
ATTACKING AND DEFENDING BEHIND A PSYCHOACOUSTICS-BASED CAPTCHA

Chih-Hsiang Huang, Po-Hao Wu, Yi-Wen Liu, Shan-Hung Wu

Department of Electrical Engineering, National Tsing Hua University, Taiwan
Department of Computer Science, National Tsing Hua University, Taiwan

ABSTRACT

This paper proposes a novel audio CAPTCHA system that re-
quires a user to respond immediately after hearing a short and
easy-to-remember cue in its mixture with background music.
Potential attacking paths based on cross correlation (CC) and
sound event detection (SED) are implemented to test the se-
curity of the system. Then, two defending measures based
on phase-modification of the cue and audio watermarking are
established against CC and SED-based attacks, respectively.
Human subjects were recruited to test the system and the re-
sults indicated that the subjects can pass the proposed audio
CAPTCHA >90% of the times. In contrast, the proposed de-
fending measures suppress the passing rate of both attacks to
8.2% and 0.4%, respectively.

Index Terms— Audio CAPTCHA, Watermarking, Signal
Decorrelation, Sound Event Detection

1. INTRODUCTION

In order to prevent malicious accessing to websites from bots
or attackers, Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA) is often imple-
mented at the entry. Although World Wide Web Consortium
(W3C) has announced Web Content Accessibility Guidelines
(WCAG), most of the websites lack of alternative ways for
those who are vision-impaired, deaf or dyslexic to textual
tests to complete the CAPTCHA. In this research, we develop
a novel audio CAPTCHA system.

Existing audio-based CAPTCHA could be classified into
two categories: speech CAPTCHA and acoustic CAPTCHA
[1]. Speech CAPTCHA is designed based on the human abil-
ity to produce or recognize speech. By requiring the user to
read out a given sentence, Gao et al. [2] developed a system
that checked whether the sentence was spoken or synthesized.
Other systems require the user to listen. Kochanski et al. [3]
added noise or distorted the signal to make it hard for bots
to recognize the contents automatically. A quite peculiar sys-
tem was designed to utilize sounds that are only meaningful
for machines but nonsense for human [4, 5]; therefore, if the
answer is correctly entered, the “user” must be a bot.

Acoustic CAPTCHA relies on the human ability to de-
tect and recognize sound events. Meutzner et al. [6] proposed

a CAPTCHA based on sound event and scene classification.
Three or four kinds of sound events were mixed with a back-
ground scene. Users were asked to pick up the correct sound
events and scene after listening to a sound clip. Lazar et al. [7]
designed CAPTCHA only based on sound event recognition.
One challenge was composed of two to four target sounds
with remaining decoy sounds. Target and decoy sounds were
lined up in a series with spoken delimiters in between. When
the challenge was played, the user should press the space bar
intuitively immediately after hearing the target.

The main difference between these two works is the al-
lowed response time when users interact with the CAPTCHA.
The work in [7] required the user to give real-time interaction,
while the work in [6] allowed the user to replay the audio
clip with unlimited chances. There are pros and cons in both
practices. Unlimited times of replay increases the confidence
of the users to finish the CAPTCHA. However, although the
users are given plenty of time to resolve the CAPTCHA, at-
tackers or bots also take advantage of it. In contrast, the work
in [7] required the users to interact with the CAPTCHA in real
time, which built the first defensive gate against offline attack.
However, this kind of real-time interactive CAPTCHA should
be carefully designed to avoid frustrating the users while still
maintaining the security to a certain extent.

2. THE PROPOSED SYSTEM

The proposed audio CAPTCHA is inspired by the work men-
tioned above [6, 7]. It consists of two stages: the instruction
stage and the answering stage. The users are allowed to check
a short-duration target sound several times in the instruction
stage before turning to real-time interaction in the answering
stage. The task for the users is to identify the target sound
that is mixed with background music (BGM). We refer to the
short-duration target sound as ‘CUE’. During the instruction
stage, the user is allowed to listen to CUE unlimitedly un-
til becoming confident in identifying it. After the user presses
the ‘Play’ button, our system would move on to the answering
stage; the user then to respond immediately upon hearing any
instance of the CUE while the BGM is continually played.

We created a database with acoustic variety so a compre-
hensive analysis of the proposed audio CAPTCHA could be
conducted. Different styles of BGMs were collected from
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Youtube, and CUEs were obtained from Freesound.org.1 In
total, 54 BGMs and 49 CUEs were collected with a sampling
rate of 16kHz. Before mixing each BGM with each CUE,
we randomly cropped the original BGMs into 10-second clips
and manually cropped 1-second CUEs so as to preserve the
most ear-catching part. At every round of mixing, the same
BGM was randomly cropped for four times and the number
of occurrences of the CUE was 2, 3 or 4. Thus, 54×49×4 =
10584 audio CAPTCHAs were created.

2.1. Attacking paths

In the following discussion, we define the person with mali-
cious intention to illegally access the CAPTCHA as an ‘at-
tacker’. According to the design of our CAPTCHA, two in-
tuitively attacking paths are studied. The first one is a signal
processing-based attack which assumes that the attacker will
fetch the target CUE in the instruction stage. Once the at-
tacker has this reference CUE, the cross-correlation between
the mixed data and the reference can be computed. The at-
tacker could detect the peak value to determine where the
CUEs occur. This type of attack is called cross correlation
attack (CCA) in this paper. The other attacking approach is
deep learning-based. Identifying the target CUE in the mixed
data could be viewed as a sound event detection (SED) task.

The reasons why we aim to study these two attacking ap-
proaches are because (i) data could be easily and exhaustively
used, (ii) for CCA, the computation cost is rather low, and (iii)
for SED attack, numerous models and papers are openly ac-
cessible (such as via Github and arxiv).

2.1.1. Cross correlation attack (CCA)

The cross correlation function (CCF) c[k] with time lag k is
defined as follows:

cxy[k] =

M−1∑
n=0

x[n]y[n+ k], 0 ≤ k < N −M + 1, (1)

where x and y denote the zero-padded signal of target CUE
and the mixed signal of CAPTCHA, and M and N are the
length of each sequence, respectively.

With the function c[k], the attacker can set a threshold to
detect where along the time axis the CUE happens by iden-
tifying the peaks. An example of y[n], its spectrogram, and
cxy[k] are shown in Fig. 1. Note that peaks can be easily iden-
tified in cxy[k] at the location of the CUEs.

2.1.2. SED-based Attack

Lately, many SED systems use variants of convolutional re-
current neural network (CRNN). In this research, a CRNN

1Only the sound clips with non-profit usage were utilized in this research.
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Fig. 1. Demonstration of the defending problems. (a) the
CAPTCHA waveform with the red-shaded range marking the
location of the CUEs. (b) the spectrogram of the CAPTCHA.
(c) the CCF between the CAPTCHA and the CUE.

model proposed by Adavanne et al. [8, 9] was adopted and
modified for the purpose of attacking our CAPTCHA; the ar-
chitecture of the model is shown in Fig. 2. The shape of in-
put Mel-spectrogram is 32 frames × 40 filter banks. As pre-
viously reported [8, 9], CNN layers are used to learn local
shift-invariant features and gate recurrent unit (GRU) is used
to learn temporal patterns. Max pooling is only performed
along the frequency axis to keep the time information intact
for SED. Finally, with time-distributed dense layer, the model
outputs the prediction at the frame level.

Input layer
Mel-Spectrogram

Conv2D
128 filters, 
3x3 kernel,

ReLU,
1x5 max pool

1x32x40 128x32x8 128x32x4
Conv2D

128 filters, 
3x3 kernel,

ReLU,
1x5 max pool

Reshape

32x512

Bidirectional
GRU

32 units,
tanh

32x32 Dense,
32 units,

linear

Dense,
1 units,
sigmoid

32x32 32x1

Fig. 2. Architecture of the modified CRNN model. Conv2D:
two dimensional convolution; ReLU: rectified linear unit.

2.2. Defending measures

In this research, counter-measures against CCA and SED-
based attacks are first considered separately.

2.2.1. Phase-modified CUE

To act against CCA attacks, we aim to modify the CUE before
mixing with BGM so that the max absolute value (MAV) of
the CCF between the CUE (available during the instruction
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stage) and the modified CUE is decreased. In the meantime,
the modified CUE remains perceptually similar to the original
CUE at least when mixed with BGM.

Empirically, we found that existing all-pass filtering-
based methods for signal decorrelation such as [10, 11] still
resulted in spikes in the CCF. To suppress the peaks, we ag-
gressively perform randomization in the phase spectrum. The
following notations are used for denoting the MAV of the
CCF,

J(x, y′) = max
0≤k<N

|cxy′ [k]|, (2)

where x and y′ denotes the original and the modified CUE,
respectively.

The following procedure heuristically reduces J while
keeping the magnitude spectrum of y′ equal to that of x. It
adopts the idea from Griffin-Lim algorithm [12] except for the
objective function. First, the magnitude spectrograms Sx(ω)
and phase spectrograms Px(ω) of x are calculated through
short-time Fourier transform (STFT). The desired signal y′ is
initially set equal to x. Then, each frequency bin of Px(ω) is
replaced randomly with a uniform distribution over the inter-
val (0, 2π) and a new y′ is synthesized. If J(x, y′) is smaller
than that of the previous round, the modified P (ω) is kept;
otherwise, P (ω) is abandoned and the procedure restarts. The
stopping criterion is that J(x, y′) does not improve for five
consecutive rounds. At the end, the unchanged Sx(ω) and
the modified Py′(ω) are combined to synthesize y′ through
inverse STFT.

2.2.2. Backdoor and watermarks

Though not obvious immediately, a closer inspection of
Fig. 1(b) may reveal repeating patterns anywhere the tar-
get CUEs are added. To defend against SED-based attacks,
we resort to creating backdoor [13] in the released audio
CAPTCHAs to lead the attacker’s model into false detection.

The idea of backdoor originates from that someone wants
to hack in the authentication system by leveraging the in-
jected poisoning samples into the training set [13]. However,
in this paper, the defender utilizes the backdoor in a reverse
way; it is because the attackers would be the data receiver
and the defenders would be the data distributor. Poisoned
CAPTCHA data can be leveraged to mislead the attackers’
models to make wrong predictions. In the mean time, the
backdoor should not be perceptible by genuine human, nei-
ther for good person nor malicious attacker. Hence, it is suit-
able for an imperceptible dummy signal to do this job. We
refer to this signal as watermarks.

Following the generic design in perceptual audio codecs
[14], the creation of watermarks involves (i) for each frame,
dividing the frequency axis into 21 Barks; (ii) in each Bark,
picking up the tone with the highest sound level as the masker;
(iii) For each masker, calculating spreading functions so a
global masking curves could be obtained [15], and finally (iv)

in each Bark, adding watermarks under the global masking
curve. These steps are illustrated in Fig. 3.

Fig. 4 shows how the watermarks are deployed to be the
backdoor in this research. We distribute the CAPTCHAs in
the manner of Fig. 4a: the watermarks poison where the tar-
get CUEs are. We assume that the attackers would collect
the poisoned CAPTCHAs for training the SED models. If the
attackers finish training in a reasonable period (e.g., several
days), the defender can then embed the watermarks in com-
plimentary positions as shown in Fig. 4b as a countermeasure.
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Fig. 3. Demonstration of the maskers, masking curves and the
watermark. The red dots represent the maskers, and spread-
ing functions are placed under them (dashed green lines).
Psychoacoustic principles suggest that any signal beneath the
global masking curve (the blue dotted line) would be inaudi-
ble to human ears. Therefore, a dummy signal can be added
under the curve as watermarks (the orange line).

BGMCUE CUE

BGMCUE CUE

(a)

(b)

Fig. 4. Watermarks as a backdoor. Gray area means the span
of BGM. Blue ones are the target CUEs mixed into the BGM.
Yellow and transparent bands stand for the watermarks.

3. EXPERIMENTS AND RESULTS

To evaluate the successful attacking rate and the defend-
ing effectiveness, a metric compatible with our proposed
CAPTCHA is needed. We define the region where the tar-
get CUEs are mixed as ground truth (GT), i.e., the region
bounded by the onset and offset of the CUE. An extra toler-
ance region of 0.5 seconds is allowed after the offset of the
CUE. Once a user presses the button outside these regions,
the response is judged as a failure. If no mistake and no slow
response are made, the attempt is called completely correct.
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3.1. CCA analysis

We assume that the attackers’ goal is to set a threshold to
maximize its “completely correct” rate. Two factors would
affect the results — the threshold set by the attacker, and the
volume of the target CUE set by the defender. To analyze the
attacker and the defender’s performance in this game, four
different situations are simulated: (1) the defender applies no
counterattack, (2) the defender mixes the BGM with phase-
modified CUEs, (3) the defender watermarks everywhere ex-
cept at where the CUE appears [as in Fig. 4(b)], and (4) the
defender combines (2) and (3).

The performance of CCA is summarized in Fig. 5. From
the defender’s perspectives, method (4) appears to reduce the
attacker’s completely-correct rate (Rcc) effectively; however,
when the volume of the target CUE is set equal to that of the
BGM, Rcc could be as high as 29% when the attacker se-
lects an appropriate threshold [Fig. 5(a), threshold = 1/4]. We
then decrease the volume of the target CUE by 10 dB and
re-analyze the performance. Now, the defender successfully
suppresses the attacker’s Rcc to 8.2% [Fig. 5(b), threshold =
1/8]. In Sec. 3.3, we will report the corresponding perfor-
mance by human subjects.

1/2 1/4 1/6 1/8 1/12 1/16
1%

10%

100%

R
c
c
(%

)

(a)

(1)

(2)

(3)

(4)

1/2 1/4 1/6 1/8 1/12 1/16
1%

10%

100%
(b)

threshold

Fig. 5. The completely correct rate Rcc achieved by CCA
when adjusting the detection threshold. (a) and (b) show the
results of the defender when the CUE volume are 0 dB and
−10 dB, respectively. The unit of the threshold is relative to
the total energy of the CUE.

3.2. SED attack analysis

The number of CAPTCHAs in the training/validation/ testing
set is 5684/1568/3332, respectively; all the 49 CUEs occur
in training, validation, or testing, while the BGM clips in the
three sets do not overlap. The number of BGM clips that are
used in training, validation, and testing is 29/8/17, respec-
tively. Training and validation are completed with the data in
the form Fig. 4(a), while testing is done with the complimen-
tary form in Fig. 4(b). Results show that the bot detects the
CUEs completely correctly only in 15 CAPTCHAs (0.4%); it
produces false alarms in 3315 CAPTCHAs and misses the
CUEs in 194 CAPTCHAs. For comparison purposes, the

SED attack achieves an Rcc = 59% if the defender does not
deploy any counter measure.

3.3. Listening test

To ensure that the defending measures mentioned above
would not annoy the genuine human users, 14 participants,
consisting 6 females and 8 males, were invited to evaluate
our audio CAPTCHAs. All of them were between 20 and
40 of age. During the listening tests, the CAPTCHAs were
created with two different intensities of phase-modified CUEs
(0 dB and −10 dB, same as in Fig. 5); all of the CUEs were
added with watermarks. Each kind of tests repeated 11 to 14
times for each participants. We successfully collected 177
and 180 responses, respectively, from CAPTCHAs with 0
dB and −10 dB CUEs. The users were completely correct
170 vs. 157 times, Thus the passing rates were 96.05% and
92.25%, respectively. Further analysis shows that the partic-
ipants produced wrong detection 6 vs. 20 times, and reacted
too slowly only in 1 vs. 3 times when the target volume was 0
dB vs. −10 dB. Though we are not certain if the participants
noticed, none of them complained about the sound quality of
the phase-modified CUEs being any different from the CUE
they heard during the instruction stage.

4. DISCUSSION AND CONCLUSIONS

Driven by the potentially high value guarded by CAPTCHA
systems, the economy of CAPTCHA solving based on real
humans has emerged recently. In the future, we will study
how the proposed system can defend human attackers. One
possible direction would be to dynamically adjust the diffi-
culty of an audio CAPTCHA so that an adversary has to take
a long time to solve, which offsets the gained value.

In sum, we proposed a new kind of audio CAPTCHA
composed of two stages. The first stage allows the users to
check the target CUE unlimitedly, while the second stage
require real-time interaction. This implementation combines
the merits of the work proposed previously. For security
analysis, we proposed two kinds of potential attacking paths
based on the ease of implementation and then design defend-
ing measures based on psychoacoustics. For usability study,
14 participants were invited to evaluate the CAPTCHA. The
final results indicates that the proposed audio CAPTCHA
works in that the users can easily accomplish the task with
>90% passing rate. Meanwhile, the passing rates from the
automatic attacks (CCA and SED attack) can be kept com-
paratively low (8% and 0.4%, respectively). We thus con-
clude that the proposed system meets the design goal of
CAPTCHA: hard for bots, but friendly for genuine people.

Acknowledgement: This research is supported by the Ministry
of Science and Technology of Taiwan under grant No. 108-
2634-F-007-003.
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