Distributed, Egocentric Representations of Graphs for Detecting Critical
Structures: Supplementary Metarials

1. Further Related Work

Here, we give an in-depth review of existing graph embed-
ding models.

Graph Kernels. The Weisfeiler-Lehman kernel (Sher-
vashidze et al., 2011) grows the coverage of each node
by collecting information from neighbors, which is concep-
tually similar to our method, but differs from our model in
that WL kernel collects only node labels, while our method
collects the complete labeled neighborhood graphs from
neighbors. Deep Graph Kernels (Yanardag & Vishwanathan,
2015) and Subgraph2vec (Narayanan et al., 2016), which
are inspired by word2vec (Mikolov et al., 2013), embed the
graph structure by predicting neighbors’ structures given
a node. Multiscale Laplacian Graph Kernels (Kondor &
Pan, 2016) compare graphs at multiple scales by recursively
comparing graphs based on the comparison of subgraphs,
which takes O(LN?®) where L represents the number of
comparing scales and is inefficient. All the above graph ker-
nels have a common drawback in that the embeddings are
generated in a unsupervised manner. The critical structure
cannot be jointly detected at the generation of embeddings.

Graphical Models. Assuming that the edges of a graph ex-
press the conditional dependency between random variables
(nodes), Structure2vec (Dai et al., 2016) introduces a novel
layer that makes the optimization procedures of approxi-
mated inference directly trainable by SGD. It is efficient on
large graphs with time complexity linear to number of nodes.
However, it’s weak on identifying critical structures because
the approximated inference makes too much simplification
on the graph structure. For example, the mean-field approx-
imation assumes that variables are independent with each
other. As a result, Structure2vec can only identify critical
structures of very simple shape.

Convolution-based Methods. Recently, many work are
proposed to embed graphs by borrowing the concept of
CNN. Figure 1 summarizes the definitions of filters and
neighborhoods in these work. The Spatial Graph Convolu-
tional Network (GCN) was proposed by (Bruna et al., 2013).
The design of Spatial GCN (Figure 1(a)) is very different
from other convolution-based methods (and ours) since its
goal is to perform hierarchical clustering of nodes. A neigh-
borhood is defined as a cluster. However, the filter is not

aim to scan for local patterns but to learn the connectivity
of all clusters. This means each filter is of size O(N?) if
there are N clusters. Also, a filter requires the global-scale
information, i.e. the features of all clusters to train, so it’s
very inefficient on large graphs. Hence, in the same paper,
(Bruna et al., 2013) proposed another version, the Spectrum
GCN, to perform hierarchical clustering in the spectrum do-
main. The computation of Spectrum GCN is later improved
by (Defferrard et al., 2016). However, the major drawback
is that the graph spectrum is weak at identifying structures
as it is only interpretable for very special graph families
(e.g., complete graphs and star-like trees). A recent variant
of Spectrum GCN (Kipf & Welling, 2017) uses the filters
to detect the propagated feature of each node (equivalent
to weighted-sum its neighbors’ features). This variant also
cannot detect the critical structures precisely.

Diffusion Convolutional Neural Networks (DCNN) (At-
wood & Towsley, 2016) embed the graph by detecting pat-
terns in the diffusion of each node. The neighborhood is
defined as the diffusion, which are paths starting from a
node to other nodes in m hops. The diffusion can be rep-
resented by an M x N diffusion matrix D, where each
element D,, ,, indicates if the current node connects to a
node n in m hops. Filters in a DCNN scan through each
node’s diffusion matrix. So, DCNN can detect useful diffu-
sion patterns. But it cannot detect critical structures since
the diffusion patterns cannot precisely describe the location
and the shape of structures. DCNN reported impressive
results on the node classification. But it is inefficient on
graph classification tasks since their notion of neighborhood
is at the global-scale, which takes O(M N?) to embed a
graph with N nodes. Also, their definition of neighborhood
makes the embedding model shallow—there is only one
single layer in a DCNN.

Patchy-San (Niepert et al., 2016) uses filters to detects
patterns in the adjacency matrix of the K nearest neigh-
bors of each node. The neighborhood of a node n is
defined as the K x K adjacency matrix A" of the K
nearest neighbors of the node. Filters W@ ¢ REXK s
d=1,2,---, D, scan through the adjacency matrix of each
node to generate the graph embedding H € RY* P where
H, 4= J(A(") ® w4 bg) is the output of an activa-
tion function o, b, is the bias term, and ® is the Frobenius

Distributed, Egocentric Representations of Graphs for Detecting Critical Structures

K K _scan

N 1 M- N __scan
vow []l
(@) (b)

| D_scan

K+ D _scan

(©) (d) (e)

Figure 1. Filters and neighborhood in (a) Spatial GCN (Bruna et al., 2013). A filter W is a sparse matrix, which is not aimed to detect
local patterns, but to learn the connectivity of clusters. (b) DCNN (Atwood & Towsley, 2016) scans through the M x N diffusion matrix
of each node. (c) Patchy-San (Niepert et al., 2016) scans the K x K adjacency matrix of local neighborhood of each node. (d) Neural
Fingerprints (Duvenaud et al., 2015) that scans the d-dimensional approximated neighborhood (specially, the summation of neighbors’
embeddings) of each node. (¢) Ego-Convolution scans (K + 1) x D egocentric neighborhoods of each node.

inner product definedas X ® Y = Z X;.;Y; ;. Note that
0]
a filter scans through A(n), the normalized version of A (™
(Niepert et al., 2016), in order to be invariant under different
vertex permutations. Patchy-San can detect precise struc-
tures (via the filters). However, to detect critical structures at
the global level, each A(n) needs to have the size of N X N,
making the filters W@ e RN*N hard to learn. There is
no discussion on how to generalize the local neighborhood
defined by Patchy-San at a deep layer.

The Message-Passing NNs (Duvenaud et al., 2015; Li et al.,
2016; Pham et al., 2017; Gilmer et al., 2017; Velickovic
et al., 2018; Ying et al., 2018) scan through the approx-
imated neighborhoods of each node and supports multi-
ple layers. At each layer [, the neighborhood of a node
is defined as a D-dimensional vector representing the ag-
gregation (e.g., summation (Duvenaud et al., 2015)) of the
D-dimensional hidden representation at layer [— 1 of the
l-hop neighbors. The summation avoids the vertex-ordering
problem of the adjacency matrix in Patchy-San. On the
other hand, the Message-Passing NNs loses the ability of
detecting precise critical structures.

Note that a Message-Passing NN, called the 1-head-
attention graph attention network (1-head GAT) (Velick-
ovic et al., 2018), is a special case of Ego-CNN where
the W& in Eq. (3) in the main paper is replaced by a
rank-1 matrix C%. Specifically, it models the d-th di-
mension of the embedding of node n at the [-th layer as

T
0 _ (-1 (1-1) Ld
Hn,d =0 (|:HNbr(n,1),;ﬂ e ’HNbr(n,K),;} ® C()> s

where C% = aW ;. is the outer-product of the edge
importance vector a € R¥ and the d-th row of their weight
matrix W. The 1-head GAT was proposed for node classifi-
cation problems. When it is applied to graph learning tasks,
requiring the C (4) t6 be a rank-1 matrix severely limits the
model capability and leads to inferior performance.

2. Detailed Visualization Steps

In this section, we detail how the critical structure is visual-
ized using an Ego-CNN. Like standard CNN, each neuron
in Ego-CNN represents the matched result for a specific
pattern (subgraph) with size upper-bounded by K nodes.
To visualize the detected critical structure, the first step is
to find the most important neighborhoods at the deepest
Ego-Convolution layer. The importance score (") for each
node n can be calculated using the Attention layer described
in Section 3.2 of the main paper. Next, we compute the

importance-adjusted node embedding H S) =y H S) €
RP before applying the Transposed Convolution layer-by-
layer (from the deepest to the shallowest) to plot the critical
subgraphs. At each layer, we (1) follow the Transposed Con-
volution to re-construct each node’s importance-adjusted

neighboring embeddings E(n’l) = > f{fi)dw(lyd) e

RE+DXD - and then (2) reconstruct H S;l) by “undo-
T

: 99 n,l _ -1 (lil) (lil)

ing” B = |:H’I(’L,I)aHNbr(n,n,:»"' ’HNbr(n,K),:}

in Eq. (3) in the main paper. We do so by letting

A (—1) - (3,0)
Hn,.: = Zi:node n is 4’s k nearest neightbor, k<K k+1,5 . Re-
peating the above steps, we end up reconstructing an
. . . . ~(0
importance-adjusted adjacency matrix H O ¢ RFXK that
“undoes” Patchy-San. Our Figures 5 and 6 in the main paper
plot the graphs using edge widths proportional the values in

i,

3. More Experiments

In this section, we conduct more experiments to further in-
vestigate the performance of Ego-CNNs. First, we compare
the Ego-CNN with a naive extension of Patch-San using
standard CNN layers. The architecture (6 layers) and num-
bers of parameters of the two models are roughly the same.
The results are shown in Figure 2. As we can see, the Ego-
CNN with Ego-Convolutions outperforms standard CNN
convolutions on graph classification problems.

Next, we compare the Ego-CNNs with and without the
scale-free regularizer mentioned in Section 4.3 of the main

Distributed, Egocentric Representations of Graphs for Detecting Critical Structures

Model Type MUTAG PTC PROTEINS NCI1 IMDB (B) REDDIT (B)
Ego-CNN 93.1 (6s) 63.8 (20s) 73.8 (244s) 80.7 (854s) 723 87.8
Patch-San + Std. Convolution Layers 89.4 61.5 70.7 71.0 67.1 81.0
Ego-CNN with Scale-Free Regularizer | 84.5 (13s) 59.5 (22s) 73.2 (2815s) 77.8 (368s) 71.5 88.4

Figure 2. More experiments.

paper. As we can see in Figure 2, the scale-free regular-
izer does not boost performance on bioinformatic datasets
(MUTAG/PTC/PROTEINS/NCI1) because the graphs have
no scale-free property. This motivates a test like the one
shown in Figure 5 in the main paper—one should verify if
the target graphs indeed have scale-free properties before
applying the scale-free regularizer.

4. Relation to Kronecker Graphs

In this section, we briefly show how Kronecker graph
(Leskovec et al., 2010) is a special case of Ego-CNN with
scale-free regularizer. Suppose only 1 pattern A(®) ¢
RE*XK is captured in the node embedding layer and there
is only 1 filter W € RE+DX1 in the weight-tying
Ego-Convolution layers. Then, the pattern captured in
the I-th weight-tying Ego-Convolution filter is A(!) =
f(AU=D QW), where f is a function that converts a list of
adjacency matrices of length /' + 1 into a unified adjacency
matrix in which elements that belong to the same physical
nodes are merged.

References

Atwood, J. and Towsley, D. Diffusion-convolutional neural
networks. In Proceedings of NIPS, 2016.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
Proceedings of ICLR, 2013.

Dai, H., Dai, B., and Song, L. Discriminative embeddings of
latent variable models for structured data. In Proceedings
of ICML, 2016.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of NIPS, 2016.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular
fingerprints. In Proceedings of NIPS, 2015.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of ICML, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proceedings of
ICLR, 2017.

Kondor, R. and Pan, H. The multiscale laplacian graph
kernel. In Proceedings of NIPS, 2016.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.,
and Ghahramani, Z. Kronecker graphs: An approach
to modeling networks. Journal of Machine Learning
Research, 11(Feb):985-1042, 2010.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. In Proceedings of ICLR,
2016.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. 2013.

Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., and
Saminathan, S. subgraph2vec: Learning distributed rep-
resentations of rooted sub-graphs from large graphs. In
Workshop on Mining and Learning with Graphs, 2016.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning convo-
lutional neural networks for graphs. In Proceedings of
ICML, 2016.

Pham, T., Tran, T., Phung, D. Q., and Venkatesh, S. Column
networks for collective classification. In Proceedings of
AAAIL 2017.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. JMLR, 12(Sep):2539-2561, 2011.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
Proceedings of ICLR, 2018.

Yanardag, P. and Vishwanathan, S. Deep graph kernels. In
Proceedings of SIGKDD. ACM, 2015.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Proceedings of NIPS, pp.
4805-4815, 2018.

