Neural Tangent Generalization Attacks

Chia-Hung Yuan
Shan-Hung Wu

Department of Computer Science, National Tsing Hua University, Taiwan

International Conference on Machine Learning, 2021
Data Privacy & Security

- DNNs usually require large datasets to train, many practitioners scrape data from external sources

- However, the external data owner may not be willing to let this happen
 - Many online healthcare or music streaming services own privacy-sensitive and/or copyright-protected data

![AI doctor](image1)

![AI composer](image2)
Is it possible to prevent a DNN model from learning on given data?
Outline

• Motivation

• Problem Definition

• Neural Tangent Generalization Attacks (NTGAs)

• Experiments

• Conclusion
Generalization Attacks

• Given a dataset, an attacker perturbs a certain amount of data with the aim of spoiling the DNN training process such that a trained network lacks generalizability

• Meanwhile, the perturbations should be slight enough so legitimate users can still consume the data normally
Generalization Attacks

- It can be formulated as a **bilevel optimization** problem

\[
\arg \max_{(P, Q) \in \mathcal{T}} L(f(X^m; \theta^*), Y^m)
\]

subject to \(\theta^* \in \arg \min_{\theta} L(f(X^n + P; \theta), Y^n + Q) \)

- \(\mathcal{D} = (X^n \in \mathbb{R}^{n \times d}, Y^n \in \mathbb{R}^{n \times c}) \): training set of \(n \) examples
- \(\mathcal{V} = (X^m, Y^m) \): validation set of \(m \) examples
- \(f(\cdot; \theta) \): model parameterized by \(\theta \)
- \(P \) and \(Q \): perturbations to be added to \(\mathcal{D} \)
- \(\mathcal{T} \): threat model controls the allowable values of perturbations
Challenge: Bilevel Optimization

• Solving the bilevel problem by gradient ascent suffers from the high-order differential issues

• It can be solved exactly and efficiently by replacing the inner \min problem with its stationary (or KKT) conditions when the learning model is convex, e.g. SVMs, LASSO, Logistic/Ridge regression

• Efficient computing of a black-box, clean-label generalization attack against DNNs remains an open problem
Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks (NTGAs)
- Experiments
- Conclusion
Neural Tangent Generalization Attacks

• We propose Neural Tangent Generalization Attacks (NTGAs), the first work enabling clean-label, black-box generalization attacks against DNNs

STOP Bad Learning via Neural Tangent Generalization Attacks (ICML’21)
https://www.github.com/lionelmessi6410/ntga
Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-convex model f

 We let f be the mean of a Gaussian Process (GP) with a Neural Tangent Kernel (NTK) that approximates the training dynamics of a class of wide DNNs.

2. Let f be a “representative” surrogate of the unknown target models

 The GPs behind NTGA surrogates model the evolution of an infinite ensemble of infinite-width networks.
Efficiency

- At time step t during the gradient descent training, the mean prediction of the GP over \mathbb{V} evolves as:

$$\bar{f}(X^m; K^{m,n}, K^{n,n}, Y^n, t) = K^{m,n}(K^{n,n})^{-1}(I - e^{\eta K^{n,n} t})Y^n$$

- \bar{f}: the mean prediction of GP
- $K^{n,n} \in \mathbb{R}^{n,n}$: kernel matrix where $K^{n,n}_{i,j} = k(x^i \in \mathbb{D}, x^j \in \mathbb{D})$
- $K^{m,n} \in \mathbb{R}^{m,n}$: kernel matrix where $K^{m,n}_{i,j} = k(x^i \in \mathbb{V}, x^j \in \mathbb{D})$

- We can write the predictions made by \bar{f} over \mathbb{V} in a closed form **without knowing the exact weights of a particular network**
Efficiency

• This allows us to rewrite

$$\arg \max_{(P, Q) \in \mathcal{T}} L(f(X^m; \theta^*), Y^m)$$

subject to $$\theta^* \in \arg \min_{\theta} L(f(X^n + P; \theta), Y^n + Q)$$

• as a more straightforward problem

$$\arg \max_{P \in \mathcal{T}} L(\bar{f}(X^m; \hat{K}^{m,n}, \hat{K}^{n,n}, Y^n, t), Y^m)$$

• $$\bar{f}$$: the mean prediction of GP

• $$\hat{K}^{n,n} \in \mathbb{R}^{n,n}$$ and $$\hat{K}^{m,n} \in \mathbb{R}^{m,n}$$: kernel matrices built on the poisoned training data $$X^n + P$$

• Now, the gradients of the loss $$L$$ w.r.t. $$P$$ can be easily computed without backpropagating through training steps
Representativeness

1. Infinite ensemble
 - As earlier works pointed out, the ensemble can increase the transferability

2. Infinite-width networks
 - By the universal approximation theorem, the GPs can cover target networks of any weight and architectures
 - A wide surrogate has a smoother loss landscape that helps NTGA find local optima with better transferability
Outline

• Introduction & Motivation

• Problem Definition

• Neural Tangent Generalization Attacks (NTGAs)

• Experiments

• Conclusion
Model Accuracy on Poisoned Data

- NTGA declines the generalizability sharply

- It is **107.7% more effective** than the baselines, while taking **96.5% less time** to generate the poisoned data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MNIST</th>
<th>CIFAR-10</th>
<th>2-class ImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>99.5%</td>
<td>92.7%</td>
<td>98.4%</td>
</tr>
<tr>
<td>RFA(^1)</td>
<td>87.0%</td>
<td>88.8%</td>
<td>90.4%</td>
</tr>
<tr>
<td>DeepConfuse(^2)</td>
<td>46.2%</td>
<td>55.0%</td>
<td>92.8%</td>
</tr>
<tr>
<td>NTGA</td>
<td>15.6%</td>
<td>37.8%</td>
<td>72.8%</td>
</tr>
</tbody>
</table>

\[+57.4\% \quad +45.6\% \quad +220.0\%\]
Visualization

- The hyperparameter t controls how an attack looks
 - Smaller t leads to simpler perturbations
 - It is consistent with the previous findings that a network tends to learn low-frequency patterns at the early stage of training
Visualization

- It may be hard to evade via data preprocessing

(a) Clean
(b) RFA

(c) DeepConfuse
(d) NTGA(1)
Outline

• Introduction & Motivation

• Problem Definition

• Neural Tangent Generalization Attacks (NTGAs)

• Experiments

• Conclusion
Conclusion

- We propose NTGAs, the first work enabling **clean-label, black-box generalization attacks** against DNNs

- NTGAs can stop unauthorized learning
 - Towards **law-compliance AI** and **ethical AI**

- Questions? Chat with us at session time!
 - Or email to: chyuan@datalab.cs.nthu.edu.tw
Code & Unlearnable Dataset

- Our code and unlearnable datasets are available at: https://github.com/lionelmessi6410/ntga

Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Install Guide | Quickstart | Results | Unlearnable Datasets | Competitions

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify training data in order to spoil the training process such that a trained network lacks generalizability. We devise Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 25%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10 and 2-class ImageNet, respectively. Please see Results or the main paper for more complete results. We also release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and
Competition

- We launch 3 competitions on Kaggle, where we are interested in learning from unlearnable MNIST, CIFAR-10, and 2-class ImageNet
Reference
