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Abstract

The remarkable performance achieved by Deep
Neural Networks (DNNs) in many applications is
followed by the rising concern about data privacy
and security. Since DNNs usually require large
datasets to train, many practitioners scrape data
from external sources such as the Internet. How-
ever, an external data owner may not be willing
to let this happen, causing legal or ethical issues.
In this paper, we study the generalization attacks
against DNNs, where an attacker aims to slightly
modify training data in order to spoil the training
process such that a trained network lacks gener-
alizability. These attacks can be performed by
data owners and protect data from unexpected use.
However, there is currently no efficient generaliza-
tion attack against DNNs due to the complexity of
a bilevel optimization involved. We propose the
Neural Tangent Generalization Attack (NTGA)
that, to the best of our knowledge, is the first work
enabling clean-label, black-box generalization at-
tack against DNNs. We conduct extensive experi-
ments, and the empirical results demonstrate the
effectiveness of NTGA. Our code and perturbed
datasets are available at: https://github.
com/lionelmessi6410/ntga.

1. Introduction
Deep Neural Networks (DNNs) have achieved impressive
performance in many applications, including computer vi-
sion, natural language processing, etc. Training a modern
DNN usually requires a large dataset to reach better perfor-
mance. This encourages many practitioners to scrape data
from external sources such as the Internet. However, an
external data owner may not be willing to let this happen.
For example, many online healthcare or music streaming
services own privacy-sensitive and/or copyright-protected
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data. They may not want their data being used to train a
mass surveillance model or music generator that violates
their policies or business interests. In fact, there has been
an increasing amount of lawsuits between data owners and
machine-learning companies recently (Vincent, 2019; Burt,
2020; Conklin, 2020). The growing concern about data pri-
vacy and security gives rise to a question: is it possible to
prevent a DNN model from learning on given data?

Generalization attacks are one way to reach this goal. Given
a dataset, an attacker perturbs a certain amount of data with
the aim of spoiling the DNN training process such that
a trained network lacks generalizability. Meanwhile, the
perturbations should be slight enough so legitimate users
can still consume the data normally. These attacks can
be performed by data owners to protect their data from
unexpected use.

Unfortunately, there is currently no practical generalization
attack against DNNs due to the complexity of an involving
bilevel optimization (Demontis et al., 2019), which can be
solved exactly and efficiently only when the learning model
is convex (e.g., SVMs, LASSO, Logistic/Ridge regression,
etc.) (Biggio et al., 2012; Kloft & Laskov, 2012; Mei & Zhu,
2015; Xiao et al., 2015; Koh & Liang, 2017; Jagielski et al.,
2018). The attacks against convex models are shown not
transferrable to non-convex DNNs (Muñoz-González et al.,
2017; Demontis et al., 2019). The studies (Muñoz-González
et al., 2017; Demontis et al., 2019; Chan-Hon-Tong, 2019)
solve relaxations of the bilevel problem with a white-box
assumption where the architecture and exact weights of
the model after training can be known in advance. This
assumption, however, does not hold for the owners serving
data to the public or third parties. Efficient computing of a
black-box generalization attack against DNNs remains an
open problem.

In this paper, we propose the Neural Tangent Generalization
Attacks (NTGAs) that, given a dataset, efficiently compute a
generalization attack against DNNs. NTGAs do not require
the specific knowledge of the learning model and thus can
produce black-box generalization attacks. Furthermore, they
do not change the labels of the examples in the dataset,
allowing legitimate users to consume the dataset as usual.
To the best of our knowledge, this is the first work enabling
clean-label, black-box generalization attacks against DNNs.

https://github.com/lionelmessi6410/ntga
https://github.com/lionelmessi6410/ntga
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NTGAs are based on the recent development of Neural Tan-
gent Kernels (NTKs) (Jacot et al., 2018; Lee et al., 2019;
Chizat et al., 2019), which allow a closed form approxima-
tion of the evolution of a class of wide DNNs during training
by gradient descent. We conduct extensive experiments to
evaluate the effectiveness of NTGAs. The results show that
an NTGA attack has remarkable transferability across a
wide range of models, including fully-connected networks
and Convolutional Neural Networks (CNNs), trained under
various conditions regarding the optimization method, loss
function, etc.

2. Related Work
In this section, we briefly review different types of attacks
against machine learning algorithms. We then explain why
generalization attacks against DNNs are hard to achieve.

The attacks against machine learning algorithms can hap-
pen at either training or test time, which refer to poison-
ing attacks (Biggio et al., 2012; Xiao et al., 2015; Koh
& Liang, 2017; Muñoz-González et al., 2017; Yang et al.,
2017; Shafahi et al., 2018; Chan-Hon-Tong, 2019; Weng
et al., 2020) and adversarial attacks (Szegedy et al., 2013;
Goodfellow et al., 2014), respectively. The goal of an ad-
versarial attack is to mislead a trained model into making
a wrong prediction given an adversarially crafted input. In
contrast, a poisoning attack aims to disrupt a training pro-
cedure to output defective models given an adversarially
perturbed (or “poisoned”) dataset.

2.1. Poisoning Attacks

The poisoning attacks can be further divided into two cat-
egories: integrity and generalization attacks1. The goal of
the integrity attacks is to let the training procedure output
a model whose behavior can be manipulated at test time.
A common example is the backdoor attacks (Shafahi et al.,
2018; Zhu et al., 2019) where the model makes wrong pre-
dictions only when certain triggers (i.e, patterns) are present
in the input. On the other hand, the generalization attack
aims to obtain a model that performs poorly on the valida-
tion and test sets (Muñoz-González et al., 2017; Yang et al.,
2017; Chan-Hon-Tong, 2019).

Depending on whether an attacker changes the labeling of
training data, the poisoning attacks can also be divided into
clean-label and dirty-label attacks. Normally, a dirty-label
attack is easier to generate than a clean-label one because
the loss surface of the model is controlled by both the data
points and labels. In this paper, we focus on the clean-label
generalization attacks since they allow legitimate users to

1In the computer security community, the integrity and gen-
eralization attacks are called poisoning integrity and poisoning
availability attacks, respectively.

consume the dataset by following the owner’s intention (and
labeling) after data poisoning.

2.2. Generalization Attacks

Given a training set D = (Xn ∈ Rn×d,Y n ∈ Rn×c)
of n examples with d dimensional input variables and c
dimensional labels, a validation set V = (Xm,Y m) of
m examples, and a model f(· ;θ) parametrized by θ, the
objective of a generalization attack can be formulated as a
bilevel optimization problem (Biggio et al., 2012; Mei &
Zhu, 2015; Xiao et al., 2015):2

arg max
(P ,Q)∈T

L (f(Xm;θ∗),Y m)

subject to θ∗ ∈ arg min
θ
L (f(Xn + P ;θ),Y n +Q) ,

(1)
where P and Q are the perturbations to be added to D,
L(· , ·) is a loss function between model predictions and
ground-truth labels, and T is a threat model that controls
the allowable values of P andQ. The outer max problem
finds P and Q that disrupt the generalizability of f on
V, while the inner min problem trains f on the poisoned
training data D̂ = (Xn + P ,Y n + Q). In practice, the
loss functions for training and validation can be different.
By controlling T , one can define different attacks. For a
clean-label attack,Q is required to be a zero matrix. In the
case where an attacker only poisons partial training data,
some rows of P are zero.

The main challenge of solving Eq. (1) by gradient ascent
is to compute the gradients of L(f(Xm;θ∗),Y m) w.r.t. P
and Q through multiple training steps of f . If f is trained
using gradient descent, the gradients ofL(f(Xm;θ∗),Y m)
require the computation of high-order derivatives of θ∗ and
can easily become intractable.

A trick, which only works for convex models like SVMs and
Logistic regression, to solve Eq. (1) is to replace the inner
min problem with its stationary (or Karush-Kuhn-Tucker,
KKT) conditions (Mei & Zhu, 2015; Muñoz-González et al.,
2017; Demontis et al., 2019). When L is convex (w.r.t. θ),
all stationary points are global minimum, and the solutions
to the dual of the inner problem can have a closed form. This
avoids the expensive computation of high-order derivatives
of θ∗ and allows the inner problem to be solved together
with the outer max problem by the same gradient ascent
steps (or other optimization methods). However, the above
trick is not applicable to non-convex DNNs. Moreover,
the studies (Muñoz-González et al., 2017; Demontis et al.,
2019) show that the generalization attacks created based on
convex models are not transferrable to DNNs.

2Given a design matrixX ∈ Rn×d and a function f : Rn →
Rc, we abuse the notation and denote by f(X) ∈ Rn×c the stack
of the results of iteratively applying f to each row ofX .
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To solve Eq. (1) against DNNs, existing works (Muñoz-
González et al., 2017; Demontis et al., 2019; Chan-Hon-
Tong, 2019) relax the bilevel problem by assuming that θ∗

is known and fixed. In particular, the study (Chan-Hon-Tong,
2019) devises a clean-label generalization attack using the
following objective:

arg min
P

L
(
f(Xn + P ; θ̂),Y n

)
,

where θ̂ ∈ arg max
θ

L (f(Xm;θ),Y m).
(2)

An attacker first obtains θ̂ such that f(· ; θ̂) performs poorly
on V. It then uses the fixed θ̂ to solve P . Since θ̂ is
independent of P now, Eq. (2) can be solved efficiently.
Another direction to solve this problem is to use a GAN-
like architecture (Feng et al., 2019), where two networks
corresponding to the inner and outer problems in Eq. (1),
respectively, learn to outperform each other adversarially.
This method considers the dependency between θ̂ and P at
the cost of convergence issues (due to its GAN-like nature).
Both of the above studies use a white-box assumption where
the architecture and exact weights θ∗ of f are known to an
attacker.3 This assumption, however, does not hold in many
practical situations. For data owners, it is generally hard to
control the machine learning processes conducted by third
parties on their data. Efficient computing of a black-box,
clean-label generalization attack against DNNs remains an
open problem.

3. Neural Tangent Generalization Attacks
A successful black-box generalization attack needs to over-
come two key challenges: (i) to solve Eq. (1) efficiently
against a non-convex f , and (ii) to let f be a “representative”
surrogate of the unknown target models used by third-party
data consumers. We propose the Neural Tangent General-
ization Attacks (NTGAs) that can simultaneously cope with
these two challenges. Intuitively, we let f be the mean of a
Gaussian Process (GP) that models the training dynamics
of a class of wide DNNs. We simplify Eq. (1) using the
fact that the predictions of f over unseen data at training
time t can be written in a closed form without an exact θ∗

involved. We also show that f could be a good surrogate of
various unknown target models.

The NTGAs are based on the recent development of Neural
Tangent Kernels (NTKs) (Jacot et al., 2018; Lee et al., 2019;
Chizat et al., 2019), which we review below for the sake of
completeness.

3The study (Feng et al., 2019) conducted black-box experi-
ments, but it is still a white-box approach because there is no
explicit design to cope with the unknown θ∗.

Algorithm 1 Neural Tangent Generalization Attack
Input: D = (Xn,Y n), V = (Xm,Y m), f̄(· ; k(· , ·), t),

L, r, η, T (ε)
Output: P to be added toXn

1 Initialize P ∈ T (ε)
2 for i← 1 to r do
3 G← ∇PL(f̄(Xm; K̂

m,n
, K̂

n,n
,Y n, t),Y m)

4 P ← Project(P + η · sign(G); T (ε))

5 end
6 return P

3.1. Neural Tangent Kernels

A recent breakthrough in theory shows that the distribution
of a class of wide neural networks (of any depth) can be
nicely approximated by a GP either before training (Lee
et al., 2018; Matthews et al., 2018) or during training (Jacot
et al., 2018; Lee et al., 2019; Chizat et al., 2019) under gra-
dient descent. In particular, the behavior of the GP in the
latter case is governed by an NTK (Jacot et al., 2018). As
the width of the networks grows into infinity, the NTK con-
verges to a deterministic kernel, denoted by k(·, ·), which
remains constant during training. Given two data points xi

and xj , the k(xi,xj) represents a similarity score between
the two points from the network class’ point of view. It
only loosely depends on the exact weights of a particular
network.

Denote the mean of the GP by f̄ and let Kn,n ∈ Rn×n
andKm,n ∈ Rm×n be two kernel matrices where Kn,n

i,j =

k(xi ∈ D,xj ∈ D) and Km,n
i,j = k(xi ∈ V,xj ∈ D),

respectively. At time step t during the gradient descent
training, the mean prediction of the GP over V evolve as:

f̄(Xm;Km,n,Kn,n,Y n, t)
= Km,n(Kn,n)−1(I − e−ηKn,nt)Y n.

(3)

The above can be extended to approximate networks of a
wide range of architectures, including CNNs (Novak et al.,
2018; Garriga-Alonso et al., 2018; Yang, 2019a), RNNs
(Yang, 2019b; Alemohammad et al., 2020), networks with
the attention mechanism (Hron et al., 2020), and other ar-
chitectures (Yang, 2019b; Arora et al., 2019). For a class of
CNNs, the kernel of the approximating GP converges as the
number of channels at each layer grows into infinity. Please
see the supplementary file for a more complete review of
NTKs.

3.2. NTGA Objective and Algorithm

By Eq. (3), we can write the predictions made by f̄ over
V in a closed form without knowing the exact weights of a
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Figure 1. A smoother surrogate can lead to better attack transfer-
ability. The left figure shows the loss landscape of two surrogates
used by an attacker over the space of D̂, while the right figure
shows the loss landscape of two target models trained by different
third parties. The dashed horizontal lines indicate the threshold
of a successful attack. Let the blue and red dots be two poisoned
training sets crafted by NTGA using the smooth and non-smooth
surrogates, respectively. The red dot fails to attack the target
models.

particular network. This allows us to rewrite Eq. (1) as a
more straightforward problem:

arg max
P∈T

L
(
f̄(Xm; K̂

m,n
, K̂

n,n
,Y n, t),Y m

)
, (4)

where K̂
n,n

and K̂
m,n

are the kernel matrices built on
the poisoned training data such that K̂n,n

i,j = k(Xn
i,: +

P i,:,X
n
j,: + P j,:) and K̂m,n

i,j = k(Xm
i,:,X

n
j,: + P j,:), re-

spectively. We letQ be a zero matrix because we focus on
the clean-label generalization attacks. Now, the gradients
of the loss L w.r.t. P can be easily computed without back-
propagating through the training steps. We use the projected
gradient ascent to solve Eq. (4).

Algorithm 1 outlines the key steps of NTGA. At lines 2-5, it
iteratively updatesP . The hyperparameter r, which controls
the maximum number of iterations, affects attack strength
and running time. At line 4, NTGA projects the updated
perturbations onto the feasible set T (ε) if they exceed the
maximum allowable amount indicated by ε. A smaller ε
makes an attack less visible to humans. The hyperparameter
t controls when an attack (i.e., a returning P ) will take
effect during the training processes run by others. Since
DNNs are usually trained with early stopping, the t should
not be a very large number. We will study the effects of
these hyperparameters in Section 4.

3.3. Merits and Practical Concerns

Model Agnosticism. NTGA is agnostic to the target models
and training procedures used by third-party data consumers
because the f̄ in Eq (4) is only their surrogate. The reasons
why NTGA can generate a successful black-box attack are
two-folds. First, the GP behind f̄ approximates the evolu-
tion of not only a single randomly initialized network but

an ensemble of infinite random networks of the same archi-
tecture. This allows NTGA to create a successful attack
without knowing the exact weights of the target models.
Second, the GP approximates the evolution of an ensemble
of infinitely wide networks, which are known to be able to
approximate any function universally (Hornik et al., 1989;
Cybenko, 1989). We also observe (in Section 4) that a wider
DNN tends to have a smoother loss w.r.t. D̂. This leads to
a smoother surrogate and helps NTGA find a better local
optimum (via gradient ascent) that transfers, as shown in
Figure 1. So, NTGA does not need to tightly follow the
architecture of a target model to create a successful attack.

Collaborative Perturbations. Another advantage of
NTGA is that it can generate collaborative perturbations
that span across different training data points. In Eq. (4), the
perturbations P i,: for individual training data points Xn

i,:

are solved collectively. So, each P i,: can slightly modify a
point to remain invisible to human eyes, and together they
can significantly manipulate model generalizability.

Scalability on Large Datasets. The computation of the
gradients of L w.r.t. P in Eq. (4) backpropagates through
(K̂

n,n
)−1 and e−ηK̂

n,n
t (see Eq. (3)). This creates a scala-

bility issue on a training set with a large n.

One way to increase scalability is to use a modified ver-
sion of NTGA, called Blockwise NTGA (B-NTGA), that
reduces the degree of collaboration. Specifically, B-NTGA
first partitions D into multiple groups, where each group
contains b examples, and then solves Eq. (4) for each group
independently. In effect, the P for the entire training set
is solved using only the b × b diagonal blocks of K̂

n,n
.

Although missing the off-diagonal information, B-NTGA
works if b is large enough to enable efficient collaboration.
In practice, the perturbations for each block can be solved
by multiple machines in parallel.

4. Experiments
We conduct experiments to evaluate the performance of
NTGA using the following default settings.

Datasets. We aim to poison the MNIST (LeCun et al.,
2010), CIFAR-10 (Krizhevsky, 2009), and a subset of Ima-
geNet (Deng et al., 2009) datasets. The MNIST and CIFAR-
10 datasets contain 60K and 50K training examples. For
ImageNet, we follow the study (Feng et al., 2019) and use
only the 2,600 training examples of the “bulbul” and “jel-
lyfish” classes. On each dataset, we randomly split ∼ 15%
examples from the training set as V and use the rests as D
for Eq. (1). We use the full test sets to report performance.

Baseline. We consider the studies, called Return Favor
Attack (RFA) (Chan-Hon-Tong, 2019) and DeepConfuse
(Feng et al., 2019), as our baselines. To the best of our
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Table 1. The test accuracy of different attacks under gray-box settings.

Dataset
\Attack

Clean RFA Deep
Confuse

NTGA
(1)

NTGA
(8)

NTGA
(64)

NTGA
(512)

NTGA
(4096)

NTGA
(∞)

Surrogate: *-FNN → Target: FNN

MNIST 96.26±0.09 74.23±1.91 - 3.95±1.00 4.08±0.73 2.57±0.72 1.20±0.11 5.80±0.26 88.87±0.15

CIFAR-10 49.57±0.12 37.79±0.73 - 36.05±0.07 35.01±0.16 32.57±0.21 25.95±0.46 20.63±0.57 43.61±0.35

ImageNet 91.60±0.49 90.20±0.98 - 76.60±2.58 72.40±3.14 85.40±3.01 86.00±2.19 88.80±2.19 91.20±0.75

Surrogate: *-CNN → Target: CNN

MNIST 99.49±0.02 94.92±1.75 46.21±5.14 23.89±1.34 17.63±0.92 15.64±1.10 19.25±2.05 21.30±1.02 30.93±5.94

CIFAR-10 78.12±0.11 73.80±0.62 44.84±1.19 41.17±0.57 40.52±1.18 42.28±0.86 47.64±0.78 48.19±0.78 65.59±0.42

ImageNet 96.00±0.63 94.40±1.02 93.00±0.63 79.00±2.28 79.80±3.49 77.00±4.90 80.40±3.14 88.20±1.94 89.60±1.36

knowledge, they are the only works which are able to effi-
ciently generate clean-label generalization attacks against
DNNs. We have reviewed RFA and DeepConfuse in Section
2.2 (see Eq. (2)).

Surrogates. Each poisoning algorithm is equipped with
two surrogates and can use one of them to generate P . In
NTGA, we use the means, named GP-FNN and GP-CNN,
of two Gaussian Processes (GPs). The GP-FNN is the mean
of 5-layer, infinitely-wide, fully-connected networks with
the Erf non-linearity, while the GP-CNN is the mean of
the networks consisting of 2 convolutional layers having
infinite channels and 3 infinitely-wide dense layers with the
ReLU non-linearity. Both the GPs assume the networks are
trained using gradient descent with the Mean Squared Error
(MSE) loss. The surrogates of RFA and DeepConfuse are
two neural networks, named S-FNN and S-CNN, that have
the same architectures as an element network of GP-FNN
and GP-CNN, respectively, except with finite width (512
neurons) and channels (64). We train S-FNNs and S-CNNs
by following the original papers.

More Settings. We implement the B-NTGA describe in
Section 3.3 with b equals 5K, 4K, and 1K on MNIST,
CIFAR-10, and ImageNet, respectively. We update P for
r = 10 iterations. The maximum allowable perturbation
ε is set to 0.3 on MNIST, 8/255 on CIFAR-10, and 0.1 on
ImageNet measured by the l∞ distance, respectively. By de-
fault, each attack poisons the entire training set because we
assume the attack is performed by the data owner. We imple-
ment RFA using the same hyperparameters. Our code uses
the Neural Tangents library (Novak et al., 2019) built on
top of JAX (Bradbury et al., 2018) and TensorFlow (Abadi
et al., 2016). All reported results of an experiment are the
average of 5 distinct runs. Please refer to the supplementary
file for detailed settings.
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Figure 2. (a) Training and (b) test dynamics of GP-FNN on CIFAR-
10 with different t. Vertical lines represent the early-stop points.

4.1. Gray-box Attacks

First, we evaluate the performance of different poisoning
methods under gray-box settings, where an attacker knows
the architecture of a target model but not its weights. We
train two target networks, denoted by FNN and CNN, whose
architectures are identical to the surrogates S-FNN and S-
CNN used by the baselines, respectively.4 We randomly
initialize FNN and CNN and use a Stochastic Gradient De-
scent (SGD) optimizer to minimize their MSE losses on the
clean and poisoned training data. We use early stopping to
prevent the networks from overfitting. The results are shown
in Table 1, where NTGA(·) denotes an attack generated by
NTGA with a specific hyperparameter t (see Eq. (3)). As
we can see, NTGA significantly outperforms the baselines
and sets new state-of-the-art for clean-label gray-box gener-
alization attacks. Note that the surrogates used by NTGA
are different from the target models in numerous ways, in-
cluding network architectures and sizes (infinite vs. finite),
optimization algorithms (full gradient descent vs. SGD),

4Our gray-box settings favor RFA and DeepConfuse over
NTGA because the target models are less similar to the surrogates
used by NTGA.
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Table 2. The test accuracy of different attacks under black-box settings.

Target
\Attack

Clean RFA Deep
Confuse

NTGA
(1)

NTGA
(8)

NTGA
(64)

NTGA
(512)

NTGA
(4096)

NTGA
(∞)

Surrogate: *-FNN

CNN 99.49±0.02 86.99±2.86 - 33.80±7.21 35.14±4.68 26.03±1.83 30.01±3.06 28.09±8.25 94.15±1.31

FNN-ReLU 97.87±0.10 84.62±1.30 - 2.08±0.40 2.41±0.44 2.18±0.45 2.10±0.59 12.72±2.40 89.93±0.81

Surrogate: *-CNN

FNN 96.26±0.09 69.95±3.34 15.48±0.94 8.46±1.37 5.62±0.40 4.63±0.51 7.47±0.64 19.29±2.02 78.08±2.30

FNN-ReLU 97.87±0.10 84.15±1.07 17.50±1.49 3.48±0.90 3.72±0.68 2.86±0.41 7.69±0.59 25.62±3.00 87.81±0.79

(a) MNIST

Surrogate: *-FNN

CNN 78.12±0.11 74.71±0.44 - 48.46±0.56 46.88±0.90 44.84±0.38 43.17±1.23 36.05±1.11 77.43±0.33

FNN-ReLU 54.55±0.29 43.19±0.92 - 40.08±0.28 38.84±0.16 36.42±0.36 29.98±0.26 25.95±1.50 46.80±0.25

ResNet18 91.92±0.39 88.76±0.41 - 39.72±0.94 37.93±1.72 36.53±0.63 39.41±1.79 39.68±1.22 89.90±0.47

DenseNet121 92.71±0.15 88.81±0.44 - 46.50±1.96 45.25±1.51 42.59±1.71 48.48±3.62 47.36±0.51 90.82±0.13

Surrogate: *-CNN

FNN 49.57±0.12 41.31±0.38 32.59±0.77 28.84±0.21 28.81±0.46 29.00±0.20 26.51±0.39 25.20±0.58 33.50±0.57

FNN-ReLU 54.55±0.29 46.87±0.86 35.06±0.39 32.77±0.44 32.11±0.43 33.05±0.30 31.06±0.54 30.06±0.87 38.47±0.72

ResNet18 91.92±0.39 89.54±0.48 41.10±1.15 34.74±0.50 33.29±1.71 34.92±0.53 44.75±1.19 52.51±1.70 81.45±2.06

DenseNet121 92.71±0.15 90.50±0.19 54.99±7.33 43.54±2.36 37.79±1.18 40.02±1.02 50.17±2.27 59.57±1.65 83.16±0.56

(b) CIFAR-10

Surrogate: *-FNN

CNN 96.00±0.63 95.80±0.40 - 77.80±2.99 62.40±2.65 63.60±3.56 62.60±9.99 90.00±0.89 93.80±0.40

FNN-ReLU 92.20±0.40 89.60±1.02 - 80.00±2.28 78.53±2.90 68.00±7.72 86.80±3.19 90.40±0.80 91.20±0.75

ResNet18 99.80±0.40 98.20±0.75 - 76.40±1.85 87.80±0.98 91.00±1.90 94.80±1.83 98.40±0.49 98.80±0.98

DenseNet121 98.40±0.49 96.20±0.98 - 72.80±4.07 81.60±1.85 80.00±4.10 88.80±1.72 98.80±0.40 98.20±1.17

Surrogate: *-CNN

FNN 91.60±0.49 87.80±1.33 90.80±0.40 75.80±2.14 77.20±3.71 86.20±2.64 88.60±0.49 89.60±0.49 89.40±0.49

FNN-ReLU 92.20±0.40 87.60±0.49 91.00±0.08 80.00±1.10 82.40±3.38 87.80±1.72 89.60±0.49 91.00±0.63 90.40±0.49

ResNet18 99.80±0.40 96.00±1.79 92.80±1.72 76.40±3.44 89.20±1.17 82.80±2.04 96.40±1.02 97.80±1.17 97.80±0.40

DenseNet121 98.40±0.49 90.40±1.96 92.80±2.32 80.60±2.65 81.00±2.68 74.00±6.60 81.80±3.31 93.40±1.20 95.20±0.98

(c) ImageNet

and model weights. The ensembles of networks behind the
surrogates seem to cover the target models well.

Effect of t. The hyperparameter t plays an important role
in NTGA. The t controls when an attack will take effect
during the training process of a target model. With a smaller

t, the attack has a better chance to affect training before
the early stop. However, a too small t could make the
surrogate non-representative of the target network, resulting
in a less effective attack. Figure 2 shows the training and test
dynamics of GP-FNN on the CIFAR-10 dataset. Although
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the attack generated by NTGA(∞) works best in the long
term (after 106 steps of gradient descent), this result will
never happen in practice because of the early stopping. The
vertical lines in Figure 2(b) indicate the early-stop points,
which are highly consistent with those of the target model
FNN (cf. the second row of Table 1). Similar results on
MNIST can be found in the supplementary file. So, the
attacker can use Figure 2(b) to determine the best value of
t. Note that t also affects the look of the perturbations P to
human eyes, as we will discuss in Section 4.3.

4.2. Black-box Attacks

We take a step further and evaluate different poisoning meth-
ods under black-box settings, where an attacker knows noth-
ing about a target model. We train the target networks FNN
and CNN described in the previous section using the poi-
soned data generated by a method with the *-CNN and
*-FNN surrogates, respectively. We also train additional
networks including FNN-ReLU, ResNet18 (He et al., 2016),
and DenseNet121 (Huang et al., 2017). The FNN-ReLU
has the same architecture as FNN except using the ReLU
nonlinearity. Different from FNN/CNN, these three new
target models are trained with the cross-entropy loss. We
also enable learning rate scheduling and data augmentation
when training ResNet18 and DenseNet121. In all the above
cases, a surrogate is very different from a target model in
architecture and weights.

Table 2 shows the results. Again, NTGA significantly out-
performs the baseline and sets new state-of-the-art for clean-
label black-box generalization attacks. We notice that RFA
barely has an effect against ResNet18 and DenseNet121
having complex architectures involving dropout, batch nor-
malization, residual connection, etc. On the other hand,
NTGA successfully degrades the generalizability of these
two networks such that they become useless in most prac-
tical situations. This verifies that the GP-based surrogates,
which model the ensembles of infinitely wide networks, can
indeed lead to better attack transferability. We will further
study the transferability in Section 4.4.

In general, the attacks based on the GP-FNN surrogate have
greater influence against the fully-connected target networks
(FNN and FNN-ReLU), while the attacks based on the GP-
CNN surrogate work better against the convolutional target
networks (CNN, ResNet18, and DenseNet121). Interest-
ingly, the GP-FNN surrogate seems to give comparable
performance to GP-CNN against the convolutional target
networks. We believe this is because convolutional net-
works without global average pooling behave similarly to
fully connected ones in the infinite-width limit (Xiao et al.,
2020).

Effect of t. Under the black-box settings, the best t varies
across different target models. A smaller t seems to work

better against the convolutional target networks, while a
larger t leads to more successful attacks against the fully-
connected models. We believe this is because the convo-
lutional networks learn more efficiently from images (i.e.,
have lower sample complexity) than the full-connected ones.

4.3. Visualization

The hyperparameter t of NTGA also controls how an attack
looks. In Figures 3 and 4, we visualize some poisoned im-
agesXi,: from the CIFAR-10 and ImageNet datasets as well
as their normalized perturbations P i,: generated by RFA
and DeepConfuse with S-CNNs and NTGA with GP-CNN.
As we can see, the perturbations generated by RFA are of
high frequency and look similar to those generated by an
adversarial attack (Szegedy et al., 2013; Goodfellow et al.,
2014). DeepConfuse gives medium-frequency perturbations.
In particular, there exist artifacts in high-resolution images
(see Figure 4). On the other hand, the perturbations gener-
ated by NTGA can have different frequencies controlled by
t. In particular, a smaller t leads to simpler perturbations.
This is consistent with the previous findings (Arpit et al.,
2017; Rahaman et al., 2019) that a (target) network tends to
learn low-frequency patterns at the early stage of training.

At t→∞, the high-frequency perturbations generated by
NTGA (Figure 3(f)) are less visible than those by RFA (Fig-
ure 3(b)). This verifies the effectiveness of collaboration
described in Section 3.3. In RFA, the perturbations P i,:

added to a data point Xi,: only depends on the Xi,: itself
because (i) the θ̂ in Eq. (2) is trained on V, thus is indepen-
dent of D, and (ii) other examples Xj,: do not participate
in the computation of gradients of L w.r.t. P i,:. On the
contrary, the gradients of L w.r.t. P i,: in Eq. (4) backprop-
agates throughKn,n, which involves all other data points
Xj,:. As a consequence, the slight perturbations made by
NTGA can still create a significant aggregate effect.

4.4. Transferability

Next, we investigate the cause of the superior transferability
of the NTGA attacks. As discussed in Section 3.3, the
GPs behind the NTGA surrogates model the evolution of
an ensemble of infinitely wide and many networks. By
the universal approximation theorem (Hornik et al., 1989;
Cybenko, 1989), the GPs can cover target networks of any
weights and architectures.

From another perspective, a wide surrogate can have a
smoother loss landscape over D̂ that helps NTGA find better
local optima (P ) that transfers (see Figure 1). To verify
this, we examine the largest 100 eigenvalues of the Hessians
∂2L/∂(Xn + P )2 of different networks adapted from the
FNN and CNN, as shown in Figure 5, which provide a lo-
cal measure of the curvature of the loss landscape. As the



Neural Tangent Generalization Attacks

(a) Clean

(b) RFA

(c) DeepConfuse

(d) NTGA(1)

(e) NTGA(512)

(f) NTGA(∞)

Figure 3. Visualization of some poisoned CIFAR-10 images (left) and their normalized perturbations (right).

(a) Clean (b) RFA

(c) DeepConfuse (d) NTGA(1)

Figure 4. Visualization of some poisoned ImageNet images and
their normalized perturbations (bottom-right corner).

width or the number of channels increase, the eigenvalues
become more evenly distributed, implying a smoother loss
landscape. Therefore, the GP-FNN and GP-CNN, which
model infinitely wide networks, could lead to the “best”
transferability.
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c = 256
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(a) (b)

Figure 5. Top 100 eigenvalues of the Hessians (∂2L/∂(Xn+P )2)
of the variants of (a) FNN and (b) CNN with different widths d
and number of channels c.
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Figure 6. Partial data poisoning on CIFAR-10.

4.5. Effect of Poisoning Rate

So far, we assume that an attacker can poison the entire train-
ing set. In practice, a data consumer may scrap data from
multiple sources and learn from a consolidated training set.
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Table 3. Trade-off between speed and collaboration by varying
block size b.

b FNN FNN’ CNN R18 D121 time

Surrogate: GP-FNN

1 49.20 53.95 77.75 89.78 91.14 5.8 s

100 37.02 42.28 69.02 80.34 83.81 16.8 s

1K 22.84 27.85 47.33 49.61 58.40 3.5 m

4K 20.63 25.95 36.05 39.68 47.36 34 m

Table 4. Sensitivity to σb and σw that are used on constructKn,n

andKm,n.

σb σw FNN FNN’ CNN R18 D121

Surrogate: GP-FNN

0.00 1.10 20.35 24.75 37.80 35.98 42.75

0.10 1.55 19.40 24.52 37.87 40.18 46.20

0.18 1.76 20.63 25.95 36.05 39.68 47.36

0.25 1.88 21.05 26.03 36.94 38.71 48.64

To simulate this case, we conduct an experiment where an at-
tacker can only poison partial data collected by a consumer.
The results are shown in Figure 6. Although all the base-
lines and NTGA can degrade the performance of a target
network by partial poisoning, our NTGA consistently out-
performs the baselines. Note that the test performance does
not drop significantly because the target networks can learn
from other clean data. This shows that designing a strong
generalization attack while maintaining invisibility (low ε)
and a low poisoning rate is very challenging. However, the
results encourage the consumer to discard the poisoned data,
which may be good enough for the attacker.

4.6. Ablation Study

Trade-off between Speed and Collaboration. NTGA gen-
erates collaborative perturbations (see Section 3.3). Here,
we investigate the effect of collaboration. The results, which
are shown in Table 3, indicate that a larger block size b
always leads to better performance. This suggests that col-
laboration is a key to the success of NTGA. However, a
larger b induces higher space and time complexity, as the
gradients of L in Eq. (4) backpropagates through (Kn,n)−1

and eK
n,n

. Table 3 also shows the trade-off between the
performance and time required to solve Eq. (4) on a ma-
chine with NVIDIA Tesla V100 GPU. Interestingly, NTGA
starts to outperform RFA and DeepConfuse since b ≥ 100
and b ≥ 1000, respectively. In practice, DeepConfuse suf-

fers from convergence issues due to its GAN-like nature
and requires 5-7 days to generate poisoned CIFAR-10 data,
while NTGA takes only 5 hours given b = 4000.

Kernel Construction. The construction of Kn,n and
Km,n depends on two hyperparameters, denoted by σb
and σw, that controls the bias and variance of the randomly
initialized weights of the networks in the ensemble modeled
by the GP behind a surrogate. Studies (Poole et al., 2016;
Schoenholz et al., 2016; Lee et al., 2018) shows that σb and
σw can significantly affect the performance of the GP, and
there exists a sweet spot in the space of σb and σw called
critical line that allows the GP to have the best performance.
We randomly choose 4 distinct combinations of σw and σb
lying on the critical line to constructKn,n andKm,n and
then use the kernel matrices to craft attacks. Table 4 shows
the performance of these attacks. NTGA does not seem
to be sensitive to σb and σw provided that they lie on the
critical line.

We have conducted more experiments to further verify the
effectiveness of NTGAs. For more details, please see the
supplementary file.

5. Conclusion
In this work, we propose Neural Tangent Generalization
Attacks (NTGAs) against DNNs and conduct extensive ex-
periments to evaluate their performance. To the best of our
knowledge, this is the first work that enables clean-label,
back-box generalization attacks against DNNs under practi-
cal settings. NTGAs have implications for data security and
privacy. In particular, it can help data owners protect their
data and prevent the data from unauthorized use.

As our future work, we plan to study the performance of
NTGAs given different types of GPs, such as those approxi-
mating RNNs (Yang, 2019b; Alemohammad et al., 2020),
networks with the attention mechanism (Hron et al., 2020),
and other architectures (Yang, 2019b; Arora et al., 2019).
We also plan to evaluate NTGAs on real-world applications,
such as the online healthcare or music streaming services,
where data privacy and regulatory compliance is in high de-
mand. (Quinonero-Candela & Rasmussen, 2005; Hensman
et al., 2013; Wang et al., 2019; Liu et al., 2020).
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