure G��A��E������(x , λ, N , θ , T )
2: Initialize adversarial patches p based on a threat model T ;
3: repeat
4: x 0 = x + p; . Apply patch p to x
5: Update p by making a projected gradient descend step

regarding the inner max problem in Eq. (2);
6: until N times
7: return x + p;
8: end procedure
9:
10: procedure A��T����S���(x , Ä, λ, N , θ , T , ξ )
11: x 0 = GenAdvExpample(x, λ,N ,θ ,T);
12: Update MaskNet weights ξ by making a gradient descend

step regarding Eq. (2);
13: end procedure

Since APM is designed speci�cally for well-trained object detectors,
the weights θ of the object detector are �xed at training time in
order to prevent a drastic change in clean performance. Algorithm
1 outlines the key steps of APM. Note that the APM can work with
di�erent threat models T and pre-trained object detectors f (, ;θ ).

Defending Physical Attacks. Given the goal of minimizing L
on either clean or adversarial examples, the MaskNet will learn to
mask the adeversarial pixels (tominimize L on adversarial examples)
while letting the clean pixels pass (to minimize L on clean examples).
At �rst glance, APM is similar to gradient masking [49, 53],2 a type
of defenses that is proven useless if an attacker knows the existence
of such prepending network [1, 7]. Despite the cosmetic similarity,
APM works in a fundamentally di�erent way than gradient mask-
ing. During adversarial training, the �xed weights θ expose the
vulnerability of the object detector and the MaskNet is required to
“�x” the vulnerability by solving Eq. (2). Since the threat model T
can access both θ and ξ when generating p, the MaskNet has to
defend against white-box attacks. This encourages the MaskNet to
learn to completely remove the adversarial patches from x 0 so that
a white-box attacker cannot bypass APM even when knowing ξ .
Our experimental results con�rm such learned behavior (as shown
in Figure 4).
2In these works, a network/algorithm is prepended to a target model in order to hide
the gradients of the target model from attackers.
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Figure 3: Randomly sampled adversarial examples (top), masks (middle), and detection results (bottom) of APM.

Threat Model. The APM can be used to defend against most
existing physical attacks provided that the attacks have been con-
sidered by the threat model T in Algorithm 1. The threat model can
control many factors, such as the number of adversarial patches
to be added to an input image (line 2), the size and location of
each patch (line 2), and its content pixels (lines 3-6). To the best
of our knowledge, the GenAdvExample(·) routine can model the
choices made by most existing physical attacks, including igno-
rance attacks [21, 43, 45, 55, 57] which aim to make some important
objects disappear, false-positive attacks [8, 43] which aim to create
non-existing objects, and classi�cation attacks [8, 39] which aim
to mislead object labels. For more details of supporting di�erent
attacks, please see Section 1 of the supplementary �le [9].

4 EXPERIMENTS
In this section, we evaluate the adversarial robustness of APM and
inspect the quality of its masks.

Pre-trained Models and Datasets. We use YOLOv3 [33] and
RetinaNet [23] as the pre-trained object detectors. Both of these
networks were pre-trained on the COCO dataset [24]. The COCO
dataset comprises about 80K training images and 40K validation im-
ages where objects of totally 80 classes are identi�ed and annotated
in the images.3 We also consider the INRIA-person [11] dataset.
INRIA is a relatively small dataset which contains 614 training im-
ages and 288 testing images, where only objects of type “person”
are identi�ed and annotated. We use the INRIA dataset to evaluate
the performance of APM in a transfer learning task, a common use
case of a pre-trained model.

Baselines.We consider and implemented the following defenses
against physical attacks. ROC. Assuming that an adversarial patch
does not overlap with the objects being detected, Saha et al. [36] pro-
posed to limit the receptive �eld of object detector by adding a regu-
larization term during training. The regularization term encourages
an object detector to onlymake use of the features inside a bounding
box when predicting the corresponding objectiveness/classi�cation
scores. So, the object detector won’t be mislead by the adversarial
patches. We abbreviate this technique as ROC (Role of Spatial Con-
cept) hereafter. LGS. Assuming that an adversarial patch contains

3Since the testing data of COCO is not publicly available, we use validation data for
performance evaluation.

high-frequency signals, Naseer et al. [28] divided an image into sev-
eral grids, calculated the summation of image gradients inside each
grid, and decided whether an adversarial patch exists in the image
by checking if the summation passes a pre-de�ned threshold. We
use a grid size of 40⇥ 40 pixels, and set the same threshold as in the
original paper . We abbreviate this method as LGS (Local Gradient
Smoothing) hereafter. Note that the LGS was originally proposed
for classi�cation models, but since it is model-agnostic, it can work
with object detectors. ADV. Existing studies have adapted adver-
sarial training, which was originally proposed for classi�cation
models against digital attacks, to either physical attacks [31, 44] or
object detectors [54], but not both. Here, we consider the adversar-
ial training used by APM except that 1) no MaskNet is used and
2) the weights of the pre-trained object detector are �ne-tunable.
We abbreviate this approach as ADV, and it shares the same threat
model as APM.

Settings. During adversarial learning, we set N , the number of
iterations for generating an adversarial example (see line 6 of Algo-
rithm 1) to 10 and 30 on COCO and INRIA datasets, respectively.
We con�gure the threat model T to generate the ignorance attacks
[21, 43, 45, 55, 57], which are one of the most common and danger-
ous physical attacks because they aim to make an object detector
ignore some important objects such as pedestrians or tra�c signs.
For the COCO dataset, the threat model places a single adversarial
patch at a random position of an input image. The patch is of 80⇥80
pixels, which is 20% of the input. The top row of Figures 3(a)-(e)
shows some example patches. For the INRIA dataset, the threat
model creates multiple adversarial patches, one for each human
object detected in an input image. For each adversarial patch, the
threat model resizes it to �t into 80% of the shorter side of the
corresponding human object and then places it on the middle of
the longer side. Figures 3(f)-(j) show some example patches. We
use the mean average precision (mAP) to evaluate both the clean
performance and adversarial robustness of a model, supplied with
clean and adversarial examples, respectively. Our implementation
is built upon TensorFlow and we conduct the experiments on a
cluster of machines with 80 NVIDIA Tesla V100 GPUs.



Table 1: Performance of di�erent defenses with the pre-
trained YOLO on COCO dataset.

YOLO ROC LGS ADV APM

Clean 52.3 34.9 48.9 51.6 52.0

Noise 48.1 31.2 45.4 49.4 48.5

ATK(10) 34.7 20.2 44.4 45.4 47.4

ATK(20) 29.1 17.2 44.1 43.3 46.8

ATK(30) 26.1 15.7 44.0 41.9 46.8

(a) (b) (c)

Figure 4: Top: Adversarial patches of di�erent strengths at
(a)M = 10, (b)M = 20, and (c)M = 30. Bottom: Corresponding
masks produced by APM.

4.1 Object Detection on COCO
We �rst evaluate the clean performance and adversarial robustness
of di�erent defenses on the COCO dataset, which was used to pre-
train the YOLO and RetinaNet object detectors. At test time, we
generate adversarial patches using the same threat model T of
adversarial training except that the numbers of iterations N (see
lines 6 of Algorithm 1) is replaced by M . The higher the M , the
stronger the attack. We consider M = 10, 20, 30 and denote by
“ATK(M)” the adversarial examples generated afterM iterations. As
a sanity check, we also consider the patches �lled with random
noises (denoted by “Noise”).

Table 1 shows the results of di�erent defenses given YOLO as the
pre-trained object detector. The APM gives the highest adversarial
robustness at the least cost of clean performance. It maintain a
high clean performance because the weights of pre-trained YOLO
is �xed and the MaskNet outputs all-pass masks for clean examples
empirically.

The robustness of APM, unlike other baselines, is not signi�-
cantly a�ected by the attack strength at test time. In particular, it
remains roughly the same asM goes from 20 to 30. Investigating
the masks, we �nd that APM tends to completely remove adversar-
ial patches regardless of the attack strength, as shown in Figure 4.
Since the APM was only trained by weaker attacks (N = 10), this
veri�es that APM successfully models some useful priors.

Due to space limitation, we omit the results of the pre-trained
RenitaNet. Please see Section 3 of the supplementary �le [9] for
more details.

Table 2: Performance of di�erent defenses with pre-trained
YOLO on INRIA dataset.

YOLO ROC LGS ADV APM

Clean 87.4 85.1 86.7 88.9 87.8

Noise 84.9 82.3 86.0 95.4 92.2

ATK(10) 6.0 2.6 78.1 90.1 90.1

ATK(30) 0.5 0.0 75.4 77.8 89.4

ATK(50) 0.0 0.0 75.0 67.8 88.6

ATK(100) 0.0 0.0 73.3 48.6 88.3

4.2 Object Detection on INRIA via Transfer
Learning

In practice, it is common to use a pre-trained object detector for
transfer learning tasks, where the weights of the detector are �ne-
tuned by domain-speci�c data to achieve better (clean) performance.
Here, we evaluate the performance of di�erent defenses on the
INRIA dataset, which focuses on human objects and is smaller
than the COCO dataset originally used to trained the YOLO and
RetinaNet. Before running a defense, we �ne-tune the weights of
YOLO and RetinaNet using INRIA to simulate the cases where a
pre-trained object detector has been �ne-tuned for transfer learning.
Note that, since INRIA is a small dataset, there is a high chance
of over�tting. Hence, in APM, we do not �x the weights θ of the
object detector during adversarial training so that the adversarial
examples can serve as augmented data and mitigate over�tting.4

Table 2 shows the results. Both ADV and APM improve the
clean performance thanks to the data augmentation e�ect during
adversarial training. However, ADV gives much worse robustness
due to the distribution shift from clean to adversarial examples
discussed in Section 3. We also notice that ADV gives abnormally
high performance on the images with noisy patches. We suspect
ADV leverages the existence of a patch to identify human objects,
as each object has a corresponding patch in an adversarial example.
On the other hand, APM does not use this information because a
successfully masked patch contains zeros and does not activate a
neuron in the object detector.

4.3 Overlapping Patches
As shown in Tables 1 and 2, the ROC consistently performs worse
than other defenses. It assumes that physical adversarial patches
does not overlap with the objects being detected, and tries to im-
prove robustness by limiting the receptive �elds of neurons of the
detector. However, the limited receptive �elds create a negative
impact on clean performance. Furthermore, when the assumption
does not hold (as in both of our experiments on COCO and INRIA),
the ROC can actually hurt robustness because it wrongly encour-
ages the object detector to focus on the adversarial features inside
the bounding boxes of objects.

4We use two-phase training where θ is �xed at �rst and becomes tunable after ξ
catches up. We also implement the “bag of tricks” by [29].



Figure 5: Example adversarial patches with (a) high-
frequency and (b) low-frequency signals.

Table 3: Performance of LGS and APM under high- and low-
frequency attacks on COCO dataset.

YOLO LGS APM

High Low High Low High Low

Clean 52.3 48.9 52.2

Noise 48.1 45.4 48.9

ATK(10) 34.7 40.2 44.4 42.3 47.7 47.3

ATK(20) 29.1 37.2 43.9 40.6 46.8 46.9

ATK(30) 26.1 35.6 44.2 39.5 46.6 46.3

Table 4: Performance of LGS and APM under high- and low-
frequency attacks on INRIA dataset.

YOLO LGS APM

High Low High Low High Low

Clean 87.4 86.7 82.9

Noise 84.9 86.0 91.5

ATK(10) 6.0 52.4 78.1 78.1 90.3 89.8

ATK(30) 0.5 7.3 75.4 69.4 89.6 89.6

ATK(50) 0.0 3.4 75.0 63.1 89.5 89.3

ATK(100) 0.0 1.7 73.3 58.5 88.8 89.0

4.4 Low-frequency Attacks
The LGS gives impressive performance in Tables 1 and 2. However, it
assumes that an adversarial patch contains high-frequency signals,
which may not hold in practice. To demonstrate this, we add a “low-
frequency” attack into the threat model. We regularize p to have
a small total variation loss, which encourages pixel smoothness.
During adversarial training, we randomly sample λ from {0, 0.01}
in each training step, so the training data are augmented with both
high-frequency and low-frequency patches. Figure 5 shows the
visual di�erence between a high- and low-frequency patches.

As Tables 3 and 4 show, LGS gives worse robustness in the pres-
ence of low-frequency adversarial patches, yet the low-frequency
patches seem to be easier to defend for the vanilla YOLO. Figure
6(a) shows how LGS fails to identify a low-frequency patch. On the
other hand, APM is insensitive to the signal frequency because its

(a) LGS (high/low) (b) APM (high/low)

Figure 6: LGS and APM under high- and low-frequency at-
tacks.

Figure 7: A physical attack in the real world, which aims
to eliminate a pedestrian object when the pedestrian is at-
tached to a printed universal adversarial patch. Top: Detec-
tion results of vanilla YOLO. Middle: Masks produced by
APM. Bottom: Detection results of APM.

MaskNet can successfully identify and remove adversarial patches
in either cases, as shown in Figure 6(b).5

4.5 APM in the Real World
Next we conduct experiments to see whether APM can defend
against physical attacks on real-world streets. We create a printable
adversarial patch [43, 50, 52] that 1) is universal so that it can be
applied to any scene in the INRIA dataset and 2) takes into account
post-print distortions such as white noise, rotation, brightness shift,
etc. We print the universal patch out and verify that it can success-
fully attack the vanilla YOLO by muting a “person” object when the
corresponding person carries the patch, as shown in the top row of
Figure 7. We then use it to attack the APM trained on the INRIA
dataset (following the settings in Section 4.2) and �nd that APM
works well in most of the cases we have tested. The middle and

5The adversarial patches for LGS and APM looks di�erent because they are computed
based on the clean and masked images, respectively.



(a) (b) (c)

Figure 8: Featuremaps of a YOLO �lter given (a) clean image,
(b) attacked image, and (c) masked image by APM.

Table 5: The average training and inference time of di�erent
defenses on (a) COCO and (b) INRIA datasets.

(a) ROC LGS ADV APM

Inference 119 ms 4,724 ms 3,021 ms 204 ms

Training 1d14 h – 5 h 40 m 3 d

(b) ROC LGS ADV APM

Inference 96 ms 371 ms 29 ms 24 ms

Training 10 m – 33 m 15 m

bottom rows of Figure 7 show some example masks and detection
results of APM, respectively.

4.6 Feature Alignment
To understand how APM improves robustness, we visualize the
pre-trained object detector in APM following the experiment in
Section 4.1. Figure 8 shows the feature maps of a �lter at the last
layer of the feature extractor of YOLO given a clean image (Figure
8(a)), an attacked image (Figure 8(b)), and a masked image produced
by MaskNet (Figure 8(c)). Although looking similar in the naked
eye, the feature maps of the clean and attacked images are very
di�erent in the feature space. There exists a data distribution shift
from clean to adversarial examples. On the other hand, the feature
map of the masked image becomes similar to that of the clean image.
The distribution shift is mitigated via pixel masking. We further
verify this by comparing the average Euclidean distances between
the feature tensors of raw adversarial and clean test images and
that between the masked and clean test images. The former is 1.381,
while the latter is only 0.286. By mitigating the distribution shift,
APM helps the object detector function normally when under attack
and meanwhile preserves clean performance.

4.7 Speed
Table 5 shows the time required to train and test di�erent defenses
on a commodity machine with a single NVIDIA Tesla V100 GPU.
On the COCO dataset (Table 5(a)), APM takes longer time to train
than ADV because 1) the MaskNet in APM is trained from scratch,
and 2) ADV tends to stop early when paired up with a pretrained

(a) (b) (c) (d)

Figure 9: Threatmodels that generate adversarial patches (a)
at di�erent locations, (b) of smaller sizes, (c) of larger sizes,
and (d) with di�erent aspect ratios than the ones seen by
APM trained on INRIA dataset.

Table 6: Performance of ADV and APM on INRIA dataset
when the treat model T generates stronger adversarial
patches during training (N = 50 or 80).

N = 50 N = 80

ADV APM ADV APM

Clean 82.3 83.3 84.0 83.0

ATK(50) 97.4 87.4 97.6 86.2

ATK(100) 73.7 85.0 97.6 86.1

ATK(200) 65.0 84.4 67.2 84.2

ATK(300) 56.8 84.4 68.3 82.9

object detector. At test time, ADV takes signi�cantly longer time
than APM to detect the objects in a test image. It turns out that 2,338
out of 3,021 ms was spend on the non-max suppression process (a
deterministic algorithm run after the feedforward pass to decide
the �nal bounding boxes) because there are signi�cantly more
overlapping candidate bounding boxes outputted by ADV. In the
transfer learning task on the INRIA dataset where the weights of
the object detector is not �xed (Table 5(b)), APM requires less time
to train than ADV, showing that learning to mask patches is more
e�cient than learning to “�x” to object detector itself. APM takes
only 24 ms to make inferences on the INRIA dataset, which supports
video frame rate of 41 fps.

4.8 Ablation Study
Sensitivity to N . Sections 4.1 and 4.2 show that APM can better
sustain stronger attacks at test time than ADV. We investigate
whether this holds when the two defenses were trained with a
larger N (i.e., stronger train-time attacks). Table 6 shows the results
on the INRIA dataset. As we can see, APM still outperforms ADV in
defending against stronger attacks. Note, however, that a larger N



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 10: Failed masks of APM.

Table 7: Performance of APM with tunable weights θ .

Dataset θ Clean Noise ATK(10) ATK(30)

COCO
Fixed 52.0 48.5 47.4 46.8

Tunable 51.1 48.8 47.9 47.2

INRIA
Fixed 83.0 84.7 83.7 82.0

Tunable 87.8 92.2 90.1 89.4

Table 8: Generalizability of APM under unseen attacks (M =
50).

Seen Di�. Loc Sm. Size Lg. Size Di�. AR

88.6 81.7 82.5 82.3 81.0

signi�cantly increases the training time of both methods, making
them less applicable to large-scale applications.

Fixed or Tunable θ . In Section 4.2, we make the weights of pre-
trained object detector tunable during adversarial training. This
raises a question: is it better to always let the weights tunable? We
answer this question by following the experiment in Section 4.1
but leave the YOLO weights tunable during adversarial training.
Also, we extend the experiment in Section 4.2 by �xing the YOLO
weights. The results are given in Table 7. For a transfer learning task
on INRIA, the tunable YOLO weights indeed improve the overall
performance of APM. We have discussed the reason in Section 4.2.
However, for a normal task on COCO, we see a slight increase in
robustness at the cost of degraded clean performance. It is up to
the application to decide which comes in priority.

Generalization. We also investigate how APM performs under
unseen attacks. APM was trained by the adversarial patches of 1)
square shape, 2) size equal to 0.8 of the width of the corresponding
objects, and 3) horizontal placement at the middle of the correspond-
ing objects. At test time, we modify the threat model T such that it
generates adversarial patches 1) at di�erent locations (bottom of
a bounding box), 2) of 50% smaller sizes, 3) of 12.5% larger sizes,
or 4) with a di�erent aspect ratio (2:1) than the ones seen by APM

during training on the INRIA dataset. Table 8 shows the results. The
robustness of APM drops, but APM still outperforms other base-
lines (cf. Table 2). Figure 9 shows some example unseen adversarial
patches and their corresponding detection results. As we can see,
APM successfully generalizes to these challenging cases.

4.9 Failed Cases
AlthoughAPM can identify and remove adversarial patches inmany
challenging situations (see Figure 3), there are some failed cases too.
The masks proposed by APM occasionally make object detector
output false-positive objects, as Figures 10(a)-(e) shows (where a
person is detected at the top-left corner). APMmay also fail when (i)
the masks do not fully remove adversarial patches (Figures 10(a)(b)),
(ii) the masks aggressively cover too many clean pixels (Figures
10(g)(j), where people at the periphery are not detected), (iii) the
adversarial patches are dense and obscuring each other (Figures
10(f)(i)), or (iv) the objects being detected is too small (Figure 10(h)).
We leave the further investigation of causes and solutions as our
future work.

4.10 More Experiments
We have conducted more experiments, in particular the black-box
attacks where the adversarial patches were generated using Reti-
naNet and then applied to YOLO. We found that the black-box
physical attack does not seem to transfer well across object detec-
tors as the vanilla YOLO already achieves more than 80% robustness
against the attack. However, APM can still improve the robustness
up to 10%. Please read the supplementary �le [9] for more details.

5 CONCLUSION
We proposed APM that helps a pre-trained object detector defend
against physical attacks. APM does not require strong assumptions
and is agnostic to the internals of the object detector and threat
model. We conducted extensive experiments to verify the e�ec-
tiveness of APM. We also inspected the masks generated by the
MaskNet to understand how APM works. As our future work, we
plan to address the failed cases reported in Section 4.9. We will also
evaluate the e�ectiveness of APM in real-world applications, such
as the self-driving cars, where security is in high demand.
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