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1. Solving the Objective of CICF
In the following, we detail our steps in solving the objective
of CICF.

1.1. Overview

The objective function of CICF, with the non-negative con-
straints on V(g) and E(g), is a special case of Non-negative
Matrix Factorization (NMF) (Lee & Seung, 1999; Recht
et al., 2012; Seung & Lee, 2001; Yang et al., 2012), and
can be solved by a multiplicative update approach (Seung
& Lee, 2001; Yang & Oja, 2010). However, this approach
suffers from the fluctuation problem in convergence (Yang
& Oja, 2011; Zhang et al., 2012), as shown in Fig. 1.

We first transform the original CICF objective into a Pro-
jective Non-negative Matrix Factorization (PNMF) (Yang
& Oja, 2010) problem. The new PNMF objective, as com-
pared to the original one, offers two advantages. First, it
learns sparse latent factors which is helpful to our prob-
lem in identifying the key user behavior. Second, it can be
solved with convergence guarantee if we are able to find an
auxiliary function for the objective (Seung & Lee, 2001).

We then devise an auxiliary function and obtain an iterative
update rule for E(t), as shown by Eq. (5), and another for
E(s) similarly. We then update E(t) and E(s) alternately
until convergence. Fig. 1 show the convergence rate of our
algorithm. Empirically, 8 to 15 iterations suffice to reach
convergence.

1.2. PNMF Formulation

Based on an intuition that a user’s latent interests/character
(modeled by the latent factors of nodes) can be summa-
rized/averaged by what he/she has done (modeled by the
latent factors of edges), we let V:,j =

1
d(vj)

∑
ei∈I(vj) E:,i,

where I(vj) denotes the set of edges incident to vj and

Figure 1. Comparison of convergence rates.

d(vj) is the degree of vj . Define a matrix ∆ ∈ Rm×n

where ∆i,j = 1/d(vj) if ei ∈ I(vj) and 0 otherwise. We
have V = E∆, and the objective can be re-written as in
Eq. (1).

Eq. (1) has the non-negative constraints on E(s), and its
first term is related to the Projective Non-negative Matrix
Factorization (PNMF) (Yang & Oja, 2010). The PNMF,
as compared to the traditional NMF (Lee & Seung, 1999;
Recht et al., 2012; Seung & Lee, 2001; Yang et al., 2012),
has an advantage in learning sparse latent factors and is
helpful to our problem in identifying the key user behav-
iors. Typically, the PNMF is solved by a multiplicative up-
date approach (Seung & Lee, 2001; Yang & Oja, 2010).
However, this approach suffers from the fluctuation prob-
lem in convergence (Yang & Oja, 2011; Zhang et al., 2012).

1.3. Auxiliary Function

In this paper, we propose an iterative update algorithm
based on the auxiliary function (Seung & Lee, 2001) to
solve the objective of CICF while guaranteeing the con-
vergence.
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arg min
{E(g)>O}g

∑
g

‖E(g)>E(g)∆(g) −G(g)‖2F + α‖E(t)∆(t)P(t) −E(s)∆(s)P(s)‖2F + β
∑
g

tr(E(g)L(K(E(g)))E(g)>). (1)

g1(Ẽ
(t),E(t)) =

∑
i,j

Ẽ
(t)4
i,j

2E
(t)3
i,j

(E(t)∆(t)∆(t)>E(t)>E(t) + E(t)E(t)>E(t)∆(t)∆(t)>)i,j

+
∑

i,j

Ẽ
(t)2
i,j

E
(t)
i,j

(αE(t)∆(t)P(t)P(t)>∆(t)> + βE(t)L
(t)
+ )i,j

−2
∑

i,j Ẽ
(t)
i,j (E

(t)(2G(t)∆(t)> + βL
(t)
− ))i,j

−2
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i,j(1 + log
Ẽ

(t)
i,j

E
(t)
i,j

)E
(t)
i,j (αE(s)∆(s)P(s)P(t)>∆(t)>)i,j

(2)

g2(Ẽ
(t),E(t)) =

∑
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Ẽ
(t)4
i,j

2E
(t)3
i,j

(E(t)∆(t)∆(t)>E(t)>E(t) + E(t)E(t)>E(t)∆(t)∆(t)> + αE(t)∆(t)P(t)P(t)>∆(t)>

+βE(t)L
(t)
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(t)
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(t)
i,j

)E
(t)
i,j (E

(t)(2G(t)∆(t)> + βL
(t)
− ) + αE(s)∆(s)P(s)P(t)>∆(t)>)i,j

(3)

0 = ∂g2(Ẽ
(t),E(t))

∂Ẽ
(t)
i,j

=
2Ẽ

(t)3
i,j

E
(t)3
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(E(t)∆(t)∆(t)>E(t)>E(t) + E(t)E(t)>E(t)∆(t)∆(t)> + αE(t)∆(t)P(t)P(t)>∆(t)>

+βE(t)L
(t)
+ )i,j − 2

E
(t)
i,j
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(t)
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(E(t)(2G(t)∆(t)> + βL
(t)
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(4)

Ẽ
(t)
i,j = E

(t)
i,j (

(E(t)(2G(t)∆(t)> + βL
(t)
− ) + αE(s)∆(s)P(s)P(t)>∆(t)>)i,j

(E(t)∆(t)∆(t)>E(t)>E(t) + E(t)E(t)>E(t)∆(t)∆(t)> + αE(t)∆(t)P(t)P(t)>∆(t)> + βE(t)L
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1
4 (5)
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Definition 1 (Auxiliary Function). Given a function h :
Rm×n → R. A function g : (Rm×n)2 → R is called an
auxiliary function of h iff g(Z̃,Z) ≥ h(Z̃) for all Z̃ and Z

and the equation holds when Z̃ = Z.

If we can find an auxiliary function g of h, then the min-
imizer Z∗ of h can be found using the following iterative
update rule:

Z(i+1) = argmin
Z
g(Z,Z(i)). (6)

Notice that h(Z(i+1)) is monotonically decreasing dur-
ing the iterations, as h(Z(i+1))≤ g(Z(i+1),Z(i))≤
g(Z(i),Z(i))= h(Z(i)).

Eq. (1) is a function of both E(t) and E(s). We solve our
objective using an iterative alternate approach. In one it-
eration, some E(s), s = a or p, is fixed and we look for
another by solving Eq. (6), then in the next iteration we
alternate s and solve the opposite. This process is repeated
until the objective converges.

Without loss of generality, we first assume E(s) is fixed
and denote Eq. (1) as h(E(t)). Our target is to derive an
auxiliary function for h(E(t)) so that we can employ Eq.
(6) to find the E(t) that will be fixed in the next iteration.
We rewrite the Laplacian matrix L(K(E(t))) as L

(t)
+ −L

(t)
− ,

where L
(t)
− is the similarity matrix K(E(t)) and L

(t)
+ is a

diagonal matrix with the ith entry on the diagonal being
the sum of the ith column (or row) in L

(t)
− . Note that all

entries in L
(s)
+ and L

(s)
− are non-negative.

Theorem 2. Given a positive semi-definite L
(t)
− . Ignoring

the constant terms, the function g1 defined in Eq. (2) is an
auxiliary function of h(E(t)).

Proof. See Appendix.

Based on the above theorem, the similarity matrix K(E(t))
is required to be positive semi-definite. To ensure this, we
need to use a positive definite kernel function, such as the
Gaussian RBF kernel, to set each K(E(t))i,j .

1.4. Further Simplification

In fact, the objective in Eq. (6) based on g1 is still difficult
to solve because when we set the derivative of g1 to zero to
find the minimum, we cannot derive the analytical form so-
lution directly from an equation containing more than two
monomials (Yang & Oja, 2011). However, we can combine
1) the first and second terms and 2) the third and fourth
terms respectively to derive another auxiliary function g2,
which contains only two monomials and is easy to solve.

Lemma 3. Given a, b, x ∈ R, the inequality xa ≤ a
bx

b +
1− a

b holds if b > a > 1, and the equality holds iff x = 1.

Proof. Let f(t) = xa. Because f(t) is convex, we have
f(t) = f((ab )b + (1 − a

b )0) ≤
a
b f (b) + (1 − a

b )f (0) =
a
bx

b + 1− a
b .

Thus, for any S,S′ ∈ (R+)k×m and a symmetric A ∈
(R+)m×m we have

(S′A)i,j S2
i,j

S′i,j
= (S′A)i,j S′i,j(

Sip

S′ip
)2

≤ 2

4
(S′A)i,j S′i,j(

Sip

S′ip
)4 + constant

=
(S′A)i,j S4

i,j

2S
′3
i,j

+ constant.

Regarding respectively S = Ẽ(t), S′ = E(t), and A =

α∆(t)P(t)P(t)>∆(t)> + βL
(t)
+ , we can raise the power of

Ẽ
(t)
i,j in the second term and merge this raised term into the

first term. To merge the third and fourth terms, we use
the inequality x ≥ 1 + log(x) for any positive x ∈ R.
Regarding x = Ẽ

(t)
i,j/E

(t)
i,j , we can see that the third term is

upper-bounded by

−2
∑
i,j

(1+log(
Ẽ

(t)
i,j

E
(t)
i,j

))E
(t)
i,j (E

(t)(2G(t)∆(t)>+βL
(t)
− ))i,j ,

which can be merged into the fourth term. After the merg-
ing, we can write g2 as in Eq. (3). Finally, we solve Eq. (6)
based on g2 by setting the derivative of g2 to 0, as shown in
Eq (4), and obtain the update rule for E(t), as listed in Eq.
(5).

The update rule for E(s) can be obtained similarly and is
omitted.

Appendix: Proof of Theorem 2
Our goal is to prove that g1 is an auxiliary function of h.
We first rewrite each term in h using Eqs. (7), (8), and (9)
and obtain Eq. (10). It is easy to verify that the equality
g1(Ẽ

(a),E(a)) + constant = h(Ẽ(a)) holds when Ẽ(a) =

E(a). We prove that g1(Ẽ(a),E(a)) + constant ≥ h(Ẽ(a))

for any Ẽ(a) by comparing the g1 and h term-by-term.

We show that the first term of g1 is larger than or equal to
that of h using the Jensen’s inequality

ϕ(

∑
s,t λs,tXs,t∑

s,t λs,t
) ≤

∑
s,t λs,tϕ(Xs,t)∑

s,t λs,t
,

where ϕ is a real convex function and λs,t are non-negative
weights with positive sum. Let ϕ(x) = x2 and λi,j,s,t =

E
(a)
t,i E

(a)
t,s ∆

(a)
s,j /(E

(a)>E(a)∆(a))i,j (
∑

s,t λi,j,s,t = 1),
we have
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‖E(a)>E(a)∆(a) −G(a)‖2F = tr((E(a)>E(a)∆(a) −G(a))>(E(a)>E(a)∆(a) −G(a)))

= −2 tr(E(a)G(a)∆(a)>E(a)>) +
∑

i,j(E
(a)>E(a)∆(a))2i,j + constant (7)

tr(E(a)L(K(E(a)))E(a)>) = tr(E(a)(L
(a)
+ − L

(a)
− )E(a)>) = tr(E(a)L

(a)
+ E(a)> −E(a)L

(a)
− E(a)>) (8)

‖E(a)∆(a)P(a) −E(p)∆(p)P(p)‖2F = tr((E(a)∆(a)P(a) −E(p)∆(p)P(p))>(E(a)∆(a)P(a) −E(p)∆(p)P(p))) (9)

= tr(E(a)∆(a)P(a)P(a)>∆(a)>E(a)> − 2E(p)∆(p)P(p)P(a)>∆(a)>E(a)>) + constant

h(E(a)) =
∑

i,j(E
(a)>E(a)∆(a))2i,j + tr(βE(a)L

(a)
+ E(a)> + αE(a)∆(a)P(a)P(a)>∆(a)>E(a)>)

− tr(E(a)(2G(a)∆(a)>E(a)> + βL
(a)
− )E(a)>)− tr(2αE(p)∆(p)P(p)P(a)>∆(a)>E(a)>) + constant (10)

∑
i,j(Ẽ

(a)>Ẽ(a)∆(a))2i,j
=

∑
i,j(

∑
s,t λi,j,s,t(Ẽ

(a)>Ẽ(a)∆(a))i,j)
2

≤
∑

i,t

Ẽ
(a)4
t,i

2E
(a)3
t,i

(E(a)∆(a)∆(a)>E(a)>E(a)

+E(a)E(a)>E(a)∆(a)∆(a)>)t,i.

We omit the detailed derivation here.

We can easily verify that the second term of g1 is no less
than that of h using the lemma below:

Lemma 4. For any S ∈ (R+)k×m, S′ ∈ (R+)k×m, and
symmetric A ∈ (R+)m×m, the following inequality holds

k∑
i=1

m∑
j=1

(S′A)i,jS
2
i,j

S′i,j
≥ tr(SAS>).

Proof. Let ui,j = Si,j/S
′
i,j . Subtracting the right from left

equals∑
i,j

∑m
p=1 S′i,pAp,jS

′
i,j(u

2
i,j − ui,pui,j)

=
∑

i,j,p S′i,pAp,jS
′
i,j(

u2
i,j+u2

i,p

2 − ui,pui,j)
= 1

2

∑
i,j,p S′i,pAp,jS

′
i,j(ui,j − ui,p)2,

which is larger then or equal to 0.

The third term of h is upper-bounded by its first order Tay-
lor expansion at E(a):

− tr(Ẽ(a)XẼ(a)>) ≤ −2
∑
i,j

Ẽ
(a)
i,j (E

(a)X)i,j + constant,

where X = 2G(a)∆(a)> + βL
(a)
− , since each term in X

is positive semi-definite and the left hand side is concave
with respect to Ẽ(a).

We compare the fourth terms of g1 and h using the inequal-
ity x ≥ 1 + log(x) for any positive x ∈ R. Regarding

x = Ẽ
(a)
i,j /E

(a)
i,j , we can see that the fourth term of h is

always smaller.

With the above results, we obtain the proof. Note that the
Hessian matrix of g1 with respect to Ẽ(a) is positive semi-
definite (i.e., ∇∇Ẽ(a)g1(Ẽ

(a),E(a)) � 0), so g1 is convex
and the solution to Eq. (6) exists.
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