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• DNNs usually require large datasets to train, many 
practitioners scrape data from external sources


• However, the external data owner may not be willing to let 
this happen

• Many online healthcare or music streaming services own privacy-sensitive 

and/or copyright-protected data
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Data Privacy & Security

AI doctor AI composer
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Is it possible to prevent a DNN model  
from learning on given data?  
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• Given a dataset, an attacker perturbs a certain amount of 
data with the aim of spoiling the DNN training process 
such that a trained network lacks generalizability 

• Meanwhile, the perturbations should be slight enough so legitimate users 
can still consume the data normally

6

Generalization Attacks

Clean Perturbed
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Generalization Attacks
• It can be formulated as a bilevel optimization problem


• : training set of  examples


• : validation set of  examples


• : model parameterized by 


•  and : perturbations to be added to 


• : threat model controls the allowable values of perturbations

� = (Xn ∈ ℝn×d, Yn ∈ ℝn×c) n

� = (Xm, Ym) m

f( ⋅ ; θ) θ

P Q �

�

arg max
(P,Q)∈�

L( f(Xm; θ*), Ym)

subject to θ* ∈ arg min
θ

L( f(Xn + P; θ), Yn + Q)
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Challenge: Bilevel Optimization
• Solving the bilevel problem by gradient ascent suffers 

from the high-order differential issues


• It can be solved exactly and efficiently by replacing the inner  problem 
with its stationary (or KKT) conditions when the learning model is convex, 
e.g. SVMs, LASSO, Logistic/Ridge regression


• Efficient computing of a black-box, clean-label 
generalization attack against DNNs remains an open 
problem

min
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Neural Tangent Generalization Attacks
• We propose Neural Tangent Generalization Attacks 

(NTGAs), the first work enabling clean-label, black-box 
generalization attacks against DNNs
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Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model 


2. Let  be a “representative” surrogate of the unknown 
target models


f

f

We let  be the mean of a Gaussian Process (GP) with a 
Neural Tangent Kernel (NTK) that approximates the 
training dynamics of a class of wide DNNs

f

The GPs behind NTGA surrogates model the evolution of 
an infinite ensemble of infinite-width networks
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Efficiency
• At time step  during the gradient descent training, the 

mean prediction of the GP over  evolves as:


• : the mean prediction of GP


• : kernel matrix where 


• : kernel matrix where 


• We can write the predictions made by  over  in a closed 
form without knowing the exact weights of a particular 
network

t
�

f

Kn,n ∈ ℝn,n Kn,n
i,j = k(xi ∈ �, xj ∈ �)

Km,n ∈ ℝm,n Km,n
i,j = k(xi ∈ �, xj ∈ �)

f �

f(Xm; Km,n, Kn,n, Yn, t) = Km,n(Kn,n)−1(I − eηKn,nt)Yn
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Efficiency
• This allows us to rewrite


• as a more straightforward problem


• : the mean prediction of GP


•  and : kernel matrices built on the poisoned 
training data 


• Now, the gradients of the loss  w.r.t.  can be easily 
computed without backpropagating through training steps

f

K̂n,n ∈ ℝn,n K̂m,n ∈ ℝm,n

Xn + P

L P

arg max
P∈�

L( f(Xm; K̂m,n, K̂n,n, Yn, t), Ym)

arg max
(P,Q)∈�

L( f(Xm; θ*), Ym)

subject to θ* ∈ arg min
θ

L( f(Xn + P; θ), Yn + Q)
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• As earlier works pointed out, the ensemble can increase the transferability


• By the universal approximation theorem, the GPs can cover target 
networks of any weight and architectures


• A wide surrogate has a smoother loss landscape that helps NTGA find 
local optima with better transferability

1. Infinite ensemble


2. Infinite-width networks

14

Representativeness
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Model Accuracy on Poisoned Data
• NTGA declines the generalizability sharply


• It is 107.7% more effective than the baselines, while 
taking 96.5% less time to generate the poisoned data

MNIST CIFAR-10 2-class 
ImageNet

Clean 99.5% 92.7% 98.4%

RFA1 87.0% 88.8% 90.4%

DeepConfuse2 46.2% 55.0% 92.8%

NTGA 15.6% 37.8% 72.8%

+57.4% +45.6% +220.0%
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Visualization
• The hyperparameter  controls how an attack looks


• Smaller  leads to simpler perturbations


• It is consistent with the previous findings that a network tends to learn low-
frequency patterns at the early stage of training
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• It may be hard to evade via data preprocessing
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Visualization
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Conclusion
• We propose NTGAs, the first work enabling clean-label, 

black-box generalization attacks against DNNs


• NTGAs can stop unauthorized learning 

• Towards law-compliance AI and ethical AI


• Questions? Chat with us at session time! 

• Or email to: chyuan@datalab.cs.nthu.edu.tw
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Code & Unlearnable Dataset
• Our code and unlearnable datasets are available at: 

https://github.com/lionelmessi6410/ntga


•
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Competitions
• We launch 3 competitions on Kaggle, where we are 

interested in learning from unlearnable MNIST, CIFAR-10, 
and 2-class ImageNet
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