
Adversarial Robustness via Runtime Masking
and Cleansing: Supplementary Materials

In this document, we give more details about our experiments and the be-
havior of RMC. The code of our experiments is available at https://github.
com/nthu-datalab/Runtime-Masking-and-Cleansing.

A Training Details
This section details the trained models and the local-adaptation procedures of
RMC for different datasets.

A.1 MNIST.
Training. We use Adam as the optimizer. We set the learning rate to 1e�3 for
all models paired up with different train-time defense mentioned in Section 4 of
the main paper. For the adversarial training, we set the batch size to 128, and
the maximum allowable perturbations, denoted by ✏, to 0.3. When the attack
model is PGD in adversarial training, we run PGD for 10 iterations with step
size 0.01 to generate an adversarial example. For regularization-based defenses,
we set the weights of the regularization terms to 0.1 and 0.05 for Jacobian and
Cross-Lipschitz regularizations, respectively.

Adaptation. We follow the settings used by the training procedure of the
corresponding model, except setting the learning rate to 2e � 4.

A.2 CIFAR-10.
Training. We use Adam with a learning rate of 1e � 4 as the optimizer and
set the batch size to 128 for all types of training methods. For the PGD attack
model, we set ✏ = 8/255 and iterate it for 10 steps with the step size 2/255 to
generate an adversarial example. For regularization-based defenses, we set the
weights of the regularization terms to 0.001 and 0.05 for Jacobian and Cross-
Lipschitz regularizations, respectively.

Adaptation. The settings follow the ones used by the training procedure
of the corresponding model, except that the learning rate is reduced to 2.5e�5.

1

A.3 ImageNet.
Training. We use the pretrained ResNet-152 publicly available on the Tensor-
Flow GitHub repository.

Adaptation. We use Adam with a learning rate of 1e�5. For the adversarial
training and denoising block (DB), we report their accuracy and robustness from
the paper [3]. For other methods, all experiments are conducted with a batch
size of 256. Note that the ResNet-152 has batch normalization layers whose
means and variances at training time and runtime may be inconsistent because
the N0(x̂) in Algorithm 1 of the main paper does not contain i.i.d. samples. To
avoid the discrepancy, we fix the means and variances of the batch-normalization
layers at the corresponding means and variances recorded in the training phase,
respectively, when running the local adaptation procedure of RMC.

B MNIST Experiment
In this section, we show the performance of different defenses under different
train-time white-box attacks on MNIST, which was omitted in Section 4 of the
main paper due to space limitation.

We set N 0 = 2|D|, that is, half of the examples in D0 are adversarial examples.
For gradient-based attacks (FGSM, BIM, and PGD), the maximum allowable
perturbation, ✏, is set to 0.3. The learning rate for CW-L2 attack is 0.02.
Table 1 shows the results. As we can see, the RMC achieves state-of-the-art
robustness and performs significantly better than all other baseline defenses in
all combinations of the trained networks and attacks. This is consistent with
the results on CIFAR-10 shown in Table 1 of the main paper.

C Defense-Aware Attacks
In this section, we further investigate the behavior of RMC under runtime white-
box attacks where the D0 and U can be exploited by an adversary. Unless
mentioned specifically, we run the following experiments with a regularly trained
network on CIFAR-10 and use the settings described in Sections 4.1 and 5 of
the main text.

C.1 PGD-NN2
In addition to the PGD-NN described in Section 5.1 of the main text, we devise
another attack, called PGD-NN2, whose goal is to mislead RMC into obtaining
N0(x̂) consisting of “wrong” examples by using the knowledge about D0. The
PGD-NN2 computes the adversarial perturbation �⇤ for the test instance x̂ 2 U
using

�⇤ = argmin�2A(x̂) H(1
K

P
x2N(x̂+�) f(x;✓

⇤)\idx(y))� kf(x;✓⇤)\idx(y)k2,

2

Table 1: The performance of different defenses under different train-time white-
box attacks (✏ = 0.3) on MNIST.

Acc. Robustness

FGSM BIM PGD CW-L2 JSMA

Regularly Trained

None 99.3 11.6 0.6 0.5 0.7 14.1
DeepNN 99.2 12.3 0.6 0.5 75.3 58.2
WebNN 98.2 70.4 82.6 85.3 87.4 87.1

RMC 99.3 99.3 99.3 99.3 99.3 99.1

Adversarially Trained w. FGSM

None 99 94 51.4 0.7 16.3 42.9
DeepNN 98.8 94 56.9 1.7 85.9 77.2
WebNN 98.6 94.3 85.2 90.8 89.1 87.9

RMC 99.2 98.6 98.9 98.9 98.7 98.8

Adversarially Trained w. PGD

None 99.1 96.6 93 94.8 65.6 94.6
DeepNN 98.8 96.4 94.5 95.8 91 95.4
WebNN 98.7 96.5 94.5 95.8 91 97.5

RMC 99.2 98.2 97.5 97.8 99.1 98.9

Regularly Trained w. Jacobbian Reg.

None 94.8 22.1 7.6 8 13.7 26.5
DeepNN 95.9 21.1 8.9 9.6 55.7 41
WebNN 94.2 55.5 55.6 58.3 79 66.4

RMC 99.3 98.9 98.9 99.1 99.2 98

Regularly Trained w. Cross-Lipschitz Reg.

None 99.3 70.6 30.7 19.3 23.8 48.6
DeepNN 99.2 73.2 37.5 22.3 72.7 73.4
WebNN 97 79.8 75.1 74.4 82.8 85.5

RMC 99.3 99.2 99.2 99.3 99.2 98.2

3

Table 2: The robustness of runtime defenses under the PGD-NN and PGD-NN2
attacks.

PGD PGD-NN PGD-NN2

None 6.7 11.3 59.6
DeepNN 8 11.4 59.7
WebNN 48.6 1.5 7.4

RMC 86.6 75.4 79

Table 3: The robustness of RMC under the (a) PGD-Skip-Delayed and (b) PGD-
Skip-Partial attacks, which degenerate to PGD-Skip when q = 0 and when U is
100% known, respectively.

q 0 50 100

p = 100 14.9 19.8 20.8
known 30% 50% 70% 100%

p = 100 18.1 16.4 16.5 14.9

(a) PGD-Skip-Delayed (b) PGD-Skip-Partial

where H(·) is the entropy function and [·]\idx(y) is the normalized vector of the
original [·] excluding the dimension that the one-hot label vector y indicates.1
We then add the perturbation �⇤ back to x̂. The perturbed x̂ would let N(x̂)
contain examples of the same class but y. One can think PGD-NN2 as a “tar-
geted” analogy to the “non-targeted” PGD-NN presented in the main paper.
Table 2 shows the performance of different runtime defenses RMC against this
attack. We can see that the RMC still significantly outperforms the DeepNN
and WebNN. This suggests that the RMC, unlike the adversarial training, does
not rely on the correct labels in N0(x̂) to work. Instead, it uses the “mess-
ily” labeled adversarial examples in N0(x̂) to cleanse the model of non-robust
features.

C.2 PGD-Skip

The PGD-Skip attack, which uses PGD to compute an adversarial point x̂(p+q+1) 2
U (i.e., the (p+ q + 1)-th test input seen at runtime) against the network that
has been adapted to x̂(1)

, · · · , x̂(p) 2 U, is a strong attack because it bypasses
all RMC effects due to x̂(1)

, · · · , x̂(p). The plain RMC (without a changing D0 in
Algorithm 2 of the main text) has degraded performance under the PGD-Skip
attack, as shown in Table 3. When q (the delay in obtaining an attackable test
instance) equals to zero and the instances x̂(1)

, · · · , x̂(p) are 100% known, the at-
tacker can get all information used by the RMC, and the RMC can only defend
the attack using one round of local adaptation for N(x̂(p+q+1)). In this extreme
case, the RMC gives 14.9% robustness. Although not being very impressive, this

1For example, given y = [0, 0, 1]>, we have [0.2, 0.3, 0.5]>\idx(y) = [0.4, 0.6]>.

4

MNIST

Figure 1: The inference delay over different numbers of test instances seen by
the network at runtime on the MNIST dataset.

number is better than the 6.7% given by the regularly trained network without
any runtime defense. Furthermore, the robustness can be improved when the
delay q becomes longer or when fewer instances in U are known by the attacker.

D More Experiments
Here, we investigate the behavior of RMC in more dimensions. Unless mentioned
specifically, we follow the settings in Section 4 of the main text and use the non-
targeted PGD attack with ✏ = 0.3 and 8/255 on the MNIST and CIFAR-10
datasets, respectively, while using the targeted PGD attack with ✏ = 16/255 on
ImageNet.

How long is the delay incurred by RMC at runtime on the MNIST

dataset? We run RMC on a machine with an NVIDIA V100 GPU. The batch
size for local adaptation is set to 128. Figure 1 shows the inference time of
RMC on MNIST. The delay of making an inference is around 0.1 second under
all types of attacks. Together with the results in Figure 2 in the main paper, the
RMC can be a practical, high-performing defense for non-realtime applications.

How does the hyperparameter K affect the performance of RMC

on ImageNet? We empirically study the effect of the hyperparameter K on
the ImageNet dataset. Figure 2 shows the results. Similar to what we have seen
in Figure 3 in the main paper, a larger K leads to less warm-up time and higher
long-term robustness. Furthermore, all the values of K here give satisfactory
robustness but are relatively small as compared to the ones used in WebNN [1],
which justifies the practical advantage of RMC.

Can RMC withstand non-targeted attacks on ImageNet? Most of
the existing defenses evaluate the robustness of a model on ImageNet by consid-
ering only the targeted attacks. However, a recent study [2] points out that the
performance of the adversarial training could drop significantly under a non-
targeted attack. To see whether the RMC can withstand a non-targeted attack,
we compare the performance of RMC under targeted and non-targeted attacks

5

(a) (b)

Figure 2: Sensitivity of performance to the hyperparameter K on ImageNet
with the maximum allowable perturbation (a) ✏ = 8/255 and (b) ✏ = 16/255.

Table 4: The performance of different defenses under targeted and non-targeted
train-time white-box attacks (✏ = 16/255) on ImageNet.

Acc. Robustness

Targeted Non-targeted

None 72.9 5.2 8.6
Adv. Trained 62.3 52.5 17.1

DB 65.3 55.7 N/A
DeepNN 26.6 8.7 10.8
WebNN 27.8 15.2 19.9

RMC 73.6 55.9 37.6

6

(a) CIFAR-10 (b) ImageNet

Figure 3: Variance of RMC on the CIFAR-10 and ImageNet datasets. The solid
lines represent the mean robustness of RMC with 6 different runs, while the
translucent areas are the variance.

on ImageNet. Table 4 shows the results. We use PGD with ✏ = 16/255 as
the attack model. As we can see, the performance of RMC drops under the
non-target attack. However, it still achieves the state-of-the-art robustness and
performs much better than the other baselines. Note that both the DeepNN and
WebNN give relatively better performance under the non-targeted attack. In
particular, the WebNN achieves better performance than the adversarial train-
ing. The runtime defenses seem to be a promising direction of fighting against
the non-targeted attacks in a large-scale learning problem, which deserves in-
depth study in the future.

What are the variances of the reported performance? We report
the performance of RMC by averaging the results of 6 runs. In general, we
observe small variances at later runtime stages and therefore omit them in the
main paper for simplicity. The shaded areas in Figure 3 show the variances of
the reported robustness under different attacks on the CIFAR-10 and ImageNet
datasets. As we can see, the variances are small except at the warm-up stage.
On both the datasets, the RMC gives a stable performance after seeing about
200 test data points.

References
[1] Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz, Yixuan Li, and

Dhruv Mahajan. Defense against adversarial images using web-scale nearest-
neighbor search. In Proc. of CVPR, 2019.

[2] Jianyu Wang and Haichao Zhang. Bilateral adversarial training: Towards
fast training of more robust models against adversarial attacks. In Proc. of
ICCV, 2019.

7

[3] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming
He. Feature denoising for improving adversarial robustness. In Proc. of
CVPR, 2019.

8

