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1. Objective Solving
With the following Eqs.

B(k)h = AWH pT 1)

and

proj*(B) = AMw®E®T )
explained in the main text, we can employ the multiplica-
tive gradient descent method (Ding et al., 2006) to update
the U = [U®, 0, V™" = (v® 0], A®), and E®
in each iteration. The update rules for Eq. (5) of the main
text are given below:
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2. More on Experiments

In this section, we give more details about our settings
and conduct more experiments to further study the perfor-
mance of MOTAR. Table 1 shows some statistics of our
real datasets.

Datasets DBLP MovieLens
#users 180,640 69,878
#items 141,507 10,677

#rating events 1,495,081 10,000,054
Avg. #ratings/user 8.277 143.107
Avg. #ratings/item 10.565 936.598

Table 1: Statistics of the real datasets.

We validate that minimizing the MOTAR objective score
does improve performance. Figure 1 shows the typical cor-
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elemental-wise division, and /- denotes elemental-wise ol
square root. The detailed steps are given in Algorithm 1. . ‘

Note that we initiate the last columns of ff(k) and V(k)

by zero vectors, and because they are updated by element-
. T ~(k

wise multiplications, the last columns of U( ) and V( )

will remain zeros during each iteration.
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Figure 1: The correlation between the objective score and
MAE of MOTAR.
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Algorithm 1 The MOTAR training process.

Input: Dataset {X(k)}lgkgd and hyperparameters o, 3, {p(k), q(k)}k, and z
Output: {Y*)1,

Initialize {U(k) }1 and {V(k)} & by random positives but set their last columns to O
Initialize B by random positives
repeat
fork e {1,--- ,d} do
Obtain the cubicization B (k)from B, CP-decompose it by Eq. (1), and remember @Elk) ’S
Calculate proj* (B) by Eq. (2)
Update T, 7™, A0 E® by Bgs. (3)~(6)
Normalize each row of ﬁ(k), V(k) by its /1 norm
Reconstruct B by Eq.(1) using the remembered <I>§Lk) ’s
end for

until convergence
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