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Abstract

Deep neural networks are shown to be vulnerable
to adversarial attacks. This motivates robust learn-
ing techniques, such as the adversarial training,
whose goal is to learn a network that is robust
against adversarial attacks. However, the sample
complexity of robust learning can be significantly
larger than that of “standard” learning. In this
paper, we propose improving the adversarial ro-
bustness of a network by leveraging the poten-
tially large test data seen at runtime. We devise a
new defense method, called runtime masking and
cleansing (RMC), that adapts the network at run-
time before making a prediction to dynamically
mask network gradients and cleanse the model
of the non-robust features inevitably learned dur-
ing the training process due to the size limit of
the training set. We conduct experiments on real-
world datasets and the results demonstrate the
effectiveness of RMC empirically.

1. Introduction

Deep neural networks (DNNs), despite achieving remark-
able performance in many applications, have shown to be
vulnerable to adversarial examples (Szegedy et al., 2014;
Goodfellow et al., 2014), i.e., examples that are intentionally
designed to be misclassified by the models but nearly indis-
tinguishable from regular examples in human eyes or some
distance measures in the input space. Typically, an adversar-
ial example is generated by slightly perturbing the input of a
regular example in directions where the output of the model
gives the highest loss (Szegedy et al., 2014; Goodfellow
et al., 2014; Kurakin et al., 2016; Papernot et al., 2016a;
Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017b).
The existence of such adversarial examples raises concerns
about the security-critical machine learning systems, such
as autonomous cars and speech recognition authorization.
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A plethora of defenses has been proposed, aiming to in-
crease the robustness of a network to adversarial perturba-
tions. Based on different hypotheses about the cause of
adversarial examples, some works change the model archi-
tecture (Krotov & Hopfield, 2018), distill a large network
into a small network (Papernot et al., 2016b), use regu-
larization (Gu & Rigazio, 2014; Hein & Andriushchenko,
2017; Cisse et al., 2017; Jakubovitz & Giryes, 2018; Ross
& Doshi-Velez, 2018), or statistically detect adversarial ex-
amples (Hendrycks & Gimpel, 2016; Grosse et al., 2017;
Gong et al., 2017; Metzen et al., 2017; Feinman et al., 2017).
Many of these methods, however, have been shown to fail
(Carlini & Wagner, 2017a;b; Athalye et al., 2018).

Recent studies (Fawzi et al., 2018; Gilmer et al., 2018;
Shafahi et al., 2018; Mahloujifar et al., 2019) show that
adversarial examples can be an unavoidable consequence
of learning high-dimensional geometry of data manifold
in a statistical setting. In this vein, the study (Schmidt
et al., 2018) proved that, for any training algorithm or model
class, the sample complexity of robust learning can be sig-
nificantly larger than that of “standard” learning. In other
words, one theoretically grounded way to increase adversar-
ial robustness is to acquire more data. This partially explains
why the adversarial training (Goodfellow et al., 2014; Ku-
rakin et al., 2016; Madry et al., 2017), a data augmentation
technique, is empirically strong and also motivates a new
defense approach (Dubey et al., 2019) for convolutional
neural networks (CNNs) that relies on a web-scale amount
of external images.

In this paper, we study whether it is possible to improve
the adversarial robustness of a DNN by leveraging the po-
tentially large test data seen at runtime. Currently, most
existing defenses use only data known at training time. A
key challenge of learning from test data is that they are unla-
beled, so one cannot simply apply the adversarial training in
an online manner. We devise a new defense method, called
runtime masking and cleansing (RMC), that fine-tunes the
network weights for several gradient-descent steps before
making a prediction using precomputed adversarial exam-
ples residing near the test instance in the input space. This
dynamically masks the network gradients and cleanses the
model of the non-robust patterns inevitably learned during
the training process due to the size limit of the training set.
The following summarizes our contributions:
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• We propose the runtime masking and cleansing (RMC),
which uses test data to improve the adversarial robust-
ness of a model after deployment. The RMC is com-
patible with any existing defense technique running at
training time. To the best of our knowledge, this is the
first work on robust learning using unlabeled test data.

• We conduct extensive experiments to evaluate the per-
formance of RMC. Empirical results on real-world
datasets show that it significantly improves the adver-
sarial robustness of a network at the cost of delays
in making predictions, which may be acceptable to
non-realtime applications.

• We also propose two new attack methods against RMC
and demonstrate that the RMC is hard to break due to
some practical limitations faced by adversaries on a
deployed system.

The RMC has implications for existing machine learning
systems in production. In particular, it does not require a
model to be retrained to defend a new attack discovered after
deployment, thereby shortening the “vulnerable windows”
of a system. We will discuss this in more details in the last
section of this paper.

2. Related Work

There is a large body of work on adversarial robustness,
attack, and defense. Please refer to (Yuan et al., 2019; Xu
et al., 2019) for comprehensive surveys. Here, we discuss
the works most closely related to ours.

Getting More Data. A theoretically grounded way to in-
crease the adversarial robustness of a model is to acquire
more data to offset the increased sample complexity of ro-
bust learning (Schmidt et al., 2018). (Dubey et al., 2019)
proposed using a web-scale image database containing tens
of billions of images as a manifold and projecting a test
image (a potential adversarial example) onto the manifold.
By taking only the projected images as input, the model can
make more robust predictions. However, web-scale data
may not be easily collectable in other domains, and the per-
formance of this method drops significantly when the size
of the database decreases (Dubey et al., 2019).

Adversarial Training. The adversarial training (Goodfel-
low et al., 2014; Kurakin et al., 2016; Madry et al., 2017) is
another way to acquire data to increase robustness. Given
a training dataset D = {(x(i)

,y(i))}i and a loss function L

for a classification task, an adversarial training algorithm
aims to find a network parametrized by ✓⇤ that classifies
adversarial examples correctly, i.e.,

✓⇤ = argmin✓
P

(x,y)2D max�2A(x) L(✓,x+ �,y),
(1)

where A(x) is the set of allowed perturbations for a data
point x 2 D and is defined by an attack model.1 The
adversarial examples provide extra information about the
underlying data manifold and make the decision boundary
of the network smooth along the directions of adversarial
perturbations. Adversarial Training is one of the few de-
fense techniques that withstand strong attacks such as the
projected gradient descent (PGD) (Madry et al., 2017).

Gradient Masking. The RMC can be regarded as a gra-
dient masking method (Yuan et al., 2019; Xu et al., 2019),
where a defender deliberately hides the gradient information
of the model in order to confuse the adversaries. Studies
(Carlini & Wagner, 2017b; Athalye et al., 2018) have shown
that many gradient masking methods can be defeated by
attacking algorithms that simulate a masking mechanism
using a differentiable component. The RMC differs from
most existing methods in that 1) it hides the gradients of
the model at runtime where new data keep coming in. It
is hard to simulate the masking because the masking itself
is changing. We will discuss more on this in Section 5.
2) RMC not only hides the gradients but helps the model
unlearn non-robust features through more data.

Semi-Supervised Learning. Recent studies (Carmon et al.,
2019; Stanforth et al., 2019; Najafi et al., 2019) show that
learning from unlabeled data at training time can improve
model robustness because the model has a better under-
standing of the data distribution in the input space that is
useful for differentiating adversarial examples. RMC uses
unlabeled data coming at runtime. Unlike the train-time
semi-supervised learning methods whose goal is to use un-
labeled data to better learn the underlying data distribution
or the relationship between data points and labels, our goal
is to use unlabeled data to unlearn patterns that are harmful
to adversarial robustness (i.e., to cleanse the model).

3. Runtime Masking and Cleansing

In this section, we present the runtime masking and cleans-
ing (RMC). Although the RMC can be readily applied to
different supervised learning tasks, we study a robust classi-
fication problem defined below for ease of presentation.

Problem 1. Given an attack model, a training set D =
{(x(i)

,y(i))}Ni=1 containing benign examples, and a de-
ployed network f parametrized by ✓⇤ trained by minimizing
a loss function L over D, our goal is to make robust predic-
tions for a sequence of data points U = {x̂(i)}Mi=1 seen at
runtime such that even if a point x̂ 2 U has been adversari-
ally perturbed by an adversary using the attack model, we
can still correctly predict its label.

1An attack model (Madry et al., 2017) specifies known attack
methods and some constraints such as the maximum allowable
norm of the perturbations.
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Algorithm 1 Runtime Masking and Cleansing (RMC).
1: procedure PREPARE(L, ✓⇤, D, attack model, N 0)
2: Initiate D0 = D;
3: repeat

4: Randomly sample (x,y) from D;
5: x0  x+ argmax�2A(x) L(✓

⇤
,x+ �,y);

6: D0 = D0 [ {(x0
,y)};

7: until |D0| = N
0

8: return D0;
9: end procedure

10:
11: procedure PREDICT(x̂, f(· ;✓⇤), L, D, D0, K, �)
12: Search D0 to get N0(x̂) of size K;
13: repeat . local adaptation
14: Sample a batch {(x(i)

,y(i))}Bi=1 from N0(x̂);
15: ✓⇤  ✓⇤ � �

PB
i=1r✓⇤L(✓⇤

,x(i)
,y(i));

16: until early-stop condition holds
17: ✓0 = ✓⇤;
18: repeat . calibration
19: Sample a batch {(x(i)

,y(i))}Bi=1 from D;
20: ✓⇤  ✓⇤ � �

PB
i=1r✓⇤L(✓⇤

,x(i)
,y(i));

21: until early-stop condition holds
22: return f(x̂;✓0) and ✓⇤;
23: end procedure

Note that the deployed model can be regularly or adversari-
ally trained, and the size of U can be unbounded. In practice,
one may also expect the network to have a certain level of
robustness to attacks not defined in the attack model.

The basic idea of RMC is that, for each new coming point
x̂ 2 U, we adapt the network weights ✓⇤ to x̂ at runtime
before making a prediction f(x̂;✓⇤). So, the network can
dynamically hide its gradients from x̂ (a potential attack)
and in the meanwhile learn from the potentially large U over
time to become more robust statistically. Now, the challenge
is to design the adaptation process.

Since the data in U is unlabeled, performing the adversarial
training using U at runtime is infeasible because the attack
model cannot compute adversarial examples without y when
solving argmax�2A(x̂) L(✓, x̂ + �,y) in Eq. (1). One
native way to work around this is to 1) find the top-K nearest
neighbors of x̂ in D in a deep, latent space of the network
(Papernot & McDaniel, 2018; Xie et al., 2019) and 2) use
these labeled neighbors, denoted by N(x̂), to adapt the
network following the adversarial training.

However, the above naive online extension of the adver-
sarial training does not work because x̂ could have been
adversarially perturbed. Figures 1(a)(b) give an example
showing the distributions of data points and labels in N(x̂)
provided that x̂ is an adversarially perturbed “automobile”
image from the CIFAR-10 dataset (Krizhevsky et al., 2009).

The labels of benign examples (blue points) concentrate at
the wrong class “truck.” This is because x̂ fools the net-
work by looking similar to other “truck” images in the latent
space. The wrong benign examples also lead to incorrectly
labeled adversarial examples (cyan points). After local adap-
tation (lines 8-11), the network will be misled by N(x̂) to
wrongly assign the “truck” label to an input region around
x̂, worsening robustness.

We work around the above problem by precomputing adver-
sarial examples. The RMC first augments D with adversarial
examples (by solving argmax�2A(x) L(✓

⇤
,x + �,y) for

each example (x,y) in D) to obtain an augmented dataset
D0, and then, for each new coming point x̂ 2 U, adapts the
network by solving

✓⇤ = argmin✓
P

(x,y)2N0(x̂) L(✓,x,y), (2)

where N0(x̂) is the set of examples in D0 that are top-K
nearest to x̂ in a distance measure. Algorithm 1 outlines the
key steps of RMC.

The N0(x̂) may contain both benign and adversarial exam-
ples, and we use the Euclidean distance in the feature space
of a deep (convolution) layer of the network to find the
top-K nearest neighbors of x̂. A feature vector at a deep
convolution layer usually encodes high-level concepts. Fur-
thermore, studies (Papernot & McDaniel, 2018; Xie et al.,
2019) have shown that the feature vector of an adversarially
perturbed input can be drastically changed at a deep layer.
This allows N0(x̂) to have semantically similar data points,
from the network point of view, but diverse labels.

Following the previous example, Figure 1(c) shows the dis-
tribution of labels in N0(x̂) in Algorithm 1, which no longer
concentrate at a single class. Line 5 in Algorithm 1 creates
a non-targeted attack, that is, the hidden representation of
x0 can look similar to those of images in any class except
y. Therefore, the adversarial examples of the same class in
D0 may scatter over input regions of other classes. Equiva-
lently for any given position in the input space, there may be
nearby adversarial examples coming from different classes,
as Figure 1(c) shows. When the network is adapted to N0(x̂)
(lines 13-16), such diversely labeled adversarial examples
will cleanse the network by letting it unlearn the non-robust
patterns encoded in the adversarial perturbations because
these patterns are now associated with noisy labels and use-
less for reducing L. The network will end up relying more
on benign patterns to make predictions.

We call lines 13-16 in Algorithm 1 the local adaptation
procedure because the network is fine-tuned using examples
local to the test point x̂. To prevent overfitting, we separate
a validation set from N0(x̂) and early stop the local adapta-
tion when the validation loss does not decrease over time.
Although making a prediction using the model weights ✓0

obtained right after the local adaptation (line 22), the algo-
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(a) (b) (c)

Figure 1. Statistics of the nearest neighbors of x̂ where K = 1024 and x̂ is an adversarially perturbed “automobile” (class 1) image
from the CIFAR-10 dataset (Krizhevsky et al., 2009). The perturbation was computed using the PGD attack (Madry et al., 2017). (a)
Distributions of the nearest neighbors in a 2D t-SNE (Maaten & Hinton, 2008) projection of the feature space where the distance measure
is defined. The red dot denotes x̂, blue and cyan dots denote benign and adversarial examples in N(x̂) in the naive extension of the
adversarial training, respectively, and green dots denote examples in N0(x̂) in Algorithm 1. (b) Distribution of class labels of the examples
in N(x̂) and sample images. The labels concentrate at a wrong class “truck” (class 9). (c) Distribution of class labels of the examples in
N0(x̂) in Algorithm 1. The labels scatter over different classes.

rithm performs a calibration procedure (lines 18-21) before
the end. This is because the local examples in N0(x̂) may
violate the i.i.d. assumption. As compared to an alternative
approach that discards the ✓0 and starts over from a static ✓⇤

for the next test instance, the calibration procedure prevents
the side-effects of the violation but still allows the network
to learn from U in the long term.

Although being cosmetically similar to the adversarial train-
ing, the RMC works fundamentally differently. While the
adversarial training makes the decision boundary of a model
smooth along the directions of adversarial perturbations,
the RMC cleanses the model by letting the model unlearn
non-robust patterns, which does not necessarily result in
a smooth decision boundary. The adversarial training and
RMC are orthogonal yet complementary defenses working
at training time and runtime, respectively.

4. Experiments

In this section, we evaluate the performance of RMC
using the robust classification task defined in Prob-
lem 1 on the MNIST (LeCun & Cortes, 2010),
CIFAR-10 (Krizhevsky et al., 2009), and ImageNet
(Deng et al., 2009) datasets. Our code is avail-
able at https://github.com/nthu-datalab/
Runtime-Masking-and-Cleansing.

Trained Networks. We build the classification (defense)
network f(·;✓⇤) by following the settings in (Madry et al.,
2017) and (Xie et al., 2019), where ResNet-32 and ResNet-

152 are used for CIFAR-10 and ImageNet, respectively. The
RMC works with either a regularly or adversarially trained
model. Therefore, for the CIFAR-10 dataset, we train the
above networks using 1) regular training, 2) adversarial
training with FGSM (Goodfellow et al., 2014), 3) adver-
sarial training with PGD (Madry et al., 2017), 4) regular
training with Jacobian regularization (Jakubovitz & Giryes,
2018), and 5) regular training with Cross-Lipschitz regular-
ization (Hein & Andriushchenko, 2017). For ImageNet, we
use a regularly trained ResNet-152.2

Baselines. We compare the RMC with two baseline de-
fenses that can run at test time. The first baseline, which we
call WebNN, is a down-scaled version of the work (Dubey
et al., 2019) where the web-scale image database is replaced
with the augmented training dataset D0 used by RMC. The
second baseline, which we call DeepNN (Papernot & Mc-
Daniel, 2018), makes a prediction f(x̂;✓⇤) for a test point
x̂ by first searching the top-K nearest neighbors of x̂ from
the original dataset D and then averaging the output vectors
of these neighbors. Note that the Deep-NN uses the Euclid-
ian distance in the feature space of the deepest CNN layer
to find the nearest neighbors, which is the same as the RMC
but different from the original paper (Papernot & McDaniel,
2018). For the ImageNet dataset, we also compare RMC
with a train-time defense called the denoising block (DB)
(Xie et al., 2019).

Settings. We set K= 1024 and 2048 for CIFAR-10 and
2See https://www.tensorflow.org/api_docs/

python/tf/keras/applications/ResNet152.
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Table 1. The performance of different defenses under different
train-time white-box attacks (✏ = 8/255) on CIFAR-10.

Acc. Robustness

FGSM BIM PGD CW-L2 JSMA

Regularly Trained

None 83.3 25.3 8.5 6.7 9.4 8
DeepNN 84.3 26.5 9.2 8 55.2 23
WebNN 81.8 40.9 47.8 48.6 64.6 38.3

RMC 89.3 85.3 86.7 87.5 89.7 88.6

Adversarially Trained w. FGSM

None 83.2 78.9 9.3 8.3 8.8 17.3
DeepNN 85 81 9.9 9.1 56.2 23.1
WebNN 80 81.9 42.5 43.3 64.2 34.4

RMC 89.3 87.3 87.1 88.7 89.7 89.1

Adversarially Trained w. PGD

None 78.7 50.6 43.6 44.3 11.5 7.8
DeepNN 75.6 52.5 45.6 45.8 48.7 38.5
WebNN 73.5 54 48.1 48.4 53.4 47

RMC 88.3 81.2 81.1 80.7 88.7 87.7

Regularly Trained w. Jacobbian Reg.

None 86.3 37.9 20.6 20.2 8 10.2
DeepNN 87.8 39.8 21 21.4 63.1 41.1
WebNN 76.2 49.9 55.5 55.5 68.9 49

RMC 87.1 82.4 83.6 83.5 86.6 88.4

Regularly Trained w. Cross-Lipschitz Reg.

None 85.3 31 18.6 18.4 8.4 13
DeepNN 86.9 32.6 19 19 61.9 36.8
WebNN 74.5 46.5 51 50.5 67.1 48.6

RMC 85 79.8 80.8 81.1 84.9 86.9

ImageNet respectively. To prevent the local adaptation in
RMC from overfitting, we separate the top-20% nearest
neighboring examples from N0(x̂) as the validation set and
early stop the local adaptation when the validation loss
does not decrease over time. We use the Adam optimizer
(Kingma & Ba, 2014) to train and adapt the models. The
initial learning rate for local adaptation is set to 25% of that
used by a model during the training time.

4.1. Train-Time White-Box Settings

First, we evaluate the robustness of different runtime de-
fense techniques by using the train-time white-box settings
where an adversary has access to the model, including its
architecture and weights, after training. In the next section,
we will use more aggressive settings where the input of
RMC, such as D0 and U, is leaked to the adversaries.

We take into account some well-known attack models, in-
cluding the FGSM(Goodfellow et al., 2014), BIM (Kurakin
et al., 2016), PGD (Madry et al., 2017), CW-L2 attack (Car-
lini & Wagner, 2017b), and JSMA (Papernot et al., 2016a).

Table 2. The performance of different defenses under different
train-time white-box attacks on ImageNet.

Acc. Robustness

✏ = 8/255 ✏ = 16/255

None 72.9 8.5 5.2
Adv. Trained 62.3 N/A 52.5

DB 65.3 N/A 55.7

DeepNN 26.6 12.9 8.7
WebNN 27.8 18.8 15.2

RMC 73.6 62.4 55.9

We use FGSM, BIM, and PGD to create non-targeted at-
tacks, and CW-L2 and JSMA to create targeted attacks. We
use the open-source CleverHans library (Papernot et al.,
2018) to implement these attacks. For each attack model,
we augment D using the adversarial examples generated by
the attack to get D0, and we generate a sequence U of adver-
sarial test examples by perturbing the benign test examples
against the trained model weights. We report the robustness
using the prediction accuracy over U.

CIFAR-10. We set N 0 = 5|D| so D0 contains |D| clean and
4|D| adversarial examples. We set the maximum allowable
perturbation, ✏, to 8/255 for gradient-based attacks (FGSM,
BIM and PGD). The learning rate of CW-L2 attack is 0.002.
Table 1 shows the clean accuracy and robustness of differ-
ent models paired up with different runtime defenses. For
WebNN and RMC which uses D0, we report the clean accu-
racy by averaging the results under different attacks. As we
can see, the RMC achieves state-of-the-art performance and
performs significantly better than all other baseline defenses
in all combinations of the trained networks and attacks. The
networks without any runtime defense have the worst robust-
ness. This shows that runtime defenses can indeed improve
robustness. The DeepNN and WebNN, which dynamically
mask the gradients of a network at runtime, give improved
performance but are not on par with the RMC. This justifies
that the local adaptation process of the RMC works not only
by gradient masking but also by model cleansing. Note
that the clean accuracy of RMC is high in all cases. This
shows that the cleansing, which does not necessarily result
in a smooth decision boundary in a model as described in
Section 3, is beneficial in practice.

ImageNet. We set N 0 = 4|D| and experiment on both
✏ = 8/255 and ✏ = 16/255. Following the settings in
(Athalye et al., 2018; Kannan et al., 2018; Xie et al., 2019),
we consider only the targeted attacks here.3 We run the
PGD attack for 10 descent iterations. In addition to the
runtime defenses, we compare RMC with the train-time
defense called denoising block (DB) because it is currently

3See the supplementary file for the results under non-targeted
attacks.
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Table 3. The performance of different defenses under different
gray- and black-box attacks (✏ = 8/255) on CIFAR-10.

Acc. Robustness

Reg. ResNet Reg. wResNet

FGSM MIM FGSM MIM

None 83.3 39.5 21 68.8 67.2
A.T. (FGSM) 83.2 73.4 69.9 69.4 67.9

A.T. (PGD) 85.3 70.5 68.7 72.7 70.4

DeepNN 84.3 41.8 20.6 72.2 70.5

WebNN 80.2 45.4 23.4 66.7 65.6
RMC 85.7 77.7 74.4 78.2 68.4

the state-of-the-art on ImageNet. As in (Dubey et al., 2019),
we find the top-K nearest neighbors using a similar measure
defined in the feature space of the conv 5 1 layer of the
ResNet-152. Table 2 shows the results. The numbers of the
adversarial training and DB are extracted from the original
paper (Xie et al., 2019). We can see that the RMC achieves
comparable (if not better) robustness than DB. This, again,
justifies that the local adaptation process gives a strong gra-
dient masking and cleansing effects. In addition, the RMC
yields significantly higher clean accuracy than other base-
lines, which demonstrates the benefit of allowing a model
to have a non-smooth decision boundary during cleansing.
Note that the WebNN, a runtime gradient masking method,
does not perform well on ImageNet because the D0 we used
(of size 106) is much smaller than that (of size 109) used in
the original paper (Dubey et al., 2019). On the other hand,
the RMC does not require a large D0 to work thanks to the
cleansing effect in addition to the gradient masking.

4.2. Gray- and Black-Box Settings

In black-box settings, an adversary does not have access to
the information about the target model, such as its archi-
tecture and weights. Following (Madry et al., 2017), we
create a gray- and black-box attacks by regularly training a
ResNet-32 (denoted by “Reg. ResNet”) of different weights
than our target model and a wide ResNet (denoted by “Reg.
wResNet”) with 10 times of filters at some layers, respec-
tively, on CIFAR-10. The results, which are shown in Table
3, empirically justifies that the RMC can still perform well
under gray- or black-box attacks.

5. Defense-Aware Attacks

We develop two types of defense-aware attacks aiming to
break RMC. The first type of attacks targets the selection
of top-K nearest neighboring examples in N0(x̂) (line 12
in Algorithm 1), and the second type tries to bypass the
local adaptation (lines 13-16). In addition to the information
revealed by the train-time white-box settings, we allow an

Table 4. The robustness of runtime defenses under the PGD-NN
attack. Although the PGD-NN affects the selection of nearest
neighboring examples, the RMC can still defend PGD-NN.

None DeepNN WebNN RMC

PGD 6.7 8 48.6 86.6

PGD-NN 11.3 11.4 1.5 75.4

attacker to partially or totally access the information used
by the RMC at runtime. Unless mentioned specifically, we
follow the settings for CIFAR-10 in Section 4.1. For ease of
presentation, we consider the regularly trained model here.

5.1. PGD-NN

Assuming that the augmented training dataset D0 is exposed,
we modify the PGD attack (Madry et al., 2017), which we
call PGD-NN, to generate an adversarial test instance x̂
whose goal is to let N0(x̂) contain “wrong” examples such
that the local adaptation of RMC will mislead the network
into a wrong prediction.4 In PGD-NN, we compute the
adversarial perturbation for a benign test example (x̂,y) by
solving

argmax�2A(x̂) H( 1
K

P
x2N0(x̂+�) f(x;✓

⇤),y),

where H(· , ·) is the cross entropy. We then add the pertur-
bation back to x̂. In effect, the perturbed x̂ will let N(x̂)
contain as few examples of class y as possible. Note that
we use SGD to solve the above problem. When computing
the gradient at each iteration, we let the error signal back-
propagated though the operation of finding the K nearest
neighbors from D0.

The results are shown in Table 4. We can see that the
DeepNN and WebNN fail to defend the PGD-NN attack
as the latter can successfully mislead the selection of top-
K nearest neighboring examples. The RMC also gives
degraded robustness under this attack. However, the perfor-
mance drop is much less than the other baselines. We find
that, although containing less examples of the correct labels,
the N0(x̂) still includes adversarial examples that can help
the model cleansing. This allows the RMC to withstand the
PGD-NN attack.

5.2. PGD-Skip

Next, we consider an even stronger attack by assuming a
complete white-box setting where all information, includ-
ing the test sequence U, is known by the adversary. We
propose the PGD-Skip attack that uses PGD to compute
an adversarial point x̂(p+1) (the (p + 1)-th test input seen

4We also take into account a variant of the PGD-NN attack and
study the performance of RMC. Please see the supplementary for
more details.
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Algorithm 2 The PREDICT procedure of RMC+.
1: procedure PREDICT(x̂, f(· ;✓⇤), L, D, D0, K, �)
2: Search D0 to get N(x̂) of size K;
3: · · · . local adaptation
4: ✓0 = ✓⇤;
5: · · · . calibration
6: Update D0 such that the adversarial examples in

N0(x̂) are recomputed using ✓0;
7: return f(x̂;✓0) and ✓⇤;
8: end procedure

at runtime) against the network that has been adapted to
x̂(1)

, · · · , x̂(p) 2 U. So, the PGD-Skip will bypass all
RMC effects due to x̂(1)

, · · · , x̂(p).

The PGD-Skip can successfully defeat RMC. Under such a
strong attack, the RMC gives only 14.9% robustness. Nev-
ertheless, the number is still better than the 6.7% given by
the regularly trained network without any runtime defense.
See the supplementary file for more details.

The PGD-Skip, however, may be infeasible in practice be-
cause it uses two strong assumptions: 1) the adversary can
have access to all data points seen at runtime, and 2) there
is no other data point coming in between x̂(p) and x̂(p+1).
When a model is publicly deployed on, for example, the
World Wilde Web, it is unlikely that an adversary can eaves-
drop every routing packets coming from the worldwide.
Furthermore, the adversary can hardly mute all requests
from other users so that the attack point can be placed at
the position p + 1.5 In another example, if the packets
may be encrypted so the adversary may take a while to de-
crypt the packets to get plaintext data points. Therefore, we
consider two weakened but more practical attacks, which
we call the PGD-Skip-Partial and PGD-Skip-Delayed. In
PGD-Skip-Partial, only partial data points in U are known,
and the known points are out of order. The adversary runs
local adaptation over the known points to get an approxi-
mate network based on which the adversarial perturbations
are computed. In PGD-Skip-Delayed, the adversary knows
x̂(1)

, · · · , x̂(p) but can only place the generated adversarial
point at x̂(p+q+1), where q reflects the delay of knowing
x̂(1)

, · · · , x̂(p) and/or computing adversarial perturbations.

To successfully defend PGD-Skip attacks, the model needs
to have a strong masking and/or cleansing effect even when
only seeing one extra testing instance. This can be achieved
by either 1) using a larger learning rate during the local
adaptation or 2) continuously adding new information in D0

5Many other practical concerns invalidate the assumptions used
by PGD-Skip. For example, if the packets sent by the users have
been encrypted, it will take time for the adversary to decrypt the
packets to eavesdrop x̂(1), · · · , x̂(p) and then place an attack point.

(a) CIFAR-10 (b) ImageNet

Figure 2. The inference delay given different numbers of test in-
stances seen by the network at runtime on the (a) CIFAR-10 and
(b) ImageNet datasets.

via either new adversarial examples or new benign examples.
Here we show the results of the latter approach. Algorithm
2 outlines the extended version of RMC, called the RMC+,
that updates D0 by recomputing the adversarial examples
in N0(x̂) based on the adapted weights ✓0. We introduce a
hyperparameter � that controls the portion of the adversarial
examples in N0(x̂) to replace.

Table 5 shows the performance of RMC+. As we can see
(Table 5(a)), the RMC+ can successfully defend the PGD-
Skip-Delayed attack whenever the delay (q) is longer than
the arrival interval of 50 test instances. Furthermore, the
RMC+ can defend the PGD-Skip-Partial whenever the at-
tacker knows less than 70% of the test instances in U (Table
5(b)). In particular, in most of the success cases, the RMC+

gives comparable or better robustness than the adversarial
training.

6. More Experiments

Next, we investigate the behavior of RMC in more dimen-
sions. We follow the settings in Section 4.1 and use the
non-targeted PGD attack with ✏ = 8/255 and ✏ = 16/255
for the CIFAR-10 and ImageNet datasets, respectively.

How long is the delay incurred by RMC at runtime? We
test the delay incurred by the RMC at runtime on a machine
with an NVIDIA V100 GPU. We set the batch size for
adaptation to 128 and 1024 on CIFAR-10 and ImageNet, re-
spectively. Figure 2 shows the results. Generally, the RMC
gives a delay of about 1 second on CIFAR-10 and a delay
of 20-40 seconds on ImageNet, which may be acceptable
for non-realtime applications. We believe that the RMC can
greatly benefit from existing acceleration techniques. This
is left as our future work.

How does the performance of RMC change when a

model sees more test data points? Figure 3 shows the
average robustness and steps of local adaptation given dif-
ferent numbers of test instances seen by the network at
runtime on the CIFAR-10 dataset. We found that before
giving a relatively stable performance, the RMC takes about
tens of instances to warm up. This is because there are
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Table 5. The robustness of RMC+ under the (a) PGD-Skip-Delayed and (b) PGD-Skip-Partial attacks.
� = 0.5 � = 0.75 � = 1

q 0 50 100 0 50 100 0 50 100

p = 50 19.3 51 63.7 20.4 48.9 62.8 20.9 44.1 48.6
p = 100 25.3 50.8 55.1 25.5 51.5 56.1 39.5 41 30.6

(a) PGD-Skip-Delayed with D0 replacement

� = 0.5 � = 0.75 � = 1

known 30% 50% 70% 30% 50% 70% 30% 50% 70%

p = 50 48.4 48.1 45.2 47.5 49 43.3 50.4 52.4 49.5
p = 100 64.1 63.1 63.5 64.3 61.1 59.4 63.3 61.7 61.8
p = 150 69.2 69.2 68.5 68.9 68.7 68.3 59.6 61.1 64.8

(b) PGD-Skip-Partial with D0 replacement

(a) Robustness (b) Steps

Figure 3. Higher robustness can be achieved at a lower cost (in
terms of adaptation steps and time) when the model sees more test
points on CIFAR-10. (a) Robustness under different attacks. (b)
The number of gradient descent steps of local adaptation.

(a) (b)

Figure 4. Sensitivity check of two hyperparameter K and |D0|
on the CIFAR-10 dataset. (a) K-sensitivity check, which shows
robustness with different size of K. (b) |D0|-sensitivity check,
indicating robustness with various |D0|.

many non-robust patterns to unlearn in the first few rounds
of local adaptation, as evidenced by the number of gradient
descent steps of local adaptation for the very first instances.
After the warm-up stage, the RMC gives a relatively sta-
ble, slightly increasing performance at a stable cost when
the mode sees more test instances. This trend is consistent
under different attacks.

How do the K and N
0

affect performance? Next, we
study the effects of the hyperparameters K and N

0 in RMC.
Figure 4(a) shows the robustness given by the RMC with
different settings for K. As we can see, the RMC with a

Table 6. The white-box robustness under different attacking algo-
rithms pairing with different D0 on CIFAR-10. With Single-Attack
D0, RMC performs better than other types of D0 under gradient-
based attacking algorithms.

FGSM BIM PGD CW-L2 JSMA

None 11.6 0.6 0.5 0.7 14.1
Single-Attack D0 85.3 86.7 87.5 89.7 88.6

All-In D0 82.6 85.7 86.1 88.8 85.8
Leave-One-Out D0 63.1 85.3 85.8 87.5 66.7

larger K requires less time to warm up and converges to
higher robustness, although this benefit saturates at larger
K’s. Nevertheless, according to Figure 2, one should not
use a too large K because it incurs a high delay without
significantly improving robustness. We give similar results
on ImageNet in the supplementary file.

Figure 4(b) shows the robustness given by RMC with dif-
ferent |D0|. In line with earlier work (Dubey et al., 2019),
there is a positive correlation between the robustness and
the number of precomputed examples in D0. This result is
consistent across different types of attacks, which supports
the very first assumption of our work that requiring more
data at runtime can improve robustness.

What if an adversarial test example is generated by an

attack not considered in D0
? We evaluate the performance

of RMC where the augmented dataset D0 is configure differ-
ently on CIFAR-10. Specifically, we consider the variants
of D0 that contains 1) a single attack used by the attacker
(denoted by “Single-Attack”), 2) all types of attacks shown
in Figure 4(b), including the one used by the attacker (de-
noted by “All-In”), and 3) all types of attacks except the
one used by the attacker (denoted by “Leave-One-Out”). As
Table 6 shows, the effect of the specific types of adversarial
examples included in D0 is not significant except in the case
of Leave-One-Out D0 against the FGSM and JSMA attacks.
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Table 7. Robustness of the non-masking RMC (i.e., the RMC without the local adaptation for the current test instance x̂(p+q+1)) and
the hindsight adversarial training with labeled U under the PGD-Skip attack (where q = 0 and 100% of the previous test instances
x̂(1), · · · , x̂(p) are known) on CIFAR-10.

p 0 100 1000 5000

Hindsight Adv. Training on Labeled U 6.7 8.4 16.4 13.9
Non-masking RMC 11.7 14.3 26.2

The FGSM is known to be an effective attack against the
defense based on gradient masking. And the JSMA, which
is pixel-based, is very different from other gradient-based
attacks.

How much robustness can be improved solely by cleans-

ing? The RMC improves robustness via both the gradient
masking and cleansing effects. To understand how much
the cleansing contributes to the overall performance, we
conduct an experiment that evaluates the performance of a
weakened version of RMC where there’s no gradient mask-
ing for the current test instance. Following the settings in
Section 5.2, we consider the completely white-box PGD-
Skip attack which assumes 1) the network to attack has been
adapted to x̂(1)

, · · · , x̂(p) 2 U, 2) the attacker uses PGD to
compute an adversarial point x̂(p+q+1), where q is the delay
of obtaining/placing the point from/into U, and 3) q = 0
and 100% of the previous test instances x̂(1)

, · · · , x̂(p) are
known by the attacker. We remove the gradient masking
effect of RMC by not allowing it to perform the local adap-
tation for the test instance x̂(p+q+1) (but the adaptations
for previous instances x̂(1)

, · · · , x̂(p) are still allowed to
accumulate the cleansing effect). We call this weakened
version of the non-masking RMC. We also consider a base-
line where the adversarial training is performed in hindsight,
that is, we treat x̂(1)

, · · · , x̂(p+q) 2 U as a new training set
by revealing their correct labels and then, before predicting
the label of x̂(p+q+1), fine-tune the network by running the
adversarial training algorithm on the training set. To ensure
that this baseline sees the same amount of adversarial ex-
amples as the no-masking RMC, we stop the adversarial
training when N

0 = 4|D| adversarial examples have been
generated.

Table 7 shows the results. As we can see, the non-masking
RMC improves the robustness of a regularly trained model
when more test instances are seen, which justifies the effec-
tiveness of the standalone cleansing. Without gradient mask-
ing, the RMC can still function by teaching the model to un-
learn non-robust patterns that were inevitably learned from
the training set D under statistical settings. As compared
with the hindsight adversarial training, the non-masking
RMC has a smaller sample complexity because it improves
the robustness faster as p increases. Furthermore, it does
not utilize the labels of x̂(1)

, · · · , x̂(p) in the ground truth

and thus is more practical at runtime.

More Experiments. We also investigate the behavior of
RMC in other aspects, such as targeted vs. non-targeted
attacks, more defense-aware attacks, and particular datasets,
etc. Please refer to the supplementary file for more details.

7. Implications and Conclusion

We propose the runtime masking and cleansing (RMC) that
uses test data to improve the adversarial robustness of a
model after deployment. To the best of our knowledge,
RMC is the first adaptive defense at runtime. It is compati-
ble with any existing defense technique running at training
time. We conduct extensive experiments to evaluate the per-
formance of RMC. Empirical results on real-world datasets
show that it significantly improves the adversarial robust-
ness of a network at the cost of delays in making predictions,
which may be acceptable to non-realtime applications. We
also propose two new attack methods against RMC and
demonstrate that the RMC is hard to break due to practical
limitations faced by adversaries on a production system.

The RMC has implications for the lifecycle of a model on
existing machine learning systems. Since the discovery
of adversarial examples, the attack and defense techniques
have been chasing each other. A robustly trained and de-
ployed model may become vulnerable after a new attack is
proposed. Currently, there is a “vulnerable window” before
the model incorporates further defenses and is redeployed.
The RMC can greatly reduce a vulnerable window because
it does not require the model to be retrained to defend the
new attack. Instead, only the D0 needs to be updated, which
can be done asynchronously and much faster than the adver-
sarial training.

As our future work, we plan to investigate approaches that
can accelerate the local adaptation procedure and reduce
the delay incurred by RMC. Another direction to explore is
the attack model. Is it possible to make an attack adaptive
(at runtime) to break an adaptive defense like RMC? In
particular, can an adversary perturb a sequence of test points
instead of just one to create stronger attacks? This is our
future inquiry. We also plan to study the performance of
RMC on real-world applications, such as face recognition
authorization, where security is in high demand.
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