

Neural Tangent Generalization Attacks

Chia-Hung Yuan

Shan-Hung Wu

Department of Computer Science, National Tsing Hua University, Taiwan

International Conference on Machine Learning, 2021

Data Privacy & Security

- DNNs usually require large datasets to train, many practitioners scrape data from external sources
- However, the external data owner may not be willing to let this happen
 - Many online healthcare or music streaming services own privacy-sensitive and/or copyright-protected data

Al composer

Neural Tangent Generalization Attacks

Facial biometrics training dataset leads to BIPA lawsuits against Amazon, Alphabet and lical Google a **Microsoft** data in p **Clearview AI accused of GDPR violation** Tech giants want i By James Vincent | Jun 27, Podcasts More Q 🕒 Jul 15, 2020 | <u>Chris Burt</u> SHARE **Biometrics News Facial Recognition** CATEGORIES 'ecord ognition 1110110010001 ting in 2015 **Market Futures** \ge Quote Lookup **DOW JONES FUTURES** 34,525.00 +12.00 (+0.03%)

13,696.75

NASDAQ FUTURES

Is it possible to prevent a DNN model from learning on given data?

Outline

- Motivation
- Problem Definition
- Neural Tangent Generalization Attacks (NTGAs)
- Experiments
- Conclusion

Generalization Attacks

- Given a dataset, an attacker perturbs a certain amount of data with the aim of spoiling the DNN training process such that a trained network lacks generalizability
 - Meanwhile, the perturbations should be slight enough so legitimate users can still consume the data normally

Clean

Perturbed

Generalization Attacks

• It can be formulated as a **bilevel optimization** problem

 $\underset{(P,Q)\in\mathcal{T}}{\arg \max} L(f(X^{m};\theta^{*}), Y^{m})$ subject to $\theta^{*} \in \arg \min_{\theta} L(f(X^{n} + P;\theta), Y^{n} + Q)$

- $\mathbb{D} = (X^n \in \mathbb{R}^{n \times d}, Y^n \in \mathbb{R}^{n \times c})$: training set of *n* examples
- $\mathbb{V} = (X^m, Y^m)$: validation set of *m* examples
- $f(\cdot; \theta)$: model parameterized by θ
- P and Q: perturbations to be added to $\mathbb D$
- \mathcal{T} : threat model controls the allowable values of perturbations

Challenge: Bilevel Optimization

- Solving the bilevel problem by gradient ascent suffers from the high-order differential issues
 - It can be solved exactly and efficiently by replacing the inner min problem with its stationary (or KKT) conditions when the learning model is convex, e.g. SVMs, LASSO, Logistic/Ridge regression
- Efficient computing of a black-box, clean-label generalization attack against DNNs remains an open problem

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks (NTGAs)
- Experiments
- Conclusion

Neural Tangent Generalization Attacks

 We propose Neural Tangent Generalization Attacks (NTGAs), the first work enabling clean-label, black-box generalization attacks against DNNs

STOP Bad Learning

via Neural Tangent Generalization Attacks (ICML'21) https://www.github.com/lionelmessi6410/ntga

Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non- convex model \boldsymbol{f}

We let *f* be the mean of a Gaussian Process (GP) with a Neural Tangent Kernel (NTK) that approximates the training dynamics of a class of wide DNNs

2. Let f be a "representative" surrogate of the unknown target models

Efficiency

• At time step *t* during the gradient descent training, the mean prediction of the GP over \mathbb{V} evolves as:

$$\bar{f}(X^m; K^{m,n}, K^{n,n}, Y^n, t) = K^{m,n}(K^{n,n})^{-1}(I - e^{\eta K^{n,n}t})Y^n$$

- \bar{f} : the mean prediction of GP
- $K^{n,n} \in \mathbb{R}^{n,n}$: kernel matrix where $K^{n,n}_{i,j} = k(x^i \in \mathbb{D}, x^j \in \mathbb{D})$
- $K^{m,n} \in \mathbb{R}^{m,n}$: kernel matrix where $K^{m,n}_{i,j} = k(x^i \in \mathbb{V}, x^j \in \mathbb{D})$
- We can write the predictions made by \overline{f} over \mathbb{V} in a closed form without knowing the exact weights of a particular network

Efficiency

• This allows us to rewrite

$$\underset{(P,Q)\in\mathcal{T}}{\operatorname{arg max}} L(f(X^{m};\theta^{*}), Y^{m})$$

subject to $\theta^{*} \in \underset{\theta}{\operatorname{arg min}} L(f(X^{n} + P;\theta), Y^{n} + Q)$

• as a more straightforward problem

$$\arg \max_{\boldsymbol{P} \in \mathcal{T}} L(\bar{f}(\boldsymbol{X}^m; \hat{\boldsymbol{K}}^{m,n}, \hat{\boldsymbol{K}}^{n,n}, \boldsymbol{Y}^n, t), \boldsymbol{Y}^m)$$

- \bar{f} : the mean prediction of GP
- $\hat{K}^{n,n} \in \mathbb{R}^{n,n}$ and $\hat{K}^{m,n} \in \mathbb{R}^{m,n}$: kernel matrices built on the poisoned training data $X^n + P$
- Now, the gradients of the loss *L* w.r.t. *P* can be easily computed without backpropagating through training steps

C.H. Yuan and S.H. Wu

Representativeness

- 1. Infinite ensemble
 - As earlier works pointed out, the ensemble can increase the transferability
- 2. Infinite-width networks
 - By the universal approximation theorem, the GPs can cover target networks of any weight and architectures
 - A wide surrogate has a smoother loss landscape that helps NTGA find local optima with better transferability

Neural Tangent Generalization Attacks

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks (NTGAs)
- Experiments
- Conclusion

Model Accuracy on Poisoned Data

- NTGA declines the generalizability sharply
- It is **107.7% more effective** than the baselines, while taking **96.5% less time** to generate the poisoned data

	MNIST	CIFAR-10	2-class ImageNet
Clean	99.5%	92.7%	98.4%
RFA ¹	87.0%	88.8%	90.4%
DeepConfuse ²	46.2%	55.0%	92.8%
NTGA	15.6%	37.8%	72.8%
	+57.4%	+45.6%	+220.0%

Visualization

- The hyperparameter *t* controls how an attack looks
 - Smaller *t* leads to simpler perturbations
 - It is consistent with the previous findings that a network tends to learn lowfrequency patterns at the early stage of training

Visualization

• It may be hard to evade via data preprocessing

Neural Tangent Generalization Attacks

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks (NTGAs)
- Experiments
- Conclusion

Conclusion

- We propose NTGAs, the first work enabling clean-label, black-box generalization attacks against DNNs
- NTGAs can stop unauthorized learning
 - Towards law-compliance AI and ethical AI
- Questions? Chat with us at session time!
 - Or email to: chyuan@datalab.cs.nthu.edu.tw

Select all squares with street signs. If there are none, click skip.

ICML'21 20 / 23

Code & Unlearnable Dataset

 Our code and unlearnable datasets are available at: <u>https://github.com/lionelmessi6410/ntga</u>

🖵 lionelmessi6410 / ntga

Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Install Guide | Quickstart | Results | Unlearnable Datasets | Competitions

last commit yesterday license Apache-2.0

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify training data in order to spoil the training process such that a trained network lacks generalizability. We devise Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 25%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10 and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also release the *unlearnable* MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and

/ 23

Competitions

 We launch 3 competitions on Kaggle, where we are interested in learning from unlearnable MNIST, CIFAR-10, and <u>2-class ImageNet</u>

Reference

- Chan-Hon-Tong. An Algorithm for Generating Invisible Data Poisoning Using Adversarial Noise That Breaks Image Classification Deep Learning. Machine Learning and Knowledge Extraction, 2019
- 2. Feng et al. Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder. NeurIPS, 2019