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In this document, we provide more details about the settings of
our experiments. We also conduct more experiments to verify the
e�ectiveness of APM.

1 ATTACK MODEL
APM can be used to defend against most existing physical attacks
provided that the attacks have been considered by the threat model
T in Algorithm 1 in the main paper. However, generating patch
pixels by replaying all known attacks could slow down adversarial
training signi�cantly. Since most existing physical attacks aim to
manipulate the objectiveness scores and/or classi�cation scores of
candidate objects, we can de�ne an uni�ed objective for generating
patch content. For ease of presentation, we consider YOLO [1, 8, 9]
as the pre-trained object detector here. The objective can be easily
adapted to other types of detectors. A YOLO detector divides the
input space into grids G, and in every grid д 2 G there is a set
A of pre-de�ned anchors. Given a masked input image x � m,
the detector (prepended by MaskNet) outputs three elements for
every anchor a 2 A: the coordinates of a bounding box (relative
to a), the corresponding objectiveness scores o(x ; ξ ,θ )�,a 2 R, and
the corresponding classi�cation scores c(x ; ξ ,θ )�,a 2 R |C | for all
candidate classes C. The uni�ed objective is then de�ned as

arg min
p 2T

’
�2G,a2A,c 2C

o(x 0; ξ ,θ )�,a · c(x 0; ξ ,θ )�,a,c + λ�(p), (1)

where x 0 = x +p is a perturbed image and �(p) is a regularization
term that encourages, for example, pixel smoothness. Eq. (1) is a
realization of the inner max problem of Eq. (2) in the main paper.
By considering both the objectiveness and classi�cation scores, the
generated adversarial examples can guide the MaskNet to defend
against the ignorance attacks [4, 14, 16, 19, 20] which aim to make
some important objects disappear, false-positive attacks [2, 14]
which aim to create non-existing objects, and classi�cation attacks
[2, 12] which aim to mislead object labels.
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Table 1: Performance of LGS with di�erent grid sizes on IN-
RIA dataset.

LGS (15x15) LGS (40x40)

High Low High Low

Clean 87.2 86.7

Noise 86.4 86.0

ATK(10) 76.9 76.7 78.1 78.1

ATK(30) 72.8 64.8 75.4 69.4

ATK(50) 72.5 58.7 75.0 63.1

ATK(100) 69.4 49.7 73.3 58.5

(a) (b)

Figure 1: Example masks given by the MaskNet after the (a)
�rst and (b) second stages of adversarial training.

2 DETAILED SETTINGS OF EXPERIMENTS
Local Gradients Smoothing (LGS). The performance of LGS is
largely in�uenced by two hyper-parameters: threshold and grid
size. As mentioned in Section 4 of the main paper, we followed the
original paper [6] to set the threshold. On the other hand, we use
more �ne-grained grids by setting the grid size to 40⇥ 40 instead of
the original 15⇥15. As Table 1 shows, this leads to better robustness.

Role of Spatial Concept (ROC).During training, the ROC [11]
adds an additional regularization term that encourages a model
to focus only on the features within the bounding box of each
candidate object. This is done by maximizing the saliency maps
within the bounding box, where each saliency map is the gradients
of the object’s con�dence score with regard to a feature map at
a deep layer. We use the last layer of the feature extractor of the
object detector to calculate the saliency maps.



Table 2: Performance of di�erent defenses with pre-trained
RetinaNet on INRIA dataset. The RetinaNet weights are not
�xed in APM.

RetinaNet APM

Clean 71.1 66.4

Noise 57.9 80.8

ATK(10) 6.5 63.0

ATK(30) 1.5 41.7

ATK(50) 0.7 32.1

ATK(100) 0.7 19.7

MaskNet architecture.We experimented with several architec-
tures for the MaskNet in APM, and found that the U-Net architect
[10] works the best. The U-Net consists of fully-convolutional lay-
ers, each is structured by a contracting path with an expansive
path. So, it maintains the spatial information in feature space and
increase the resolution of output. We also found that APM with
U-Net converges faster than with other CNNs during adversarial
training.

Transfer learning. As discussed in the main paper, we let the
weights of the pre-trained object detector �ne-tunable for a transfer
learning task. To implement this, we employ a two-stage training
process. In the �rst stage, we �x the weights of the pre-trained
object detector and only train the MaskNet. Once the weights of
MaskNet converge, we then �ne-tune the weights of MaskNet and
object detector jointly. These two-stage training stages both follow
Algorithm 1 described in the main paper. Empirically, it prevents
the random initial weights of MaskNet to ruin the object detector
and results in more clear masks, as shown in Figure 1.

3 ADVERSARIAL ROBUSTNESS OF
RETINANET

Here, we show that APM can also improve the robustness of a
pre-trained object detector based on RetinaNet [5]. We consider
the ignorance attack following the main paper. However, since
the output of RetinaNet is di�erent from that of YOLO, we use
a slightly di�erent objective for generating adversarial examples
during adversarial training. Speci�cally, RetinaNet uses only the
classi�cation score as the con�dence of a candidate object. In order
to lower the con�dence score and make the candidate object get
suppressed by the non-maximum suppression procedure, we use
the objective:

arg min
p 2T

’
�2G,a2A,c 2C

c(x 0; ξ ,θ )�,a,c + λ�(p).

We test the adversarial robustness of APM on INRIA with the
same settings described in Section 4.2 of the main paper. The re-
sults are shown in Table 2. We can see that APM improves the
adversarial robustness of RetinaNet. However, the improvement
is not as signi�cant as we have seen in the main paper, and the
clean performance drops. We believe this problem is rooted from

the pre-trained RetinaNet itself. The pre-trained RetinaNet we used,
which is directly downloadable from the TensorFlow repository,1
only give an mAP of 71.1 for clean images. This is lower than the
87.4 given by the pre-trained YOLOv3 used in the main paper. Con-
sider Eq. (2) in the main paper, the object detector needs to be able
to correctly identify objects when the MaskNet (ξ ) successfully
masks an adversarial patch. Without a properly pre-trained object
detector, the MaskNet cannot learn to “�x” the vulnerability of the
detector at pixel space because the loss L is largely resulted from
θ rather than p. Empirically, we found that the MaskNet tends to
output all-pass masks in failed cases, as shown in Figure 2.

4 APM IN THE REAL WORLD
Here, we show more results of the experiment described in Section
4.5 of the main paper. To see whether APM can defend physical
attacks in the real world, we created an universal adversarial patch
[14, 17, 18] by regularizing the perturbationsp (via the �(p) term in
Eq. (1)) such thatp 1) is “universal” in the sense that it can be applied
to di�erent input images, and 2) takes into account some common
post-print distortions such as white noise, rotation, brightness shift,
etc. Subsequently, we print the universal patch out and see if it can
mute objects when held by real people. Figures 5 in the main paper
and 3 here show that APM can successfully defend against the
universal patch in the real world. Interestingly, Figure 3 also shows
that APM can defend against the universal patch even in the indoor
scenes, which is very di�erent from those in the INRIA training
dataset. We also �nd that, APM can successfully defend against
the attack by only masking some critical portions of the patch. An
universal real-world patch seems to work only when all its pixels
(or critical portions) are visible to the object detector. As our future
work, we will conduct larger-scale experiments to further verify
the e�ectiveness of APM in di�erent real-world applications.

5 UNSEEN ATTACKS
To study the generalizability of APM, we at test time modify the
threat model T such that it generates di�erent adversarial patches
than the ones used during adversarial training. Recall from Section
4 of the main paper that, on the INRIA dataset, APM was trained by
the adversarial patches of 1) square shape, 2) size equal to 0.8 of the
width of the corresponding objects, and 3) horizontal placement
at the middle of the corresponding objects. Table 3(a) and Figure
4 shows the performance of APM when the size of adversarial
patches varies. We can see that APM performs well even if the
size of adversarial patches varies at test time. This is because the
“human” objects in the INRIA dataset are of di�erent sizes, so APM
was trained to generalize. We further modify the attack by changing
the horizontal placement of adversarial patches to the bottom of
the corresponding objects. Table 3(b) and Figure 5 shows the results.
We also test APM using the adversarial patches of di�erent aspect
ratios, and the results are shown in Table 3(c) and Figure 6. APM
can generalize to rectangular adversarial patches, despite they have
never be seen by APM. We leave the study of more test-time variety
as our future work.

1See https://github.com/tensor�ow/models/tree/master/research/object_detection.



Figure 2: When paired up with a pre-trained object detector having a high error rate, the MaskNet tends to output all-pass
masks to help the detector see as mush information as possible to make correct predictions.

Table 3: Generalizability of APM on INRIA dataset under the attacks with adversarial patches having (a) di�erent sizes, (b)
di�erent locations, and (c) di�erent aspect ratios (M = 50).

Size (Ratio to Object Width)

0.9 0.7 0.6 0.5 0.4

82.3 85.4 84.9 84.7 82.5

Clean
Size (at Bottom)

0.8 0.7 0.6 0.5

81.8 81.7 82.5 83.7 62.3

Aspect Ratio

(2.5:1) at top (2:1) at middle

79.2 81.0

(a) (b) (c)

Figure 3: APM against an universal physical attack in the
real world.

6 BLACK-BOX ATTACKS
We also consider black-box attacks, where the weights δ and ξ in
Eq. 2 in the main paper are not accessible to an adversary. The
black-box attacks have shown to be possible in digital domains
and/or for classi�cation tasks [3, 7, 13, 15]. Nevertheless, to the
best of our knowledge, there is no existing study that reports the
existence of black-box attacks for object detection tasks in physical
domains. To implement an black-box attack, we generate a physical
attack using RetinaNet and then apply it to YOLO. Table 4 shows the
results. As we can see, APM consistently improves the robustness.

Table 4: Robustness of APM under a black-box attack on IN-
RIA dataset, where adversarial patches are generated using
RetinaNet and then applied to YOLO.

ATK(10) ATK(10) ATK(30) ATK(50)

YOLO 81.6 82.8 83.0 83.5

APM 91.3 91.0 91.3 91.2

However, the black-box physical attack does not seem to transfer
well across object detectors as the vanilla YOLO already has high
robustness against the attack. This controverts the seemly-universal
transferability of digital attacks in classi�cation tasks [3, 7, 13, 15]
and motivates further investigation, which we will leave as our
future work.
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