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Data Privacy & Security

* DNNs usually require large datasets to train, many
practitioners scrape data from external sources

* However, the external data owner may not be willing to let
this happen

* Many online healthcare or music streaming services own privacy-sensitive
and/or copyright-protected data
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Is it possible to prevent a DNN model
from learning on given data?
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Generalization Attacks

e Given a dataset, an attacker perturbs a certain amount of
data with the aim of spoiling the DNN training process
such that a trained network lacks generalizability

* Meanwhile, the perturbations should be slight enough so legitimate users
can still consume the data normally

w,_""&"t ’f .

Clean Perturbed

C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks ICML’21 6/23



Generalization Attacks

* |t can be formulated as a bilevel optimization problem
arg max L(f(X"6%),Y™)
(P.O)eT
subject to 6* € argmin L(f(X" + P;0),Y" + Q)
0

D = (X" € R™4 Y" € R™): training set of n examples

V= (X", Y™): validation set of m examples

f( - ;0): model parameterized by 6

P and Q: perturbations to be added to D

I threat model controls the allowable values of perturbations

C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks ICML’21 7/23



Challenge: Bilevel Optimization

e Solving the bilevel problem by gradient ascent suffers
from the high-order differential issues

|t can be solved exactly and efficiently by replacing the inner min problem
with its stationary (or KKT) conditions when the learning model is convex,
e.g. SVMs, LASSO, Logistic/Ridge regression

o Efficient computing of a black-box, clean-label

generalization attack against DNNs remains an open
problem
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Neural Tangent Generalization Attacks

e \We propose Neural Tangent Generalization Attacks
(NTGASs), the first work enabling clean-label, black-box
generalization attacks against DNNs

STOP

Bad Learning

via Neural Tangent Generalization Attacks (ICML'21)

https:/www.github.com/lionelmessie410/ntga




Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model f

We let f be the mean of a Gaussian Process (GP) with a

Neural Tangent Kernel (NTK) that approximates the
training dynamics of a class of wide DNNs

2. Let f be a “representative” surrogate of the unknown
target models

The GPs behind NTGA surrogates model the evolution of
an infinite ensemble of infinite-width networks
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Efficiency

e At time step 7 during the gradient descent training, the
mean prediction of the GP over V evolves as:

]F(Xm;Km,n’ Kn,n, Yn, f) — Km,n(Kn,n)—l(I . enK”’”t)Yn

. f the mean prediction of GP

o K" € R™": kernel matrix where KZ”J” = k(x' € D,x € D)

o K" € R"™": kernel matrix where Kl”;” =k(x' € V,x¥ € D)

e \We can write the predictions made by f over Vin a closed
form without knowing the exact weights of a particular
network
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Efficiency

e This allows us to rewrite

arg max L(f(X";6%),Y")
P.OeT

subject to 6* € argmin L(f(X" + P;0),Y" + Q)
0
e as a more straightforward problem

arg max L(f(X™; K™", K™, Y", 1), Y™)

PeT

. f the mean prediction of GP

e K™ € R™ and K™" € R™": kernel matrices built on the poisoned
training data X" + P

» Now, the gradients of the loss L w.r.t. P can be easily
computed without backpropagating through training steps
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Representativeness

1. Infinite ensemble

* As earlier works pointed out, the ensemble can increase the transferability

2. Infinite-width networks

* By the universal approximation theorem, the GPs can cover target
networks of any weight and architectures

* A wide surrogate has a smoother loss landscape that helps NTGA find
local optima with better transferability
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Model Accuracy on Poisoned Data

* NTGA declines the generalizability sharply

e ltis 107.7% more effective than the baselines, while
taking 96.5% less time to generate the poisoned data

MNIST CIFAR-10 | rﬁa‘;::f'e ,
Clean 99.5% 92.7% 98.4%
RFA' | 87.0% 88.8% 00.4%
DeepConfuse? | 462% 55.0% 28%
NTGA | 156%  37.8% 728% |

+57.4% +45.6% +220.0%
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Visualization

e The hyperparameter r controls how an attack looks

e Smaller f leads to simpler perturbations

* |tis consistent with the previous findings that a network tends to learn low-
frequency patterns at the early stage of training
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* |t may be hard to evade via data preprocessing

C.H. Yuan and S.H. Wu

Visualization

(c) DeepConfuse \ (d) NTGA(1) J
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Conclusion

* We propose NTGAs, the first work enabling clean-label,
black-box generalization attacks against DNNs

e NTGAs can stop unauthorized learning

* Towards law-compliance Al and ethical Al

¢ Questions? Chat with us at session time!
e Or email to: chyuan@datalab.cs.nthu.edu.tw -...

cao
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C.H.

O Code & Unlearnable Dataset

e Qur code and unlearnable datasets are available at:

https://qgithub.com/lionelmessi6410/ntga

H lionelmessi6410 / ntga

¢ Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Install Guide | Quickstart | Results | Unlearnable Datasets | Competitions

last commit ' yesterday

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of
ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify
training data in order to spoil the training process such that a trained network lacks generalizability. We devise
Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization
attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 25%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10
and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also

release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and /23



kaggle Competitions

 We launch 3 competitions on Kaggle, where we are

interested in learning from unlearnable MNIST, CIFAR-10,
and 2-class ImageNet

Unlearnal

Stop bad lea

79 years to go

Overview Data

Overview

Description

Evaluation
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