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Abstract

We study the problem of detecting critical struc-
tures using a graph embedding model. Existing
graph embedding models lack the ability to pre-
cisely detect critical structures that are specific to
a task at the global scale. In this paper, we pro-
pose a novel graph embedding model, called the
Ego-CNNs, that employs the ego-convolutions
convolutions at each layer and stacks up layers
using an ego-centric way to detects precise crit-
ical structures efficiently. An Ego-CNN can be
jointly trained with a task model and help ex-
plain/discover knowledge for the task. We con-
duct extensive experiments and the results show
that Ego-CNNs (1) can lead to comparable task
performance as the state-of-the-art graph embed-
ding models, (2) works nicely with CNN visual-
ization techniques to illustrate the detected struc-
tures, and (3) is efficient and can incorporate with
scale-free priors, which commonly occurs in so-
cial network datasets, to further improve the train-
ing efficiency.

1. Introduction

A graph embedding algorithm converts graphs from struc-
tural representation to fixed-dimensional vectors. It is typi-
cally trained in a unsupervised manner for general learning
tasks but recently, deep learning approaches (Bruna et al.,
2013; Kipf & Welling, 2017; Atwood & Towsley, 2016; Du-
venaud et al., 2015; Li et al., 2016; Pham et al., 2017; Gilmer
et al., 2017; Niepert et al., 2016) are trained in a supervised
manner and show superior results against unsupervised ap-
proaches on many tasks such as node classification and
graph classification.

While these algorithms lead to good performance on tasks,
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Figure 1. (a) The OH function group is the critical structure to tell
Alcohols from Alkanes. (b) The symmetry hydrocarbon group (at
two sides of the methyl branch) is the critical structure to discrimi-
nate between symmetric and asymmetric isomer of methylnonane.

what valuable information can be jointly learned from the
graph embedding is less discussed. In this paper, we aim
to develop a graph embedding model that jointly discovers
the critical structures, i.e., partial graphs that are dominant
to a prediction in the task (e.g., graph classification) where
the embedding is applied to. This helps people running the
task understand the reason behind the task predictions, and
is particularly useful in certain domains such as the bioin-
formatics, cheminformatics, and social network analysis,
where valuable knowledge may be discovered by investigat-
ing the found critical structures.

However, identifying critical structures is a challenging
task. The first challenge is that critical structures are task-
specific—the shape and location of critical structures may
vary from task to task. This means that the graph embedding
model should be learned together with the task model (e.g., a
classifier or regressor). The second challenge is that model
needs to be able to detect precise critical structures. For
example, to discriminant Alcohols from Alkanes (Figure
1(a)), one should check if there exists an OH-base and if
the OH-base is at the end of the compound. To be helpful,
a model has to identify the exact OH-base rather than its
approximation in any form. Third, the critical structures
need to be found at the global-scale. For example, in the task
aiming to identify if a methyl-nonane is symmetric or not
(Figure 1(b)), one must check the entire graph to know if the
methyl is branched at the center position of the long carbon
chain. In this task, the critical structure is the symmetric
hydrocarbon at the two sides of the methyl branch, which
can only be found at the global-scale. Unfortunately, finding
out all matches of substructures in a graph is known as
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subgraph isomorphism and proven to be an NP-complete
problem (Cook, 1971). To the best of our knowledge, there
is no existing graph embedding algorithm that can identify
task-dependent, precise critical structures up to the global-
scale in an efficient manner.

In this paper, we present the Ego-CNNs1 that embed a
graph into distributed (multi-layer), fixed-dimensional ten-
sors. An Ego-CNN is a feedforward convolutional neural
network that can be jointly learned with a supervised task
model (e.g., fully-connected layers) to help identify the task-
specific critical structures. The Ego-CNNs employ novel
ego-convolutions to learn the latent representations at each
network layer. Unlike the neurons in most existing task-
specific, NN-based graph embedding models (Bruna et al.,
2013; Kipf & Welling, 2017; Atwood & Towsley, 2016;
Duvenaud et al., 2015; Li et al., 2016; Pham et al., 2017;
Gilmer et al., 2017) which detect only fuzzy patterns, a
neuron in an Ego-CNN can detect precise patterns in the
output of the previous layer. This allows the precise critical
structures to be backtracked following the model weights
layer-by-layer after training. Furthermore, we propose the
ego-centric design for stacking up layers, where the recep-
tive fields of neurons across layers center around the same
nodes. Such design avoids the locality and efficiency prob-
lems in existing precise model (Niepert et al., 2016) and
enables efficient detection of critical structures at the global
scale.

We conduct extensive experiments and the results show
that Ego-CNNs work nicely with some common visualiza-
tion techniques for CNNs, e.g., Transposed Deconvolution
(Zeiler et al., 2011), can successfully output critical struc-
tures behind each prediction made by the jointly trained
task model, and in the meanwhile, achieving performance
comparable to the state-of-the-art graph classification mod-
els. We also show that Ego-CNNs can readily incorporate
the scale-free prior, which commonly exists in large (so-
cial) graphs, to further improve the training efficiency in
practice. To the best of our knowledge, the Ego-CNNs are
the first graph embedding model that can efficiently detect
task-dependent, precise critical structures at the global scale.

2. Related Work

Next, we briefly review existing graph embedding models.
Table 1 compares the Ego-CNNs with existing graph embed-
ding approaches. For an in-depth review of existing work,
please refer to Section 1 of the supplementary materials or
the survey (Cai et al., 2018).

Traditional graph kernels, including the Weisfeiler-Lehman
(WL) kernel (Shervashidze et al., 2011), Deep Graph
Kernels (DGKs) (Yanardag & Vishwanathan, 2015), Sub-

1The code is available at https://github.com/rutzeng/EgoCNN.

graph2vec (Narayanan et al., 2016), and Multiscale Lapla-
cian Graph (MLG) Kernels (Kondor & Pan, 2016) are de-
signed for unsupervised tasks. They have difficulty of find-
ing task-specific critical structures.

Some recent studies aim to learn the task-specific graph
embeddings. Structure2vec (Dai et al., 2016) uses approx-
imated inference techniques to embed a graph. Studies,
including Spectrum Graph Convolutional Network (GCN)
(Bruna et al., 2013) and its variant (Kipf & Welling, 2017),
Diffusion Convolutional Neural Networks (DCNNs) (At-
wood & Towsley, 2016), and Message-Passing Neural Net-
works (MPNNs) (Duvenaud et al., 2015; Li et al., 2016;
Pham et al., 2017; Gilmer et al., 2017; Velickovic et al.,
2018; Ying et al., 2018), borrow the concepts of CNNs to
embed graphs. The idea is to model the filters/kernels that
scan through different parts of the graph (which we call the
neighborhoods) to learn patterns most helpful to the learn-
ing task. However, the above work share a drawback that
they can only identify fuzzy critical structures or critical
structures of very simple shapes due to the ways the con-
volutions are defined (to be elaborated later in this secion).
Recently, a node embedding model, called the Graph Atten-
tion Networks (GATs) (Velickovic et al., 2018), is proposed.
The GAT attention can be 1- or multi-headed. The multi-
head-attention GATs aggregate hidden representations just
like Message-Passing NNs and thus cannot detect precise
critical structures. On the other hand, the 1-head-attention
GATs allow backtracking precise nodes covered by a neu-
ron through their masked self-attentional layers. However,
being node embedding models, the 1-head-attention GATs
can only detect simplified patterns in neighborhoods. The
Ego-CNNs are a generalization of 1-head-attention GATs
for graph embedding. We will compare these two models in
more details in Section 3.1.

The only graph embedding models that allow backtracking
nodes covered by a neuron are Spatial GCN (Bruna et al.,
2013) and Patchy-San (Niepert et al., 2016). Unfortunately,
the Spatial GCN is not applicable to our problem since it
aims to perform hierarchical clustering of nodes. The filters
learn the distance between clusters (a graph-level informa-
tion) rather than subgraph patterns. On the other hand, the
Patchy-San (Niepert et al., 2016) can detect precise critical
structures. However, it is a single-layer NN2 designed to
detect only the local critical structures around each node.
Due to the lack of recursive definition of convolutions at
deep layers, the Patchy-San does not enjoy the exponential
efficiency of detecting large-scale critical structures using
multiple layers as in other CNN-based models.

2Some people misunderstand that the Patchy-San has multiple
layers since the original paper (Niepert et al., 2016) used a four-
layer NN for experiment. In fact, the second layer is a traditional
convolutional layer and the latter two serve as the task model.
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Table 1. A comparison of embedding models for a graph G = (V, E), |V| = N , where D is the embedding dimension, K is the maximum
node degree in G, L is the number of layers of a deep model, and C is a graph-specific constant.

Graph embedding model Task-Specific?
Precise critical

structures?

Exponential

scale efficiency?

Efficient on

large graphs?

Time complexity

(forward pass)

WL kernel (Shervashidze et al., 2011) ! ! O(L(KN + C))
DGK (Yanardag & Vishwanathan,

2015) ! O(DCN)

Subgraph2vec (Narayanan et al., 2016) ! O(DCN)

MLG (Kondor & Pan, 2016) ! O(LN5)

Structure2vec (Dai et al., 2016) ! ! ! O((KD +D2)LN)

Spatial GCN (Bruna et al., 2013) ! ! O(DLN2)
Spectrum GCN (Bruna et al., 2013;

Defferrard et al., 2016; Kipf & Welling,
2017)

! ! ! O(D2L|E|)

DCNN (Atwood & Towsley, 2016) ! O(MDN2)

Patchy-San (Niepert et al., 2016) ! ! ! O(K2DN)
Message-Passing NNs (Duvenaud et al.,
2015; Li et al., 2016; Pham et al., 2017;

Gilmer et al., 2017; Velickovic et al.,
2018; Ying et al., 2018)

! ! ! O(K2D2LN)

Ego-CNN ! ! ! ! O(KD2LN)

(a) (b) (c)

Figure 2. Neighborhood of a node n in (a) Message-Passing NNs
(Duvenaud et al., 2015; Li et al., 2016; Pham et al., 2017; Gilmer
et al., 2017): g(l)

n 2 RD the aggregated hidden representations
of adjacent nodes in the previous layer; (b) Patchy-San (Niepert
et al., 2016): A(n) 2 RK⇥K the adjacency matrix of K nearest
neighbors of node n, and (c) Ego-CNNs: E(n,l) 2 R(K+1)⇥D the
hidden representation of the l-hop ego network centered at node n
with K nearest neighbors.

Neighborhoods. To understand the cause of limitations
in existing work, we look into the definitions of neighbor-
hoods in these models, as shown in Figure 2. In a CNN,
a filters/kernel scans through different neighborhoods in a
graph to detect the repeating patterns across neighborhoods.
Hence, the definition of a neighborhood determines what to
be learned by the model. In Message-Passing NNs (Duve-
naud et al., 2015; Li et al., 2016; Pham et al., 2017; Gilmer
et al., 2017) (Figure 2(a)), the d-th filter w

(l,d) 2 RD,
d = 1, 2, · · · , D, at the l-th layer scans through the D-
dimensional vector g

(n,l) of every node n. The vector
g
(n,l) =

L
m2Adj(n) h

(m,l�1) 2 RD is an aggregationL
(e.g., summation (Duvenaud et al., 2015)) of the hidden

representations h(m,l�1)’s of the adjacent nodes m’s at the
(l � 1)-th layer. The d-th dimension of the hidden repre-
sentations h(n,l)

d of a node n at the l-th layer is calculated

by3

h(n,l)
d = �(g(n,l)>

w
(l,d) + bd), (1)

where � is an activation function and bd is a bias term. By
stacking up layers in these models, a deep layer can effi-
ciently detect patterns that cover exponentially more nodes
than the patterns found in the shallow layers. However,
these models loses the ability of detecting precise critical
structures since the network weights w(l,d)’s at the l-th layer
parametrize only the aggregated representations from the
previous layer. It is hard (if not impossible) for these net-
works to backtrack the critical nodes in the (l � 1)-th layer
via the weights w(l,d)’s after model training.

The single-layer Patchy-San (Niepert et al., 2016) uses filters
to detects patterns in the adjacency matrix of the K nearest
neighbors of each node. The neighborhood of a node n
is defined as the K ⇥K adjacency matrix A

(n) of the K
nearest neighbors of the node (Figure 2(b)). Filters W (d) 2
RK⇥K , d = 1, 2, · · · , D, scan through the adjacency matrix
of each node to generate the graph embedding H 2 RN⇥D,
where

Hn,d = �(A(n) ⇣ W
(d) + bd) (2)

is the output of an activation function �, bd is the bias
term, and ⇣ is the Frobenius inner product defined as
X ⇣ Y = ⌃i,jXi,jYi,j . Unlike in Message-Passing
NNs, the filters W (d)’s in Patchy-San parametrize the non-
aggregated representations of nodes. Thus, by backtracking
the nodes via W (d)’s, one can discover precise critical struc-
tures. However, to detect critical structures at the global
scale, each A

(n) needs to have the size of N ⇥N , making
3We have made some simplifications. For more details, please

refer to a nice summary (Gilmer et al., 2017).
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Figure 3. The model architecture of an Ego-CNN. With our egocentric design, neighborhoods are egocentrically enlarged by 1-hop after
each Ego-Convolution layer. The dashed horizontal lines across layers indicate neighborhoods of the same node; the ? mark indicates an
arbitrary dimension.

the filters W (d) 2 RN⇥N hard to learn. Efficient detection
of task-specific, precise critical structures at global scale
remains an important but unsolved problem.

3. Ego-CNN

A deep CNN model, when applied to images, offers two
advantages: (1) filers/kernels at a layer, by scanning the
neighborhood of every pixel, detect location independent
patterns, and (2) with a proper recursive definition of neigh-
borhoods, a filter at a deep layer can reuse the output of
neurons at the previous layer to efficiently detect patterns
in pixel areas, called receptive fields, that are exponentially
larger (in number of pixels) than those in a shallow layer,
thereby overcoming the curse of dimensionality. We aim to
keep these advantages on graphs when designing a CNN-
based graph embedding model.

Since Patchy-San (Niepert et al., 2016) can detect precise
critical structures at the local scale, it seems plausible to
extend the notion of its neighborhoods to deep layers. In
Patchy-San, the neighborhood of a node n at the input (shal-
lowest) layer is defined as the K⇥K adjacency matrix A

(n)

of the K nearest neighbors of the node. We can recursively
define the neighborhood of the node n at a deep layer l as
the K ⇥K adjacency matrix A

(n,l) of the K nearest neigh-
bors having the most similar latent representations output
from the previous layer (l � 1).

However, this naive extension suffers from two drawbacks.
First, the neighborhood is dynamic since the K nearest
neighbors may change during the training time. This pre-
vents the filters from learning the location independent pat-
terns. Second, as the neighborhoods at layer (l � 1) are
dynamic, it is hard for a model designer to decide which
neuron output at layer (l � 1) to wire up to a filter at layer
l such that the filter can reuse the output to exponentially

increase the learning efficiency in detecting large-scale pat-
terns. As we can see, the root cause of the above problems
is the ill-defined neighborhoods. This motivate us to rethink
the definition of neighborhoods from scratch.

3.1. Model Design

We propose the Ego-CNN model that (1) defines ego-
convolutions at each layer where a filter at layer l scans
the neighborhood representing the l-hop ego network4 cen-
tered at every node, and (2) stacks up layers using an ego-
centric way such that the neighborhoods of a node n at
layers 1, 2, · · · , L center around the same node, as shown
in Figure 3.

Ego-Convolutions. Let Nbr(n, k) be the k-th near-
est neighbor of a node n in the graph G and H

(l) 2
RN⇥D be the graph embedding output by D filters
W

(l,1), · · · ,W (l,D) at the l-th layer. For l = 1, · · · , L,
we define

H(l)
n,d = �

⇣
E

(n,l) ⇣ W
(l,d) + b(l)d

⌘
, where

E
(n,l) =

h
H

(l�1)
n,: ,H(l�1)

Nbr(n,1),:, · · · ,H
(l�1)
Nbr(n,K),:

i>

(3)
The E(n,l) 2 R(K+1)⇥D is a matrix representing the neigh-
borhood of the node n at the l-th layer, � is the activation
function, bd is the bias term, and ⇣ is the Frobenius in-
ner product defined as X ⇣ Y = ⌃i,jXi,jYi,j . We deter-
mine the K nearest neighbors of a node n using the edge
weights (if available) or hop count5 (otherwise), and define

4In a graph, an l-hop ego network centered at node n is a
subgraph consisting of the node and all its l-hop neighbors as well
as the edges between these nodes.

5In case that two neighbors rank the same, we can use a pre-
defined global node ranking or the graph normalization technique
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H
(0)
n,:2 RK as the adjacency vector between n and its K

nearest neighbors. The goal of the model is to learn the fil-
ters (Figure 2(c)) and bias terms at all layers that minimize
the loss defined by a task.

The neighborhood of a node n at the l-th layer is recur-
sively defined as the stack-up of the latent representation of
the node n and the latent representations of the K nearest
neighbors of the node n in G at the (l � 1)-th layer. In
effect, a neighborhood at the l-th layer is an l-hop ego net-
work, as shown in Figure 4. A neighborhood represents
a deterministic local region of G, avoiding the dynamics
in the native extension of Patchy-San discussed above and
allowing the location independent patterns to be detected
by the Ego-CNN filters. As compared with the Message-
Passing NNs (Eq. (1)), the filters W (l,·)’s parametrize the
non-aggregated representations of nodes, hence allowing
the precise critical structures to be backtracked via W

(l,·)’s
layer-by-layer. Note that Ego-CNNs are a generalization
of a node embedding model called 1-head-attention graph
attention networks (1-head GATs) (Velickovic et al., 2018),
where the W

(l,d) in Eq. (3) is replaced by a rank-1 matrix
C

(l,d). The 1-head GATs were proposed for node classifica-
tion problems. When it is applied to graph learning tasks,
requiring the C

(l,d) to be a rank-1 matrix severely limits
model capacity and leads to degraded task performance. We
will show this in Section 4.

Ego-Centric Layers. Note that in Eq. (3) the K nearest
neighbors Nbr(n, ·)’s are determined from the input G and
remain the same across all layers. This allows the receptive
fields of neurons corresponding to the same node to be expo-
nentially enlarged (in number of nodes) at deeper layers, as
shown in Figure 4. Furthermore, since each H

(l�1)
Nbr(n,·),: in

Eq. (3) already represents an embedding of an (l � 1)-hop
ego network centering at a node neighboring n, the filters
W

(l,·)’s in the next layer, when scanning E
(n,l), can reuse

H
(l�1)
Nbr(n,1),:, · · · ,H

(l�1)
Nbr(n,K),: to efficiently detect patterns

in the l-hop ego network centering at node n. An Ego-CNN
enjoys the exponentially increased efficiency in detecting
large-scale critical structures.

In practice, one should configure the number of layers L (a
hyperparameter) according to the diameter of G to ensure
that the critical structures can be detected at the global scale.
As large social networks usually manifest the small-world
property (Watts & Strogatz, 1998), L is not likely to be
a very large number. In addition, one can extend the Ego-
CNN model described above in different ways. For example,
an Ego-CNN can have different numbers of filters/neurons
at different layers. One can also pair up Ego-CNN with an
existing node embedding model (Cai et al., 2018) that takes
into account node/edge features to compute better H(0)

n,: for

(Niepert et al., 2016) to decide the winner.

(a) (b) (c) (d)

Figure 4. The receptive field of a neuron in an Ego-CNN effec-
tively enlarges at a deeper layer. (a)-(c) Receptive fields of neurons
at the 1st, 2nd, and 5th layer corresponding to the same node. (d)
Receptive field of another neuron at the 5th layer that partially cov-
ers the graph. The difference in the coverage reflects the position
of the corresponding node.

Figure 5. The degree distribution of Reddit dataset follows the
power-law distribution.

each node. In fact, Ego-CNN can take any kind of node
embeddings as input, as shown in the left of Figure 3.

3.2. Visualizing Critical Structures

Since an Ego-CNN is jointly trained with the task model
(to detect task-specific critical structures), the applicable
visualization techniques may vary from task to task. Here,
we propose a general visualization technique based on the
Transposed Deconvolution (Zeiler et al., 2011) that works
alongside any task model. It consists of two steps: (1) we
add an Attention layer (Itti et al., 1998) between the last
Ego-Convolution layer and the first layer of the task model
to find the most important neighborhoods at the deepest
Ego-Convolution layer. (2) We then use the Transposed
Deconvolution to backtrack the nodes in G that are cov-
ered by each of the important neighborhoods identified in
Step 1. For more details, please refer to Section 2 of the
supplementary materials.

We select the neighborhoods with attention scores higher
than a predefined threshold in Step 1 as the important ones.
Note that the Attention layer (Itti et al., 1998) added in Step
1 does not need to be trained with the Ego-CNN and task
models. It can be efficiently trained after the Ego-CNN is
trained. To do so, we append the Attention layer and a dense
layer with a linear activation function (acting as a linear task
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Table 2. 10-Fold CV test accuracy (%) on bioinfomatic datasets.

Dataset MUTAG PTC PROTEINS NCI1

Size 188 344 1113 4110
Max #node / #class 28 / 2 64 / 2 620 / 2 125 / 2

WL kernel 82.1 57.0 73.0 82.2

DGK 82.7 57.3 71.7 62.5

Subgraph2vec 87.2 60.1 73.4 80.3

MLG 84.2 63.6 76.1 80.8

Structure2vec 88.3 – – 83.7

DCNN 67.0 56.6 – 62.6

Patchy-San 92.6 60.0 75.9 78.6

1-head-attention GAT 81.0 57.0 72.5 74.3

Ego-CNN 93.1 63.8 73.8 80.7

model) to the last Ego-Convolution layer of the trained Ego-
CNN, then we train the weights of the Attention and dense
layers while leaving the weights of the Ego-Convolution
layers in the Ego-CNN fixed. The linearity of the task
model aligns the attention scores with the importance. This
post-visualization technique allows a model user to quickly
explore different network configurations for visualization.

3.3. Efficiency and the Scale-Free Prior

Given a graph with N nodes and D-dimensional embed-
dings of nodes, an Ego-CNN with L Ego-Convolution lay-
ers base on the top-K neighbors and D filters can embed a
graph in O

�
N(K + 1)LD2

�
time. For each of the L lay-

ers, the l-th layer takes O(NK) to lookup and stack up the
K neighbors’ embeddings to generate all the N receptive
fields of size (K + 1)⇥D, and it takes O

�
N(K + 1)D2

�

to have D filters scan through all the receptive fields. The
Ego-CNN is highly efficient as compare to existing graph
embedding models. Please see Table 1 for more details.

Scale-Free Regularizer. Study (Li et al., 2005) shows that
the patterns in a large social network are usually scale-
free—the same patterns can be observed at different zoom
levels of the network.6 In practice, one may identify a
scale-free network by checking if the node degrees follow
a power-law distribution. Figure 5 shows the degree distri-
bution of the Reddit dataset, which is used as one of the
datasets in our experiment. The degree distribution follows
the power law.

The Ego-CNNs can be readily adapted to detect the scale-
free patterns7. Recall that the filters at the l-th layer detect

6Interested readers may refer to (Kim et al., 2007) for a formal
definition of a scale-free network, which is based on the fractals
and box-covering methods.

7For example, Kronecker graphs (Leskovec et al., 2010) is a

the patterns of neighborhoods representing the l-hop ego
networks. By regarding the 1-hop, 2-hop, · · · , L-hop ego-
networks E(n,1),E(n,2), · · · ,E(n,L) centering around the
same node n as different “zoom levels” of the graph, we
can simply let an Ego-CNN detect the scale-free patterns
by tying the weights of filters W (1,d),W (2,d), · · · ,W (L,d)

for each d. When the input G is scale-free, this weight-tying
technique (a regularization) improves both the performance
of the task model and training efficiency.

4. Experiments

In this section, we conduct experiments using real-world
datasets to verify (i) Ego-CNNs can lead to comparable
task performance as compared to existing graph embedding
approaches; (ii) the visualization technique discussed in
Section 3.2 can output meaningful critical structures; and
(iii) the scale-free regularizer introduced in Section 3.3 can
detect the repeating patterns in a scale-free network. All ex-
periments run on a computer with 48-core Intel(R) Xeon(R)
E5-2690 CPU, 64 GB RAM, and NVidia Geforce GTX
1070 GPU. We use Tensorflow to implement our methods.

4.1. Graph Classification

We benchmark on both bioinformatic and social-network
datasets pre-processed by (Kersting et al., 2016). In the
bioinformatic datasets, graphs are provided with node/edge
labels and/or attributes, while in the social network datasets,
only pure graph structures are given. We consider the
task of graph classification. See DGK (Yanardag & Vish-
wanathan, 2015) for more details about the task and bench-

special case of the weight-tying Ego-CNN with filter number D =
1. Interested readers may refer to Section 4 of the supplementary
for more details.
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mark datasets. We follow DGK to set up the experiments
and report the average test accuracy using the 10-fold cross
validation (CV). We compare the results Ego-CNN with ex-
isting methods mentioned in Section 2 and take the reported
accuracy directly from their papers.

Generic Model Settings. To demonstrate the broad appli-
cability of Ego-CNNs, the network architecture of our Ego-
CNN implementation remains the same for all datasets. The
architecture is composed of 1 node embedding layer (Patchy-
San with 128 filters and K = 10) and 5 Ego-Convolution
layers (each with D = 128 filters and K = 16) and 2 Dense
layers (with 128 neurons for the first Dense layer) as the
task model before the output. We apply Dropout (with drop
rate 0.5) and Batch Normalization to the input and Ego-
Convolution layers and train the network using the Adam
algorithm with learning rate 0.0001. For selecting the K
neighbors, we exploit a heuristic that prefers rare neighbors.
We select the top K with the least frequent multiset labels
in 1-WL labeling (Weisfeiler & Lehman, 1968). For nodes
with less than K neighbors, we simply use zero vectors to
represent non-existing neighbors.

The task accuracy are reported in Table 2 and Table 3. Al-
though having fixed architecture, the Ego-CNN is able to
give comparable task performance against the stat-of-the-art
models (which all use node/edge features) on the bioinfor-
matic datasets. On the social network datasets where the
node/edge features are not available, the Ego-CNN is able
to outperform previous scalable work. In particular, the Ego-
CNN improves the performance of two closely related work,
the single-layer Patchy-San and 1-head-attention GAT, on
most of the datasets. This justifies that 1) detecting patterns
at scales larger than just the adjacent neighbors of each node
and 2) allowing full-rank filters/kernels in Eq. (3) are indeed
beneficial.

4.2. Visualization of Critical Structures

Chemical Compounds. To justify the usefulness of Ego-
CNNs in the cheminformatics problem shown in Figure 1,
we generate two compound datasets with critical structures
at the local scale (Alkanes vs. Alcohols) and at the global
scale (Symmetric vs. Asymmetric Isomers) in the ground
truth, respectively. The structures of compounds are gener-
ated under different compound size (number of atoms) and
vertex-orderings.

First, we test if an Ego-CNN considers OH-base as a critical
structure in the Alkanes vs. Alcohols dataset. With the
post-visualization technique introduced in Section 3.2, we
plot the detected critical structures on two Alcohol examples
in Figures 6(a)(b). We find that the OH-base on Alcohols
is always captured precisely and considered as critical to
distinguish Alcohols from Alkanes no matter how large the
compounds are.

(a) C14 H29 OH (b) C82 H165 OH

(c) Symmetric Isomer (d) Asymmetric Isomer

Figure 6. Visualization of critical structures on (a)(b) two Alcohol
compounds for the task distinguishing Alcohol from Alkane, and
(c) a Symmetric Isomer and (d) an Asymmetric Isomer compounds
for the task classifying the types of Isomer. Critical structures are
colored in grey and the node/edge size is proportional to its impor-
tance. The OH-base on Alcohols is always captured precisely and
considered critical. On Symmetric Isomers, the critical patterns are
roughly symmetric from the methyl branching node, which shows
that the Ego-CNN is able to learn to count from the branching
node to see if the structure is symmetric or not.

For Symmetric Isomers like the one shown in Figure 6(c),
the Ego-CNN detects the symmetric hydrocarbon chains
as critical structures as we expected. An interesting obser-
vation is that the importance of the nodes and edge in the
detected critical structures are also roughly symmetric to the
methyl-base. This symmetry phenomenon can also be ob-
served in the critical structures of the Asymmetric Isomers,
as shown in Figure 6(d). We conjecture the Ego-CNN learns
to compare if the two long hydrocarbon chains (which are
branched from the methyl-base) are symmetric or not by
starting comparing the nodes and edges from the methyl-
base all along to the end of the hydrocarbon chains, which
is similar to how people check if a structure is symmetric.

Social Interactions. Without assuming prior knowledge,
we visualize the detected critical structures on graphs in the
Reddit dataset to see if they can help explain the task predic-
tions. In Reddit dataset, each graph represents a discussion
thread. Each node represents a user, and there is an edge if
two users have been discussing with each other. The task
is to classify the discussion style of the thread into either
the discussion-based (e.g. threads under Atheism) or the
QA-based (e.g. under AskReddit).

Figure 7 shows the detected critical structures (colored in
grey with the node/edge size proportional to its importance).
For the discussion-based threads, the Ego-CNN tends to
identify users (nodes) that have many connections with other
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Table 3. 10-Fold CV test accuracy (%) on social network datasets.

Dataset IMDB (B) IMDB (M) REDDIT (B) COLLAB

Size 1000 1000 2000 5000
Max #node / #class 270 / 2 176 / 3 3782 / 2 982 / 3

DGK 67.0 44.6 78.0 73.0

Patchy-San 71.0 45.2 86.3 72.6

1-head-attention GAT 70.0 – 78.8 –

Ego-CNN 72.3 48.1 87.8 74.2

(a) Discussion-based thread. (b) QA-based thread.

Figure 7. Visualization of critical structures on Reddit dataset.
The critical structures are colored in grey and the node/edge size
is proportional to its importance. The results show that the variety
of different opinions are the key to discriminant discussion-based
threads from QA-based threads.

Table 4. Ego-CNNs on Reddit dataset with the scale-free prior.

Network architecture Weight-
Tying?

10-Fold CV
Test Acc (%)

#Params

1 Ego-Conv. layer 84.9 1.3M

5 Ego-Conv. layers 87.8 2.3M
5 Ego-Conv. layers ! 88.4 1.3M

users. On the other hand, many isolated nodes are identified
as critical for the QA-based threads. This suggests that the
variety of different opinions, which motivate following-up
interactions between repliers in a tread, are the key to dis-
criminant discussion-based threads from QA-based threads.

4.3. Scale-Free Regularizer

Next, to verify the effectiveness of the scale-free regularizer
proposed in Section 3.3. We compared 1 shallow Ego-CNN
(with 1 Ego-Convolution) and 2 deep Ego-CNNs (with 5
Ego-Convolution). All networks are trained on the Reddit
dataset with settings described in Section 4.1. Table 4 shows
the results.

Without scale-free regularizer, the accuracy improves by
2.9% at the cost of 77% more parameters. Tying the weights
of the 5 Ego-Convolution layers, the deep network uses

roughly the same amount of parameters as the shallow net-
work but performs better than the network of the same depth
without weight-tying. This justifies that the proposed scale-
free regularizer can increase both the task performance and
training efficiency.

Note, however, that the scale-free regularizer helps only
when the graphs are scale-free. When applied to graphs
without scale-free properties (e.g., chemical compounds),
the scale-free regularizer leads to 2%~10% drop in test
accuracy. For more details, please refer to Section 3 of the
supplementary materials. This motivates a test like the one
shown in Figure 5—one should verify if the target graphs
indeed have scale-free properties before applying the scale-
free regularizer.

5. Conclusions

We propose Ego-CNNs that employ the Ego-Convolutions
to detect invariant patterns among ego networks, and use
the ego-centric way to stack up layers to allows to exponen-
tially cover more nodes. The Ego-CNNs work nicely with
common visualization techniques to illustrate the detected
structures. Investigating the critical structures may help
explaining the reasons behind task predictions and/or dis-
covery of new knowledge, which is important to many fields
such as the bioinformatics, cheminformatics, and social net-
work analysis. As our future work, we will study how to
further improve the time/space efficiency of an Ego-CNN.
A neighborhood of a node at a deep layer may overlap with
that of another node at the same layer. Therefore, instead
of letting a filter scan through all of the neighborhood em-
beddings at a layer, it might be acceptable to skip some
neighborhoods. This can reduce embedding dimensions
(space) and speed up computation.
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