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ABSTRACT
Many practical applications of classification require the classifier
to produce a very low false-positive rate. Although the Support
Vector Machine (SVM) has been widely applied to these applica-
tions due to its superiority in handling high dimensional data, there
are relatively little effort other than setting a threshold or changing
the costs of slacks to ensure the low false-positive rate. In this pa-
per, we propose the notion of Asymmetric Support Vector Machine
(ASVM) that takes into account the false-positives and the user tol-
erance in its objective. Such a new objective formulation allows
us to raise the confidence in predicting the positives, and therefore
obtain a lower chance of false-positives. We study the effects of
the parameters in ASVM objective and address some implementa-
tion issues related to the Sequential Minimal Optimization (SMO)
to cope with large-scale data. An extensive simulation is conducted
and shows that ASVM is able to yield either noticeable improve-
ment in performance or reduction in training time as compared to
the previous arts.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; I.2 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Support Vector Machine (SVM), Classification, Low False-Positive
Learning

1. INTRODUCTION
In many real-world applications of classification, users are par-

ticularly sensitive to the wrong predictions of a certain class. For
example, in spam filtering [1, 6, 16], users may overlook/delete im-
portant information if a good mail is misclassified to spam; in facial
image recognition [31] and network intrusion detection [3], costly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

but wrong decisions may follow if a false match or alarm is fired;
in computer-aided disease diagnosis [12, 33], patients may lose the
golden period of treatment if their symptoms are wrongly classified
as negative. A classifier must produce a very low false-positive (or
negative) rate when applied to these applications.

Many efforts [1, 7, 10, 15, 19, 20, 21, 24, 25, 32] have been
made upon different classifiers to reduce the false-positive rate. Al-
though the Support Vector Machines (SVMs) have demonstrated
high prediction accuracy in the literature [9, 14, 15, 30], there are
relatively few studies [15, 19, 28] on further reducing the SVMs’
false-positive rate. Two common techniques, the parameter tuning
[11, 19] and thresholding [15, 28], are applied prior and posterior
to the SVM algorithms respectively. The former adjusts the para-
meter (i.e., cost) of each slack variable in an SVM objective. This
approach requires either time-consuming searches for the optimal
combination of the costs [11] or domain-specific knowledge of the
pattern contents (e.g., relations between different email categories
in spam filtering [19]) based on which the learned classifier may
not generalize well due to the heuristic nature in setting the costs.
The latter establishes a threshold (larger than 0) based on the Re-
ceiver Operating Characteristic (ROC) curve of a testing data. Only
those patterns with predicted scores higher than the threshold will
be classified as positive. The false-positive rate can be lowered as
the threshold increases, yet fewer patterns may be predicted as pos-
itive meanwhile. Such a technique suffers from an unwanted trade-
off between minimizing the false-positive rate and maximizing the
true-positive rate.

Note the objective of traditional SVMs is to maximize the mar-
gin between the positive and negative classes in order to obtain high
classification performance such as accuracy or Area Under Curve
(AUC). For applications sensitive to the false-positives, keeping the
resultant false-positive rate under a maximal user tolerance is usu-
ally a concern prior to achieving high classification performance
[32]. For example, users are unlikely to accept a spam filter capa-
ble of identifying 100% of spam but half of the spam predictions
are actually good mails. There is a basic need for a new SVM that
seeks high classification performance only when the false-positive
rate meets the user tolerance.

In this paper we propose the Asymmetric Support Vector Ma-
chine (ASVM), a support vector learning algorithm that takes into
account the false-positive rate and user tolerance in its objective
formulation. ASVM is asymmetric in the sense that it maximizes
the margin between the negative class and the core [5] (i.e., high
confidence subset) of the positive class. Basically, the smaller the
core (i.e., the higher the confidence), the less chance a false-positive
may occur. Given a user tolerance, we are able to determine a
proper size of the core that ensures satisfactory false-positive rate,
and at the same time the class-margin is maximized to yield high
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classification performance. ASVM avoids the trade-off between
the false- and true-positive rates in thresholding, and is applicable
to any applications since no prior or domain-specific knowledge is
required.

To the best of our knowledge, this is the first work that exploits
the asymmetry in SVM’s objective to control the false-positive rate.
Following summarizes our contributions:

• We propose the notion of asymmetric support vector learning
and formulate the ASVM objective. The asymmetry is real-
ized by maximizing a core-margin in addition to the class-
margin employed by traditional SVMs.

• We study the effects of the ASVM parameters in detail and
observe their linkage to the empirical measure over the por-
tion of outliers. This allows ASVM to incorporate with the
prior knowledge if the fraction of noises or low confident
patterns is known in advance in a dataset.

• We address some implementation issues of ASVM and pro-
pose a bi-training technique based on the Sequential Minimal
Optimization (SMO) [18, 22, 28]. By this means ASVM can
cope with large-scaled datasets.

• An extensive simulation is conducted based on both the syn-
thetic and real-world datasets [2, 23]. Experimental results
show that, as compared to the thresholding technique, ASVM
is able to render about 6.4% improvement in AUC when a
maximal user tolerance to the false-positive rate must be met,
and become the best classifier in the low-false positive region
along the ROC Convex Hull. On the other hand, as compared
to the parameter tuning technique, ASVM is able to achieve
a comparable performance but require merely an order less
training time.

The rest of the paper is organized as follows. In Section 2, we re-
view some related studies and explain the basics of SVMs. Section
3 introduces ASVM. We also look into the effect of each parameter
in the ASVM objective. In section 4 we evaluate the performance
of ASVM based on the simulation results. We also discuss some
implementation and training issues to handle large-scale data. Sec-
tion 5 concludes the paper.

2. PRELIMINARIES
In this section, we briefly review related studies, and give prelim-

inaries of SVMs. We specify some terminologies and assumptions
that will be used throughout the text.

2.1 Related Works
The naive bayes classifier [1, 24, 25] is probably the earliest

method used in the low false-positive learning. Parameters of the
probability model can be easily adjusted to associate the positive
predictions with high confidence. Recent efforts on low false-positive
learning include utility [8, 19], boosting [10], compression [7], cas-
caded classifiers [32], and ensemble [21]. Studies [8, 19] employ
the utilities, sometimes called stratifications, to change the prior of
a decision tree or costs of SVM slacks. The study [10] induces
a decision tree that is able to give confidence-rated predictions by
following the AdaBoost algorithm. Authors of [7] derive two com-
pression models for the positive and negative classes respectively,
and assign the label of a pattern to the class having higher com-
pression rate. These compression models are adaptive so the false-
positive rate may be controlled. Authors of the study [32] pro-
poses a two-stage cascaded classifier. Patterns reported as posi-
tive in the first stage are further validated in the second to reduce

the false-positive rate. The study [21] merges different classifiers
(those submitted to TREC 2005 Spam Evaluation Track [13]) and
combines their outputs using the log-odd average to achieve low
false-positive rate.

In this paper we focus on the support vector learning. Following
details the objective formulations of SVMs as they are relevant to
our study.

2.2 Support Vector Machines
Given a sample Zm = ((x1, y1), (x2, y2), · · · , (xm, ym)) of

m training instances drawn i.i.d. from X × {±1}, where xi ∈ X
denotes a pattern and yi ∈ {±1} is a class label. Our goal for
classification is to find a real value function f such that ∀ (x, y) ∈
X × {±1}, f(x) ≥ 0, if y = 1; f(x) < 0 otherwise. The value
f(x) is called the decision value.

The SVM Classifier. The Support Vector Machine (SVM) [9,
14, 30] searches a hyperplane {f(x) : x ∈ X} that maximizes the
margin between the two classes of training patterns. To separate the
overlapped classes, xi are usually mapped to a high dimensional
Reproducing Kernel Hilbert Space (RKHS), H, by a function Φ.
Let {〈w,Φ(x)〉+ b : Φ(x) ∈ H}, w ∈ H and b ∈ R, be a hyper-
plane corresponding to a linear function f(x) = 〈w,Φ(x)〉+ b in
H, the primal objective of SVM can be formulated as a quadratic
optimization problem:

arg min
w,b,ξ

1

2
‖w‖2 +C

m∑

i=1

ξi, (1)

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi and ξi ≥ 0,

for all i = 1, · · · ,m, where ξi are slack variables and C is a con-
stant denoting the cost of each slack. The above objective puts
the positive training instances (xi, 1) at one side of the margin
{〈w,Φ(x)〉+b) ≥ 1 : Φ(x) ∈ H}, and the negative ones (xi,−1)
at another side {〈w,Φ(x)〉 + b) ≤ −1 : Φ(x) ∈ H}. Instances
(xi, yi) falling outside of their corresponding regions are called
outliers and have positive penalties ξi > 0. The parameter C con-
trols the trade-off between maximizing the margin (i.e., 2/‖w‖)
and minimizing the training error (i.e.,

∑m

i=1 ξi). Eq. (1) can be
solved efficiently [18, 22, 28]. Obtaining w and b, one may pre-
dict the label of a testing pattern x′ by using sgn (f(x′)). Studies
[4, 29, 30] show that the large margin can actually lead to better
generalization performance in prediction. �

One-Class SVM. There is another type of SVM [5, 26] that aims
at distinguishing the regular patterns from outliers. Given a sample
Xm = (x1, · · · ,xm) of m unlabeled patterns drawn i.i.d. from
X with distribution D, the one-class SVM searches for the small-
est ball that encloses the support of D. When data are mapped to
an RKHS, finding the smallest ball is equivalent to searching a hy-
perplane that approaches the dataset as close as possible from the
origin [26]. Let {〈w,Φ(x)〉 − ρ : Φ(x) ∈ H}, ρ ∈ R, be the hy-
perplane, the objective of one-class SVM is formulated as follows:

arg min
w,ρ,ξi

1

2
‖w‖2 − ρ+ C

m∑

i=1

ξi, (2)

subject to 〈w,Φ(xi)〉 ≥ ρ− ξi and ξi ≥ 0,

for all i = 1, · · · ,m. The above objective puts all instances xi at
the upper side of the hyperplane {〈w,Φ(x)〉−ρ ≥ 0 : Φ(x) ∈ H}
and let the boundary 〈w,Φ(x)〉 − ρ = 0 approach the elements of
Xm by maximizing its margin from the origin (i.e., ρ/‖w‖). Pat-
terns xi falling outside the region {〈w,Φ(x)〉 − ρ ≥ 0 : Φ(x) ∈
H} are called outliers and have ξi > 0. The parameter C con-
trols the trade-off between maximizing the margin (i.e., ρ/‖w‖)
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and minimizing the training error (i.e.,
∑m

i=1
ξi). Solving Eq. (2),

the function sgn (〈w,Φ(x′)〉 − ρ) can be used to indicate whether
a testing pattern x′ belongs to the support or not. �

Note that solving Eqs. (1) and (2) may involve calculating the dot
product 〈Φ(xi),Φ(xj)〉 in an infinite-dimensional RKHS. Choos-
ing a positive definite kernel k, by Mercer’s theorem, one may ef-
ficiently obtain the above term using 〈Φ(xi),Φ(xj)〉 = k(xi,xj).
In this paper, we restrict our discussion on the Gaussian Radial Ba-
sis Function (RBF) kernel, i.e., k(xi,xj) = exp(−q ‖xi − xj‖

2),
where q is a constant.

To reduce the false-positive rate of the SVM classifier, current
solutions either set a threshold [15, 28] or differentiate the cost C
of the slack variables [11, 19]. In thresholding [15, 28], a testing in-
stance x′ may be predicted as positive only if 〈w,Φ(x′)〉+ b ≥ t,
where t > 0 is a threshold whose value is determined from the
ROC curve. Clearly, the larger the value of t, the less chance a
false-positive occurs in a prediction. However, fewer true-positives
can be identified. The latter approach [11, 19] associates different
costs Ci to different slacks ξi in Eq. (1). This approach is time con-
suming as it requires either human interaction [19] or extra searches
[11] to obtain proper values of Ci.

3. ASVM
In this section, we introduce the Asymmetric Support Vector Ma-

chine (ASVM) and its rationale. We also show how ASVM can in-
corporate the user tolerance to achieve low false-positive learning1.

3.1 An Asymmetric Formulation
Recall that in traditional SVM classifier, the margin are maxi-

mized between the positive and negative classes described by the
training (noisy) instances. To lower the false-positive rate, we aim
at searching for a better described positive class that is able to catch
a higher confidence area amongst the positive training patterns.
Note changing the value of C in Eq. (1) to identify more outliers
from the positive patterns may not lead to a better description since
by definition the outliers do not reflect the low confidence points in
the underlying data distribution. One naive solution is to adopt two
one-class SVMs, with different values of C in Eq. (2), to estimate
proper borders of the two classes and let the decision boundary sit
at the middle of the two balls. However, the balls are independent of
each other. This approach does not take into account the interaction
(e.g., overlap, margin) between the two classes, and the accuracy of
predictions is expected to be low from the statistical learning theory
[30] point of view.

We formulate the objective of ASVM as follows:

arg min
w,ρ,γ,ξ

1

2
‖w‖2 − ρ−

μ

τ
γ +

1

τm

m∑

i=1

ξi, (3)

subject to yi(〈w,Φ(xi)〉 − ρ) +
1

2
(yi − 1)γ ≥ −ξi,

ξi ≥ 0, and γ ≥ 0,

for i = 1, · · · , m, where μ and τ are constants. The concept of Eq.
(3) is illustrated in Figure 1. Note we use the shorthand x for Φ(x).
Consider two parallel hyperplanes {〈w,Φ(x)〉 − ρ : Φ(x) ∈ H}
and {〈w,Φ(x)〉−ρ+γ : Φ(x) ∈ H}. The above objective puts the
positive patterns at the upper side of the first plane {〈w,Φ(x)〉 ≥
ρ : Φ(x) ∈ H}; and the negative ones at the lower side of the
second {〈w,Φ(x)〉 ≤ ρ− γ : Φ(x) ∈ H}. Instances falling out-
side their corresponding regions are called slacks and have positive
1Due to the space limitation, we focus ourselves on the two-class
classification problem. The ASVM objective proposed in this arti-
cle can be easily extended to the muti-class problem.

ρ

‖w‖

ξ

‖w‖

Positive
Negative

x : 〈w, x〉 = ρ − γ x : 〈w, x〉 = ρ

γ

‖w‖

si
+

si
−

o i
+

o i
−

Figure 1: A logic view of ASVM in RKHS. Two margins,
the core-margin (ρ/‖w‖) and class-margin (γ/‖w‖), are maxi-
mized simultaneously to allow classifying the negative class and
the core of the positive class.

penalties ξi > 0. We set f(x) = 〈w,Φ(x)〉 − ρ+ γ

2
, and predict

the label of a testing instance x′ by sgn(f(x′)).
ASVM maximizes two margins, the core-margin (i.e., ρ/‖w‖)

and the traditional class-margin (i.e., γ/‖w‖) as in SVM. The ra-
tional behind is that, by enlarging the core-margin, we are able to
enclose the core [5] (i.e., high confidence description) of the posi-
tive class in a set {Φ(x) : 〈w,Φ(x)〉 ≥ ρ}. At the same time, the
class-margin is maximized between the negative class and this core
to achieve high accuracy in prediction as well as its generalization.
The false-positive rate is expected to be lowered when ρ increases.
Note ASVM is orthogonal to most previous studies described in
Section 2, and can be readily integrated with the techniques like
thresholding [15, 28], utility/cost-tuning [8, 19], cascading [32],
and ensemble [21].

We may transform Eq. (3) by using the Lagrangian into the fol-
lowing dual objective:

argmax
α

1

2

m∑

i,j=1

αiαjyiyjk(xi,xj), (4)

subject to
m∑

i=1

αi ≥ 2
μ

τ
+ 1,

m∑

i=1

αiyi = 1,

and 0 ≤ αi ≤
1

τm
.

The details can be found in Appendix. We will discuss how to solve
this problem efficiently later.

Learning Under the User Tolerance. Consider two toy datasets
shown in Figures 2(a) and (b). Figure 2(c) depicts the margin (with
decision values±1) and the decision line {Φ(x) : 〈w,Φ(x)〉+b =
0} returned by the SVM classifier given parameters C = 1, q =
0.5. The parameters are found using the cross-validation [17]. We
mark the slacks with squares. Figure 2(d) depicts an enclosing ball
of the positive class returned by the one-class SVM with parameters
C = 0.25, q = 1. The outputs of ASVM for these two datasets are
shown in Figures 2(e) and (f) with parameters μ = 0.15, τ ≈
0, q = 0.5 and μ = 0.15, τ = 0.0225, q = 1.5 respectively.
Comparing Figures 2(c) and (e), we can see that ASVM behaves
similarly to the SVM classifier when τ is close to 0.

By increasing μ, we are able to obtain a larger margin, as de-
picted in Figure 2(g) (μ = 0.3, τ ≈ 0, q = 0.5). The effect of μ is
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Figure 2: Toy examples. (a, b) Distributions of the the first and second datasets. (c) Decision boundary given by the SVM classifier.
(d) Enclosing ball of the positive class returned by the one-class SVM. (e) Decision boundary given by the ASVM. (f) Enclosing balls
returned by ASVM. (g) Increasing μ of ASVM results in a larger class-margin. (h) Obtaining a high confidence region of the positive
class by increasing τ . (i) The ROCs achieved by the SVM output in (c) and the ASVM output in (h). (j) The areas under respective
ROCs that meet a user tolerance 0.1 to the false-positive rate.

analogous to that of C in SVM. On the other hand, as illustrated in
Figure 2(h), we are able to capture the dense region of the positive
classes by increasing τ (μ = 0.15, τ = 0.05, q = 0.5) since the
core-margin grows as τ increases. The dense region, unlike those
captured by one-class SVM, are antagonistic to the negative class
since by Eq. (3) it aims at excluding as many negative instances as
possible. We may see this clearly by comparing Figures 2(d) and
(f). Note we omit the decision line in Figure 2(f) for simplicity.
The captured dense region may reasonably represent the high con-
fidence area of the positive class due to its high density, purity (in
class label), and long distance to the negative class.

ASVM is useful in the situations where a given a user tolerance t
to the false-positive rate must be met. Figure 2(i) shows two typical
ROC curves resulted by the SVM and ASVM classifiers in Figures
2(c) and (h) respectively. Both SVM and ASVM achieve 95% ac-
curacy in prediction. The AUC given by ASVM is 0.95, which is
slightly lower than that (0.96) achieved by SVM. However, ben-
efiting from a better description of the positive class, ASVM can
significantly reduce the chance that a false-positive occurs from an
instance with high decision value. Denote t-AUC the area under
the ROC curve in y-axis and t in x-axis. Suppose t = 0.1, Fig-
ure 2(j) depicts the performance of SVM and ASVM when the
false-positive rate must be less then 0.1. In such a case, the 0.1-
AUC given by ASVM is 0.86t, which is about 56% higher than
that (0.55t) given by SVM.

3.2 The Effects of Parameters
Although we have seen by Figure 2 the relations between the pa-

rameters, μ and τ , and the margins, the values of these parameters
are still unintuitive to users. In this section, we show that the ef-
fects of μ and τ can actually be quantified in terms of the portion
of outliers.

Let m+ (resp. m−) be the number of the positive (resp. neg-
ative) instances in Zm. Denote s+i (resp. s

−

i ) the positive (resp.

negative) in-bound support vectors, i.e., instances (xi, 1) (resp.
(xi,−1)) having 0 < αi <

1

τm
; and o

+

i (resp. o
−

i ) the posi-
tive (resp. negative) outliers, i.e., instances (xi, 1) (resp. (xi,−1))
having αi = 1

τm
, as depicted in Figure 1. Let Premp(s+i ) =

1

m
|{s+i }| (resp. Premp(s−i )) and Premp(o+i ) =

1

m
|{o+i }| (resp.

Premp(o−i )) be the portions of the positive (resp. negative) in-
bound support vectors and the outliers amongst Zm respectively.

THEOREM 3.1. Assume ρ > 0 and γ > 0, then Premp(o+i ) −
Premp(o−i ) is upper-bounded by τ + Premp(s−i ).

PROOF. At KKT complementarity conditions, γ > 0 implies η = 0
(see Appendix). Therefore the term

∑m

i=1
αi ≥ 2μ

τ
+ 1 in Eq. (4)

becomes an equation. We have{ ∑m+

i=1
αi +

∑m−

i=1 αi = 2μ
τ
+ 1

∑m+

i=1 αi −
∑m−

i=1 αi = 1
.

Summing the above two equations we have
∑m+

i=1 αi =
μ

τ
+1, 0 ≤

αi ≤
1
τm

. There exist at most (μ
τ
+ 1)

/
( 1
τm

) positive instances
that have αi = 1

τm
. Since the outliers have αi = 1

τm
, we obtain

Premp(o+i ) ≤
(μ+ τ)m

m
= μ+ τ . (5)

Now subtract the above two equations. We have
∑m−

i=1 αi =
μ

τ
,

0 ≤ αi ≤
1
τm

. Since each αi can contribute at most 1
τm

, there
exist at least (μ

τ
)
/
( 1
τm

) = μm negative instances that have αi ≥
0. This implies that Premp(s−i ) + Premp(o−i ) ≥

μm

m
= μ, and

therefore

Premp(o−i ) ≥ μ− Premp(s−i ). (6)

Combining Eqs. (5) and (6), we obtain

Premp(o+i )− Premp(o−i ) ≤ (μ+ τ)− (μ− Premp(s−i ))

= τ + Premp(s−i ).
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THEOREM 3.2. Assume ρ > 0 and γ > 0, then Premp(o+i ) −
Premp(o−i ) is lower-bounded by τ − Premp(s+i ).

PROOF. Consider
∑m+

i=1 αi =
μ

τ
+ 1, 0 ≤ αi ≤

1
νm

. Since each
αi can contribute at most 1

τm
, there exist at least (μ

τ
+ 1)

/
( 1
τm

) =
(μ + τ)m positive instances that have αi ≥ 0. Hence, we obtain
Premp(s+i ) + Premp(o+i ) ≥

(μ+τ)m
m

= μ+ τ ; that is,

Premp(o+i ) ≥ μ+ τ − Premp(s+i ). (7)

Now consider
∑m−

i=1
αi =

μ

τ
, 0 ≤ αi ≤

1

τm
. There exist at most

(μ
τ
)
/
( 1

τm
) = μm negative instances that have αi = 1

τm
. We

have

Premp(o−i ) ≤
μm

m
= μ. (8)

Combining Eqs. (7) and (8), we obtain

Premp(o+i )− Premp(o−i ) ≥ (μ+ τ − Premp(s+i ))− μ

= τ − Premp(s+i ).

THEOREM 3.3. Assume ρ > 0 and γ > 0. Suppose the instances
in Zm are generated i.i.d. from a distribution D that is continuous
with respect to x. Suppose, moreover, the kernel is analytic and
non-constant. The difference Premp(o+i )−Premp(o−i ) converges
almost surely to τ , i.e., Pr(limm→∞(Premp(o+i )−Pr

emp(o−i )) =
τ) = 1.

PROOF. With Theorems 3.1 and 3.2, this can be proofed intuitively
by claiming that, when m → ∞, both Premp(s+i ) → 0 and
Premp(s−i )→ 0 [27].

We can see that the parameter τ controls the difference between the
outliers from the positive and negative classes. As a byproduct, we
can see from Eqs. (5) and (7) that

(μ+ τ)− Premp(s+i ) ≤ Premp(o+i ) ≤ (μ+ τ) (9)

and from Eqs. (6) and (8) that

μ− Premp(s−i ) ≤ Premp(o−i ) ≤ μ. (10)

The parameter μ controls the basic portion of the outliers from each
class. Note the effect of μ in ASVM is similar to that of the para-
meter ν in ν-SVM classifier [27]. Using the above conclusions
ASVM may incorporate with the prior knowledge (in portion of
the outliers) to obtain a more sophisticated high confidence area.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of ASVM. We also

study the scalability of ASVM and discuss some implementation
issues to cope with large-scale data.

4.1 Metrics and Settings
We implement ASVM based on LIBSVM [11]. To evaluate

the performance of ASVM, we consider several public real-world
datasets obtained from the UCI machine learning repository [2] and
IJCNN 2001 competition [23]. We control a 1:9 ratio between the
positive and negative instances by either resampling (for two-class
datasets) or merging the class labels (for multi-class datasets) [31].
Users under such a ratio are sensitive to the false-positives since any
increment in the false-positive rate may seriously affect the positive
predictions. In each dataset the training and testing instances are
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Figure 3: The scalability of ASVM based on the SMO imple-
mentation.

split according to a 5:1 ratio. We use 10-fold cross validation in
each training process.

This paper focuses on low false-positive learning. In particular,
we are interested in the performance of a classifier provided that
a user tolerance t, 0 ≤ t ≤ 1, to the false-positive rate must be
met. We focus on the t-ROC space, i.e., an ROC space with the
axis of false-positive rate ranging from 0 to t. We use the following
metrics in our performance evaluation:

• Slopes in t-ROC Space: This metrics is useful to investi-
gate the trade-off between different classifiers when the iso-
performance line varies.

• t-AUC: This metrics demonstrates the discriminability of a
classifier in t-ROC space. We let each classifier maximize
this metrics in training time.

We compare ASVM with the ThresHolding (TH) [15, 28] and
the Parameter Tuning (PT) [11, 19] techniques, which are both
available in LIBSVM by default. Note that since we focus on a
general purpose classifier, no prior knowledge, such as that used
in [19], is assumed. In thresholding, the standard SVM classifier
is used and has two parameters, C and q, as we have seen in Sec-
tion 2.2, which need to be determined during the training time. We
adopt a 2-dimensional grid search [17] for the optimal combina-
tion of these two parameters that maximizes t-AUC. In parameter
tuning, we differentiate the parameter C of a standard SVM be-
tween the positive (C+) and negative (C−) classes, and employ
a 3-dimensional grid search for the optimal combination of C+,
C−, and q maximizing t-AUC. In ASVM, there are three parame-
ters, μ, τ , and q, as we have seen in Sections 2.2 and 3. Rather
than adopting a 3-dimensional grid search directly, we first fix a
very small τ (to simulate the conventional SVM classifier) and ap-
ply a 2-dimensional grid search for the optimal combination of μ
and q that maximizes t-AUC. After proper μ and q are obtained,
we perform a linear search (i.e., 1-dimensional grid search) for τ
maximizing the t-AUC further.

4.2 SMO Implementation
For better scalability, we reduce the ASVM dual to the Sequen-

tial Minimal Optimization (SMO) [22] problem. In order to match
the SMO input, we need to rewrite the constraint

∑m

i=1
αi ≥ 2μ

τ
+

1 in Eq. (4) as
∑m

i=1
αi = 2μ

τ
+1. Doing so effectively relaxes the

constraint γ ≥ 0 in the ASVM primal (Eq. (3)) and therefore a spe-
cial care is needed when selecting μ in the training time to prevent a
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ThresHolding (TH) ASVM Improvement
Training target 1-AUC 0.1-AUC 0.05-AUC 1-AUC 0.1-AUC 0.05-AUC % % %
Diabetes 0.828618 0.031508 – 0.828550 0.040713 – -8.2e-5 29.2 –
Statlog German 0.767854 0.019167 – 0.763777 0.019292 – -0.5 0.7 –
Breast Cancer 0.995638 0.095638 – 0.995895 0.095895 – 2.6e-2 0.3 –
Ionosphere 0.987302 0.087302 – 0.996825 0.096825 – 1.0 10.9 –
Australian 0.948124 0.066397 – 0.925197 0.065787 – -2.4 -0.9 –
Covertype 0.982942 0.083836 0.0345622 0.982186 0.083080 0.0348064 -7.7e-2 -0.9 0.7
IJCNN 0.959185 0.078075 0.0349608 0.976187 0.083115 0.0387323 1.8 6.5 10.8

Table 1: Performance comparison between the ThresHolding (TH) and ASVM in terms of t-AUC, where t = 1, 0.1, and 0.05 are
given in training time.

negative class-margin γ. One easy way is to check whether γ < 0
during each iteration of a grid search and skip the corresponding
candidates. Another way is to train an auxiliary hyperplane with
γ always equals to 0 in Eq. (3) first during each iteration of the
grid search. We are able to estimate the basic portion of zero by
calculating the portions of the negative instances falling across the
auxiliary hyperplane. Following Eqs. (9) and (10), we can see that
γ ≥ 0 as long as

μ ≥ basic portion of zero.

This approach, called bi-training, is particularly useful to those
cases, such as on-line training, where the grid-search technique is
infeasible. We adopt the former approach and omit the detailed dis-
cussions about the latter due to the space limitation. Figure 3 shows
the scalability of ASVM. Currently, we are able to handle about 20
thousand instances within a minute.

4.3 Comparison with Thresholding
In this section, we compare the testing results of ASVM with

those of ThresHolding (TH). TH is based on traditional SVM clas-
sifier. As mentioned in Section 3, ASVM is also compatible to
this technique and therefore we consider setting up different thresh-
olds for ASVM’s positive predictions as well. The resultant perfor-
mance of both the classifiers can be easily arranged and shown in an
ROC space, where each point on an ROC curve presents a trade-off
between the true- and false-positive rates given a certain threshold
(not necessarily larger than 0 in this case).

We use datasets including Pima Indian Diabetes, Statlog Ger-
man, Wisconsin Breast Cancer, Ionosphere, Statlog Australian, Cover-
type, and IJCNN in our experiments. We consider t = 1 and 0.1
for each dataset in the training phase. For larger datasets such as
Covertype and IJCNN, we consider t = 0.05 additionally since un-
der such a configuration the training instances are still sufficient to
apply the learned model to the testing data. Note that since the ratio
between the positive and negative instances is 1:9, we differentiate
the parameter C in TH between the positive (C+) and negative
(C−) classes and set C+:C− = 9:1 to compensate for the skew
data distribution2.

Table 1 shows the maximal t-AUCs achieved by TH and ASVM
respectively. As we can see, for Diabetes the 1-AUCs given by
TH and ASVM are very close to each other. By comparing the 1-
AUCs of the rest datasets, we can see that, generally, ASVM give
similar performance as SVM in classification. When focusing on
0.1-AUCs, however, we observe that ASVM is able to give 33%
improvement over TH. The other datasets based on which ASVM
can make noticeable improvement include Ionosphere (10.9% for
0.1-AUC) and IJCNN (5.1% for 0.1-AUC, 3.8% for 0.05-AUC).
2This is suggested in LIBSVM [11].
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Figure 4: The ROC curves of TH and ASVM given t = 0.1 and
0.05 in training time.

We believe this is mainly because that ASVM successfully obtain a
high confidence area of the positive class in these datasets. Overall,
ASVM gives about 6.4% improvement in t-AUC when t ≤ 0.1.

Notice that in the Statlog Australian dataset, the advantage of
ASVM does not help a better performance. We believe this is be-
cause that the classes are separable in RKHS. Under such a case,
SVM is good enough to make low false-positive predictions.

Next, we study the detailed performance of ASVM and TH within
the 0.1- and 0.05-ROC space. Our observation shows that ASVM
is usually the best classifier at the very first segment of the false-
positive rate (starting from 0). This is true even for the Covertype
dataset, despite the fact that ASVM does not achieve the highest
0.1-AUC in Table 1. Figure 4(a) illustrates the ROC curves re-
turned by ASVM and TH using t = 0.1 in training time. As we can
see, ASVM is the best classifier when the false-positive rate ranges
from 0 to 0.019 and gives the sharpest range of slope, [15.129,∞],
along the ROC Convex Hull. The true-positive rate is 0.774 at the
point of false-positive rate 0.019. Figure 4(b) illustrates the ROC
curves when t = 0.05 is used. Again, ASVM is the best classi-
fier when the false-positive rate is above 0 and under 0.002. It also
gives the sharpest slopes ranging from 32.780 to∞ along the ROC
Convex Hull. The true-positive rate is 0.387 at the point of false-
positive rate 0.002. ASVM is useful in the situations that the cost
of the false-positives is high (or, the slope of the iso-performance
line is sharp).

4.4 Comparison with Parameter Tuning
In this section, we compare the testing results of ASVM with

those of Parameter Tuning (PT). Although both PT and ASVM
have three parameters (C+, C−, q and μ, τ , q respectively), they
are trained in different way. In PT, the effects of C+ and C− are
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Param. Tuning (PT) ASVM Improvement
Training target 1-AUC 0.1-AUC 0.05-AUC 1-AUC 0.1-AUC 0.05-AUC % % %
Covertype 0.984043 0.084180 0.0358381 0.982186 0.083080 0.0348064 -0.2 -1.3 -2.9
IJCNN 0.981917 0.079808 0.0354446 0.976187 0.083115 0.0387323 -0.6 4.1 9.3

Table 2: Performance comparison between the Parameter Tuning (PT) and ASVM in terms of t-AUC, where t = 1, 0.1, and 0.05 are
given in training time.

x : 〈w, x〉 = ρx : 〈w, x〉 + b = 0

Positive
Negative

Positive
Negative

(a) (b)

Figure 5: Decision planes in RKHS. (a) In PT, the movement of
a decision plane is unpredictable when the values ofC+ andC−

are changed. (b) In ASVM, changing the value of τ effectively
shifts the decision boundary toward the positive class.
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Figure 6: The ROC curves of PT and ASVM given t = 0.1 and
0.05 in training time.

correlated. Changing any value of C+, C−, and q may result in
movement of a decision boundary as well as its margin, as shown
in Figure 5(a). Under such a case, we need to search the entire
3-dimensional space for the best combination of C+, C−, and q.
In ASVM, on the other hand, we can see from Figure 5(b) that
given μ and q, increasing the value of τ effectively shifts the de-
cision boundary toward the positive class. The class margin is en-
larged, but its placement, which is determined by μ and q, is not af-
fected by τ . Based on this observation we adopt a heuristic training
method aiming at reducing the training times of a 3-dimensional
grid search. As mentioned before, we first apply a 2-dimensional
grid search for τ and q to determine a proper placement of the de-
cision boundary when τ ≈ 0, and then increase τ to obtain a high
confidence area of the positive class.

The maximal t-AUCs achieved by PT and ASVM are summa-
rized in Table 2. Note we omit small datasets due to the space
limitation. As we can see, the difference between the results of
ASVM and PT is not significant, ranging between ±3%.
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Figure 7: Number of iterations required to complete a grid ser-
ach.

To see the detailed performance of ASVM and PT within the 0.1-
and 0.05-ROC space, let’s consider again the Covertype dataset.
Figure 6(a) illustrates the ROC curves returned by ASVM and PT
using t = 0.1 in training time. As we can see, ASVM is the
best classifier when the false-positive rate ranges from 0 to 0.002
and gives the sharpest range of slope, [26.476,∞], along the ROC
Convex Hull. The true-positive rate is 0.355 at the point of false-
positive rate 0.002. Figure 6(b) illustrates the ROC curves when
t = 0.05 is used. In this case ASVM remains the best in the range
[0, 0.002] of the false-positive rate. It also gives the sharpest range
of slope [26.476,∞] along the ROC Convex Hull. The true-positive
rate is 0.387 at the point of false-positive rate 0.002. Generally,
ASVM is able to give comparable performance against PT in terms
of either t-AUC, t ≤ 0.1, or slopes.

Next, we compare the number of training times required in the
grid searches adopted by ASVM and PT respectively. The results
are depicted in Figure 7 whose x-axis denotes the granularity, i.e.,
the number that a search range in each dimension is divided into.
As we can see, ASVM requires an order less training times than PT.
This is because we perform only a 2-dimensional search (for μ and
q) with one extra linear search (for τ ) rather than a 3-dimensional
search as PT does. From the above discussions, ASVM is able to
give comparable performance as compared with PT while signifi-
cantly reducing the total training times.

4.5 Asymptotic Property of τ

Another advantage of ASVM is that it is able to give more insight
into the dataset. In Section 3, we showed that there is an asymptotic
relationship on the difference of the portion of the outliers between
two classes. In order to give a more comprehensive view, we test
the asymptotic property of τ in a synthetic dataset with 90 posi-
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Figure 8: The asymptotic property of τ .

tive labeled and 10 negative labeled instances. Figure 8 shows the
experimental results and compares the the difference derived theo-
retically with that obtained in the simulation under different values
of τ . Note the dotted line along the diagonal depicts the values of
τ .

As we can see, the actual portion of outliers lies within the the-
oretical upper and lower bounds. Actually, these three lines will
converge to a single when the number of training data increases.
From above, the relation between the difference of the portion of
outliers and τ is justified.

5. CONCLUSIONS
We proposed ASVM, an Asymmetric Support Vector Machine

that takes into account the false-positives and the user tolerance.
ASVM maximizes the margin between the negative class and the
core of the positive class. This allows us to raise the confidence
in predicting the positives and obtain a lower false-positive rate.
We quantitated the effects of μ and τ in terms of the portion of
outliers. Experimental results showed that ASVM is able to either
give 6.4% improvement in AUC and stay as the best classifier in
the low-false positive region of the ROC Convex Hull as compared
to the thresholding, or achieve a significant reduction in training
time as compared to the parameter tuning.
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7. APPENDIX

7.1 Derivation of the ASVM Dual
To solve Eq. (3), we introduce a Lagrangian:

L =
1

2
||w||2 − ρ+

1

τm

m∑

i=1

ξi −
μ

τ
γ (11)

−

m∑

i=1

αi

(
yi (〈w,Φ(xi)〉 − ρ) +

1

2
γ(yi − 1) + ξi

)

−

m∑
i=1

βiξi − ηγ,

where αi, βi, and η are Lagrange multipliers larger than or equal
to 0. The Lagrangian L must be maximized with respect to αi,
βi, and η, and minimized with respect to w, ρ, γ, and ξi. At the
Karush-Khun-Tucker (KKT) condition, we have

∂LP

∂w
= w−

m∑
i=1

αiyiΦ(xi) = 0

⇒ w =
m∑
i=1

αiyiΦ(xi), (12)

∂LP

∂ρ
= −1 +

m∑
i=1

αiyi = 0⇒
m∑
i=1

αiyi = 1, (13)

∂LP

∂γ
= −

μ

τ
−

1

2

m∑
i=1

αi(yi − 1)− η = 0

⇒

m∑
i=1

αi ≥ 2
μ

τ
+ 1, (14)

∂LP

∂ξi
=

1

τm
− αi − βi = 0⇒ 0 ≤ αi ≤

1

τm
. (15)

Replacing the corresponding terms in Eq. (11) by those in Eqs.
(12)-(15) and substituting the kernel function k(xi,xj) for the dot
product 〈Φ(xi),Φ(xj)〉, we obtain the dual objective of ASVM.

Note we may also rewrite f(x) =
∑m

i=1
αiyik(xi,x)− ρ+ γ

2
.

The values of ρ and γ can be recovered using the KKT comple-
mentarity conditions. At optimum, we have

αi

(
yi (〈w,Φ(xi)〉 − ρ) +

1

2
γ(yi − 1) + ξi

)
= 0, (16)

βiξi = 0, and ηγ = 0,

∀1 ≤ i ≤ m. For each positive in-bound support vector s+i , the
second term at the left hand side of Eq. (16) must be zero. We have
ρ =
∑m

j=1
αjyjk(xj , s

+

i ). Furthermore, for each s−i , the equation

γ = ρ−
∑m

j=1
αjyjk(xj , s

−

i ) holds.

7.2 Notation
X the pattern domain
x a pattern
y a class label, y ∈ {±1}
Zm a sample of m training instances

((x1, y1), (x2, y2), · · · , (xm, ym))
Zm the domain of samples of size m
H Reproducing Kernel Hilbert Space (RKHS)
Φ the feature map
k a positive definite kernel
F a class of functions
f a real value or {±1} function
A a class of events
A an event
D the distribution of X × {±1}
|A| the cardinality of a set (event) A
Pr{A} the probability of a set (event) A
fa the false alarm rate D{(x,−1) : f(x) > ρ −

γ

2
},

er the misclassification rate D{(x, y) : f(x) �= y}
s
+ (s−) positive (negative) in-bound support vectors
o
+ (o−) positive (negative) outliers

ρ the core-margin
γ the class-margin
ξ the slack variable
α, β, η Lagrange multipliers
μ, τ ASVM parameters
q the parameter of Gaussian RBF kernel
Premp the empirical probability
t the user tolerance
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