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Abstract. We study the problem of region-semantics preserving (RSP)
image synthesis. Given a reference image and a region specification R,
our goal is to train a model that is able to generate realistic and diverse
images, each preserving the same semantics as that of the reference im-
age within the region R. This problem is challenging because the model
needs to (1) understand and preserve the marginal semantics of the ref-
erence region; i.e., the semantics excluding that of any subregion; and (2)
maintain the compatibility of any synthesized region with the marginal
semantics of the reference region. In this paper, we propose a novel model,
called the fast region-semantics preserver (Fast-RSPer), for the RSP im-
age synthesis problem. The Fast-RSPer uses a pre-trained GAN genera-
tor and a pre-trained deep feature extractor to generate images without
undergoing a dedicated training phase. This makes it particularly use-
ful for the interactive applications. We conduct extensive experiments
using the real-world datasets and the results show that Fast-PSPer can
synthesize realistic, diverse RSP images efficiently.

1 Introduction

Image synthesis is a long-standing goal in computer vision, graphics, and machine
learning. Recent advances in image modeling with neural networks [26,18,7,24,14,8]
have made it feasible to generate photorealistic and diverse/creative images.
While such unconditional models are fascinating, many practical applications of
image synthesis require a model to be conditioned on prior information, moti-
vating further studies on controlling the synthesis.

One common way to control the model is to use a reference image; that
is, given an image as the input, the model is expected to generate images that
resemble the input image. This strategy advances the state-of-the-art in den-
sity estimation [2], compression [30], in-painting [23,12], super-resolution [17]
and image-to-image translation [13,35]. However, the reference image may be a
too stringent control that limits the diversity of synthesized images. In many
other applications, such as interactive photo editing [1] and stimuli generation
in psycho-physical experiments [6], diversity is a key to success. There is a need
for a new form of control that guides the model in a soft manner.

In this paper, we study the problem of region-semantics preserving (RSP)
image synthesis, as shown in Figure 1(a). Specifically, given one or more reference
images and the region specification R, our goal is to train a model that is able to
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(a) Input/output (b) Interactive editor

Fig. 1. Region semantic preserving (RSP) image synthesis problem. (a) A user pro-
vides reference regions R, which can be copied from different sources, then get synthe-
sized, complete images preserving the semantics behind the reference regions. (b) An
interactive editor based on real-time RSP image synthesis.

generate realistic and diverse images, each showing the same semantics as that
of the reference image within the region R. We call the pixels enclosed by R in
the reference image and synthesized image the reference region and synthesized
region, respectively. Depending on the application, R could be specified in either
a coarse grain (coordinates of a bounding box) or fine grain (pixel identifiers)
manner. For example, one can ask the model to synthesis images with the se-
mantic “happy mouth plus female eyes” by giving the reference regions shown
in Figure 1(b). Note that the mouth or eyes in a synthesized region need not be
identical to that in the reference region since only the semantics is preserved.
One can also obtain many bedroom images with the same partial layout by giv-
ing some reference bedroom regions, as shown in Figure 1(a). Note that in an
image, the semantics of a region R may be closely related to that of other regions
residing either inside or outside R. So, to preserve the semantics of the reference
region, the model will generate images that are compatible with the semantics
everywhere. In other words, although being regional, the reference region is able
to guide all pixels in a synthesized image, and we can expect “bedroom-only”
decorators to appear in Figure 1(a) and “female faces” in Figure 1(b).

The RSP image synthesis is a challenging problem because when generating
an image, the model needs to (1) understand and preserve the marginal semantics
of the reference region. By “marginal” we mean that the semantics excludes the
meaning of any other region (residing in or out R). For example, in Figure 1(a),
the marginal semantics of R is “a bedroom with partial layout” despite that any
subregion of R could have its own meaning (e.g., a bed, scene outside the window,
etc.); (2) maintain the compatibility of any generated region with the marginal
semantics of the reference region. To the best of our knowledge, the Ladder-VAEs
[29,22] are the only off-the-shelf models that can be used to synthesize RSP
images. Another solution could be a modified generative adversarial network
[7] (GAN). However, in practice, these approaches usually produce images with
sub-optimal quality and/or are very slow to train and run.

Here, we propose a novel model, called the fast region-semantics preserver
(Fast-RSPer), that can produce high-quality RSP images and are fast to run.
The Fast-RSPer is based on GANs but unlike most GANs where a generator
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Fig. 2. Pixel- vs. semantics-preserving. iGAN [34], whose goal is to align pixels of
synthesized images with those in R, gives lower pixels-losses but higher feature losses
at a deep CNN layer. As the pixels in R become more diverse, the semantics is harder
to preserve by aligning pixels.

and a discriminator are trained jointly, it uses a pre-trained generator and feeds
the output (images) into a pre-trained deep feature extractor. Given a reference
image and R, the Fast-RSPer synthesis an image by finding (using the gradient
descent) an input variable z for the generator such that, at a deep layer where
neurons capture the semantics of the reference R, the feature extractor maps
the synthesized region to features similar to those of the reference region. Since
both the generator and feature extractor are pre-trained, the Fast-RSPer has no
dedicated training phase and can generate images efficiently. Furthermore, it has
been shown [20] that a properly trained generator can map z to a high quality
image at a high resolution.

However, in practice there are still many technical problems to solve to syn-
thesize a high-quality RSP image. The first problem is how to align the semantics
of R with that of the synthesized region while maintaining its compatibility with
other regions. Fast-RSPer uses both the macro- and micro-alignment techniques
to achieve these goals. Second, the gradient descent algorithm may find z’s (for
different images) close to each other, resulting in the lack of diversity among
multiple synthesized images. Fast-RSPer adds gradient noises to create visual
diversity. Furthermore, a pre-trained generator may fail to generate satisfactory
images in some cases. We investigate the cause and discuss pitfalls to avoid when
using a pre-train generator. Following summarizes our contributions:

– We propose the the problem of region-semantics preserving (RSP) image
synthesis that allows a user to easily guide the synthesis using a reference
image in a soft manner.

– We present the Fast-RSPer model that generates realistic, diverse RSP im-
ages in near realtime.

– We discuss practical tricks to use and pitfalls to avoid to synthesize high-
quality RSP images.

– We conduct experiments using the real-word datasets and the results show
that the Fast-PSPer can synthesize photorealistic, diverse RSP images effi-
ciently, enabling new interactive applications.
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Fig. 3. Model architecture of (a) Ladder-
VAE and Pixel-VAE; (b) iGAN; (c) Fast-
RSPer. The x is a reference image, R is the
reference region, x′ is a synthesized image,
and z is a latent variable. Red dashed lines
denote the computation flows for generat-
ing an image while the blue line denotes
post-processing.

Studies have explored different ways
other than using a reference image to
control the image synthesis. Mirza et
al. [19] train a GAN by feeding the
class labels and show that the gener-
ator can learn to produce images con-
ditioned on a given label. Reed et al.
[25] extend the GAN architecture to
synthesis images from text. Güçlütürk
et al. [9] use deep neural networks for
inverting face sketches to synthesize
face images. Studies [4,31,33] propose
models that synthesize images based
on domain-specific attributes such as
the orientation with respect to the
camera. The goals of the above stud-
ies are orthogonal to ours—to present
an easy-to-use, powerful, soft control
over the reference image.

The style transfer [15,5] and im-
age analogies [11] can be seen as ways
to synthesize images using a soft con-
trol. The former expects a style im-
age to come along with the reference
image (serving as the content image);
while the latter takes a pair of im-
ages as additional input and synthe-
sis images following the example anal-
ogy between the images in the pair.
These soft controls (i.e., the style im-
age and the image pair) are very dif-
ferent from the reference regionR pro-
posed in this paper, and their applications normally don’t emphasize on diversity
of the synthesize results.

iGAN. This idea of using a pre-trained generator to speed up image synthesis
is not new and has appeared in iGAN [34], whose model architecture is shown
in Figure 3(a). However, the work studied a different problem, where there are
two types of input: one the “base image” and another the “changes” to the base
image, and the goal is to synthesis images that preserve the semantics of the base
image while having the changes applied. The optimization procedure in [34] finds
a z so that the generated image G(z) satisfies two constraints: (1) the semantics
of the base image is preserved and (2) the changes are applied to G(z). For the
constraint (2), the changes are applied at the pixel level (see the data term in Eqs.
(4) and (5) in [34]), which is different from our region-semantic-preserving image



synthesis problem where only the latent marginal semantic should be preserved.
In iGAN, the z can only output images that helps an auxiliary algorithm measure
and apply the same amount of geometric and color changes to the original base
image to produce the final result. The images synthesized by iGAN and Fast-
RSPer has different characteristics, as shown in Figure 2. When pixels in R (e.g.,
window scene) are diverse, images synthesized by iGAN may end up preserving
the average of pixels in R, destroying the semantics.

Ladder-VAEs/Pixel-VAE. To overcome the challenges of the RSP image
synthesis discussed in Section 1, an image model needs to be able to extract and
manipulate the semantics of any region in an image. One way to achieve this is to
use the Ladder-VAE [29], whose architecture is shown in Figure 3(b). Assuming
that the encoding and decoding of an image follow two multi-layer distribu-
tions recursively parametrized by a series of shared latent variables z(i)’s , the
Ladder-VAE learns the z(i)’s from a training dataset and synthesizes images fol-
lowing the multi-layer decoding distribution parametrized by the learned z(i)’s.
To preserve the marginal semantics of the reference region, one can encode the
reference image using the Ladder-VAE encoder, identify the dimensions of z(i)

parametrizing the reference region at a deep layer i, and then fix the decoding
distribution along those dimensions in the Ladder-VAE decoder when synthe-
sizing images. To create diversity while maintaining the compatibility of any
region in a synthesized image with the reference region, one can add sampling
variances to decoding distributions parametrized the rest dimensions of z(i) and
all dimensions of z(j), j 6= i. However, the VAE variants are known to produce
blurry images [14]. To solve this problem, one can use the Pixel-VAE [22] that
replaces the decoder of Ladder-VAE with an autoregressive decoder based on
the Pixel-CNN [23]. But this creates another problem that the decoder needs to
generate pixels one-by-one (due to the autoregressive nature) and becomes very
slow. Furthermore, the autoregressive decoder may occasionally generate “bad”
pixels (due to the sampling for diversity) that degrades the quality of following
pixels and creates local artifacts in the synthesized images.

3 Fast RSP Image Synthesis

In this section, we present a fast, end-to-end algorithm [7] for synthesizing RSP
images based on GANs. As compared to (non-autoregressive) VAEs, GANs are
able to produce sharp images. In a GAN model, the generator maps a random
noise vector z to an image x′ and tries to trick the discriminator into believing
that x′ is a real image coming from the training dataset. To synthesize RSP
images, a GAN-based generator needs to be capable of extracting and manipu-
lating the semantics of any region in an image (see the challenges discussed in
Section 1).

One naive way to do so is to extend the VAE-GAN [16], by replacing the
generator with a Ladder-VAE. This allows us to control the multi-layer decod-
ing distributions using the sampling techniques discussed in Section 2. So, the
extended VAE-GAN model is able to output crisp RSP images without resorting



to the autoregressive alternatives, which are slow at generating images. However,
the model suffers from a practical drawback that it requires a dedicated train-
ing phase for each given reference image and R. The training cost prevents the
model from being useful in interactive scenarios, such as the interactive photo
editing [1].

Here, we propose a novel model, called the fast region-semantics preserver
(Fast-RSPer), that uses a pre-trained GAN generator G and a pre-trained deep
feature extractor Φ = {Φ(1), Φ(2), · · · , Φ(L)} (e.g., a deep CNN), where Φ(L) is
the deepest layer, to synthesize RSP images. We feed the output of the generator
to the feature extractor, as shown in Figure 3(d). Given a reference image x and
a region specification R, the Fast-RSPer synthesizes an image by solving the
input z∗ for G first, where

z∗ = arg min
z
ΣL

i=l‖Φ(i)(G(z))− Φ(i)(x)‖(i)mask, (1)

l is a sufficiently deep layer in Φ, and ‖ · ‖(i)mask is a masked one-norm taking into
account only the dimensions/features/activations of neurons whose receptive
fields overlaps with R at layer i. The model then feeds z∗ into G to synthesize
an RSP image G(z∗). Intuitively, the Fast-RSPer generates an image by finding
an input variable z∗ for the generator G such that, at deep layers where neurons
are able to capture the semantics of the reference region, the feature extractor Φ
maps the synthesized region to features similar to those of the reference region.
Note that the marginal semantics of the reference region is preserved in G(z∗) by
explicitly solving Eq. (1). On the other hand, the compatibility of other regions
in G(z∗) with the semantics of the reference region is maintained implicitly by
the GAN generator—if the generator produced incompatible regions, it wouldn’t
have fooled the discriminator during the GAN training process.

Merits. The Fast-RSPer is an unsupervised model and does not requires hu-
man labels to train. As compared with native GAN extensions discussed above,
the Fast-RSPer has an advantage that there is no dedicated training phase since
both the generator G and feature extractor Φ are pre-trained. As compared with
iGAN, our model preserves the semantics of R and is end-to-end—no auxiliary
algorithm is needed to output the final results. Furthermore, the Fast-RSPer can
generate an RSP image more efficiently than the autoregressive Pixel-VAE be-
cause Eq. (1) can be solved efficiently using the gradient descent and G generates
all pixels at once.

3.1 Technical Contributions

Next, we discuss some engineering “tricks” we used to deliver good results. We
also discuss some pitfalls to avoid when using a pre-trained generator.

Semantics alignment. We align the semantics of synthesized images with
R at both the macro- and micro-scales. Macro-alignment : Given a reference im-
age and R, one needs to decide the value of l in Eq. (1) and make sure that the

features extracted by ‖·‖(i)mask, i ≥ l, capture the marginal semantics of the refer-
ence region. There are several ways to choose an appropriate l. For example, we



can use the visualization techniques [32] to understand what each neuron “sees”
in Φ and then pick the layer l that can capture sufficiently complex concepts.
We can also choose different l’s for different R’s based on the visualization tech-
niques. However, these approaches require human intervention and may not be
acceptable to the interactive applications. Instead, we use a simple strategy that
selects l based on the size of receptive fields—the layer l is the shallowest layer
in Φ where the receptive field of a neuron is larger than the minimal bounding
box of R. The size of receptive fields can be calculated automatically, and it
turns out that this strategy works well in our experiments. Micro-alignment :
When finding z, one can follow the style transfer [15,5] to align the convolution
output (before it is applied to an activation function) of G(z) and R at a deep
layer. However, we find that aligning the RELU output of G(z) and R instead
can significantly improve the quality of the synthesized images. This observation
may be valuable to future studies on semantic preserving.

Fig. 4. Images synthesized by
batch-normalized generator may
have degraded quality due to the
bias of moments in the current in-
put batch.

Diversity. The vanilla Fast-RSPer has
a problem that different synthesized images
based on the same R may lack diversity, be-
cause the gradient descent algorithm may find
the same z∗ (or multiple z∗’s close to each
other) for different synthesized images. One
way to solve this problem is to transform Eq.
(1) to an energy-based model [21] and sample
iteratively from such a model using a sampling
algorithm (e.g., an approximate Metropolis-
adjusted Langevin sampling). Here, we pro-
pose a simple alternative by taking advan-
tage of the fact that only the semantics of the
reference region needs to be preserved. Dur-
ing the gradient descent, the Fast-RSPer adds
random noises to the gradients at different it-
erations. This leads to diverse z∗’s and in turn
diverse synthesized images G(z∗)’s having dif-
ferent features at layers shallower than l. Since the layer l in Eq. (1) is a deep
layer, the synthesized images G(z∗)’s can have different features at shallow lay-
ers, which encode textures or colors or shapes, and can look very different from
each other.

Generator Selection. We have tried pairing up Fast-RAPer with many
types of pre-trained generators but found that some generators failed to de-
liver good results. After investigation, we find that the root cause is due to the
batch-normalization. Most existing GANs employ the batch-normalization with-
out learning moving moments. They only normalize the latent outputs based
on the moments of individual training batches rather than the moments of en-
tire training data. If this is the case, we suggest that one should turn off the
batch-normalization in G, because it introduces dependency between batch in-
puts during training and seriously degrades the quality of images generated by



G, as shown in Figure 4. To ensure the best quality, we use pre-trained generators
without batch normalization layers in our experiments.

4 Experiments

In this section, we evaluate the performance of Fast-RSPer by comparing it with
existing models. We use the CelebA1 and LSUN Bedroom2 datasets for training
the models and choosing the reference images/regions for problems of RSP image
synthesis. We implement the models using Tensorflow.3 Following summarizes
the models we implemented:

Pixel-VAE. To the best of our knowledge, the only off-the-shelf models
that can be used for RSP image synthesis is the Ladder-VAE [29] and its variant
Pixel-VAE [22]. We implement both the models but find that the Ladder-VAE
consistently yields blurry images that are not comparable to other approaches
in terms of image quality. Therefore, we omit its results in order to save space.
The Pixel-VAE model consists of a Ladder-VAE and a Pixel-CNN [23]. When
generating an image, the Ladder-VAE part ensures the global coherence of the
image while the Pixel-CNN part enhances the details at the pixel level. We
implement Pixel-VAE by following the architecture described in the original
paper [22]. Note that in this architecture, the encoder and decoder of the Ladder-
VAE part have two layers parametrized by the latent variables z(1) and z(2)

respectively (see Figure 3(a)), and its is sufficient for z(2) to control the semantics
of any region in an image since the second-layer encoder and decoder are fully-
connected layers. The number of weights to learn is about 67M.

Extended VAE-GAN. We also implement the naive extension of VAE-
GAN [16] discussed in Section 3. We follow the architecture used in [16] and
replace the VAE part with the Ladder-VAE described above. Unfortunately,
despite applying many GAN-training techniques [27] and careful engineering,
we are not able to train the VAE-GAN extension successfully. It turns out this
is due to the limitation of VAE-GAN—it can be trained to generate face images
but not bedrooms . We believe this is because that a face have relatively simpler
parametrization than a bedroom. And the distribution assumption of the VAE-
GAN (in the VAE part) limits the model complexity and stops the model from
learning a complex parametrization. We therefore omit the results of this model.

Fast-RSPer. We use a pre-trained VGG-19 [28] as the feature extractor.
Note that in VGG-19, the convolution, pooling, and activation layers are grouped
into blocks. We set l at the start of a block instead of in the middle because
this leads to better results empirically. For the CelebA and LSUN Bedroom
datasets, we pre-train two generators following the BEGAN [3] and WGAN-GP
[10], respectively. As discussed in Section 3, we do not employ normalization
layers in both generators. The numbers of model weights to learn are about 23M
for CelebA dataset and 29M for Bedroom dataset, respectively.

1 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2 http://lsun.cs.princeton.edu/
3 https://www.tensorflow.org/



iGAN. Although the iGAN[34] was not proposed to solve the RSP image
synthesis problem, we implement it as a baseline to study the difference between
pixel- and semantics-preserving. Like Fast-RSPer, iGAN needs a pre-trained
generator. So, for fairness, we let it use the same generators as in Fast-RSPer
(i.e., BEGAN on CelebA dataset and WGAN-GP on LSUN Bedroom dataset).
Following the settings reported in the iGAN paper [34], we use L2 pixel loss
for alignment and update the z variable without gradient noise. And we use
the same optimizer and maximum step as in Fast-RSPer during training. The
numbers of model weights for different datasets are also roughly the same as
Fast-RSPer.

(a) R (b) Pixel-VAE (z(1), z(2)) (c) iGAN (d) Fast-RSPer

(e) R (f) Pixel-VAE (z(1), z(2)) (g) iGAN (h) Fast-RSPer

Fig. 5. Synthesized images given simple reference regions containing only a single ob-
ject. (a) A laughing mouth as a reference region. (b-d) Images synthesized by Pixel-
VAE, iGAN, and Fast-RSPer trained on the CelebA dataset. (e) A bed as a reference
region. (f-h) Images synthesized by Pixel-VAE, iGAN, and Fast-RSPer trained on the
LSUN Bedroom dataset.

4.1 Results Given Single-Object Regions

We first study the images synthesized by different models given a simple reference
region consisting of one object. We choose a “laughing mouth” as the reference
region for models trained on CelebA and a “bed” as the reference region for
models trained on LSUN Bedroom, as sown in Figures 5(a)(e). In Pixel-VAE,
we fix the decoding distributions parametrized by both z(1) and z(2) along the
dimensions whose receptive field covers R in order to make it preserve the se-
mantics of the reference region. The synthesized images are shown in Figures
5(b)(c)(e)(f).

As we can see, the iGAN and Fast-RSPer give relatively better results than
Pixel-VAE. The iGAN performs well because the pixels in the reference region are
simple thus aligning pixels amounts to aligning the semantics. On the other hand,
the images synthesized by Pixel-VAE are less satisfactory. First, they contains



local artifacts. This is because the images are synthesized by the Pixel-CNN part,
which is an autoregressive model. A “bad” pixel sampled by Pixel-CNN creates
a negative impact on the following pixels and finally leads to a local artifact. The
iGAN and Fast-RSPer avoid this problem by generating all pixels of an image at
once.4 Moreover, the images produced by Pixel-VAE have less diversity—most
images share the same global tone. Since z(2) is the output of fully connected
layer, its receptive field covers the entire face region. So when z(2) was fixed, the
output would have low diversity, even z(1) can be sampled. Fast-RSPer avoids
this problem by using a GAN without feature parametrization. We can also see
that, on LSUN Bedroom, Pixel-VAE is less capable of preserving the semantics
of the reference region than Fast-RSPer (Figures 5(e)(f)). A bedroom scene is
usually more complex than a face, implying a wider feature space to learn at each
layer. Images in the LSUN Bedroom dataset usually look very different from each
other, and it is hard to learn a shared parametrization of such complex feature
spaces for the encoder and decoder.

(a) R (b) Pixel-VAE (z(2)) (c) iGAN (d) Fast-RSPer

Fig. 6. Synthesized images given a complex reference region containing many objects.
(a) A bedroom scene as a reference region. (b-d) Images synthesized by PixelVAE,
iGAN, and Fast-RSPer respectively.

4.2 Results Given Complex Regions

Here, we investigate the images synthesized by different models given a complex
reference region representing the entire bedroom scene, as shown in Figure 6(a).
In a complex region, subregions may have their own semantics. For example, a
bedroom image may contain beds, desks, lamps, or pictures on the wall. The
goal of RSP image synthesis is to preserve the marginal semantics of the refer-
ence region; that is, the semantics excluding that of any subregion. In this case,

4 One may notice that the images synthesized by iGAN and Fast-RSPer contains
some small “holes” on the CelebA dataset. This is due to the pre-trained generator
BEGAN, not the synthesis models themselves, as evidenced by Figure 8(a).



(a) Smily Mouth with Brown Eyebrows (b) Eyes with Black Hairs

(c) Bed (d) Window

Fig. 7. Images synthesized by Fast-RSPer given different reference regions. In each
image block, the left (large) image shows R in which the marginal semantics needs to
be preserved.

the marginal semantics should be the layout of a bedroom. The synthesized im-
ages are shown in Figures 6(b)(c)(d). As we can see, only Fast-RSPer generates
satisfactory images this time.

The iGAN, which is based on pixel-alignment, cannot well preserve the se-
mantics of R because the pixels in R are diverse. Aligning pixels of synthesized
images with those in R results in a group of images whose average resembles R
but lack semantics individually.

In Pixel-VAE, we fix only the decoding distribution parametrized by z(2)

(not the one by z(1)) along the dimensions whose receptive field covers R in
order to make it preserve the marginal semantics of the reference region. As we
can see from Figure 6(b), the layout is less preserved by the images generated
by Pixel-VAE than by Fast-RSPer. This is because the shared parametrization
is harder to train on a complex dataset, as discussed in the previous subsection.

4.3 Semantics Preserving vs. Mode Collapse

Next, we look into the capability of semantics preserving of Fast-RSPer. We can
see from Figures 7(a-d) that Fast-RSPer can successfully synthesize images given
various reference regions with different facial/bedroom semantics.

Note that, in some cases, the images synthesized by Fast-RSPer render less
variety as compared to those that could have been generated by a well-trained,
unconstrained GAN generator. One may conjecture that a poor-trained GAN
generator with significant mode collapse is used. However, this is not the case.
Figure 8 shows the images synthesized by our pre-trained generator, which in-
clude a variety of modes. The reason behind the reduced variety is because of the
constraints imposed by the semantics of the reference region. When comparing
Fast-RSPer with Pixel-VAE (which is also conditioned) in Figures 5 and 6, our
method clearly gives more diversity.



(a) CelebA (b) LSUN Bedroom

Fig. 8. Images synthesized by our pre-trained generators do not have the problem
of mode collapse, showing that the reduced variety among synthesized images is due
to the semantics constraints. Note that the CelebA images have small “holes” because
BEGAN [3] clips color ranges of pixels. The WGAN-GP [10], which generates bedroom
images, does not have the same problem.

4.4 Quantitative Comparison

Table 1. Quantitative comparison results. Average image synthesis time is reported
on a machine with an Intel Core-i7 6900K CPU, 128GB RAM, and an Nvidia GeForce
GTX 1070 GPU.

CelebA LSUN Bedroom
Semantics Quality Diversity Semantics Quality Diversity Avg. Time

Pixel-VAE 328 wins 416 wins 310 wins 201 wins 525 wins 291 wins 43 secs

iGAN 451 wins 347 wins 482 wins 508 wins 227 wins 408 wins 0.3 sec

Fast-RSPer 560 wins 576 wins 547 wins 630 wins 587 wins 640 wins 0.4 sec

To quantitatively compare the level of semantics preserving, quality and di-
versity of images synthesized by Pixel-VAE, iGAN and Fast-RSPer, we conduct
human evaluations. We invite 103 external users from the Internet. Each user
is asked to decide the winners in terms of quality, diversity and level of seman-
tics preserving for 13 experiments. In each experiment, we display 36 images
synthesized by Pixel-VAE, iGAN and Fast-RSPer respectively given the same
reference region. The number of wins of each model is shown in Table 1. It
is clear that people think Fast-RSPer 1) gives better-quality images on both
the CelebA and LSUN Bedroom datasets; and 2) preserves more semantics on
the LSUN Bedroom dataset while 3) giving more diversity. Table 1 also in-
cludes the average time required to generate an image. The time applies to
both the datasets since they contain images of the same size (64 × 64 pixels).
Both the iGAN and Fast-RSPer can synthesize images in near realtime. The
average generating time of iGAN is 0.1 second faster since it doesn’t need to
feed forward the VGG. In summary, Fast-RSPer is able to efficiently gener-
ate RSP images of higher quality and diversity. This is important when one
wants to synthesize a large amount of images for, e.g., data augmentation.



Fig. 9. Synthesized Images

We have also used two standard met-
rics, the Inception Score (IS) and
structural similarity (SSIM), to eval-
uate the quality and diversity of syn-
thesized images. The higher the IS
(and the lower the SSIM) the bet-
ter. We conduct experiments where
there are 25 reference images and we
generate 64 images for each refer-
ence image using PixelVAE, iGAN, and our Fast-RSPer. We average the IS
and SSIM scores of the synthesized images and give the results in Table 2.

Inception SSIM

CelebA Bedroom CelebA Bedroom

PixelVAE 1.39 2.17 0.92 0.20

iGAN 1.56 2.61 1.01 0.66

Ours 1.51 2.23 0.89 0.28

Table 2. Inception Scores and SSIM.

We also show some randomly sam-
pled synthesized images in Figure 9
As we can see, neither IS nor SSIM
can truly indicate the quality and di-
versity in our problem. Although giv-
ing the highest quality through hu-
man eyes, Fast-RSPer does not top
the Inception Scores because it can
generate some objects that are out of
the classes which the Inception model
was trained for. Also, the low SSIM
values given by PixelVAE are not from diversity but from distortion and arti-
facts. This is why we employ human evaluation instead.

(a) R (b) Mid l and Gradient
Noises

(c) High Gradient
Noises

(d) High l

Fig. 10. Images synthesized by Fast-RSPer given different l’s and levels of gradient
noises. In each image block, the large image at left is the average of synthesized images.

4.5 Effect of l and Gradient Noises

We study the impact of l in Eq. (1) and the noises added to the gradients at
each iteration when solving z∗ using the gradient descent. The layer l controls
the minimal receptive fields of neurons in the feature extractor used to capture
the semantics of the reference regions. The larger the l, the higher-level concepts
are captured and preserved by Fast-RSPer. On the other hand, the level of



gradient noises controls how diverse the features in the shallow layers of the
feature extractor when generating an image. The larger the gradient noises, the
more visual diversity we can expect given the same preserved semantics. To see
how l and the level of gradient noises affect a synthesized image, we show images
synthesized by Fast-RSPer given enlarged l and noise level in Figure 10. In Fig
10, we use Fig 10(b) as the baseline and change one hyperparameter at a time in
Fig 10(c) and Fig 10(d). Fig 10(c) and Fig 10(d) show the impact of increasing
gradient noises and l, respectively. As we can see, with a high noise level (Figure
10(c)), the diversity of synthesized images increases, but in average the image
does not change too much. The diversity is added over the same semantics. A
larger l (Figure 10(d)) also leads to more diversity. But such diversity comes
from less preserved semantics. In this case, the only preserved semantics is the
layout of the roof, excluding the layout of furnitures in the room which was
preserved in Figure 10(b). In practice, these two parameters offer a flexible way
for users to fine-control the diversity and what semantics to preserve.

(a) (b)

Fig. 11. Cross-domain RSP image synthesis, where the source domain is “male,” the
target domain is “female,” and the region semantics is “face.” Given a source domain
A, a target domain B, and the reference region R in the source domain, the goal is
to synthesize an image y′ in the target domain that keeps the high-level semantics of
R. In Fast-RSPer, we replace the single-domain feature extractor with a cross-domain
feature extractor and use an ordinary GAN generator for domain B. This way, an image
generated by the generator (x′ in Figure 3(c)) can lie in domain B while preserving the
high-level semantics of x in domain A. Note that the cross-domain feature extractor can
be trained in an unsupervised manner using an autoencoder that takes both example
images from domains A and B as the input.

5 Conclusion

We study the problem of region-semantics preserving (RSP) image synthesis
that allows a user to easily guide the synthesis using a reference image in a
soft manner. We then propose the Fast-RSPer model based on a pre-trained
GAN generator and a pre-trained deep feature extractor. The Fast-RSPer is
able to generate images without undergoing a dedicated training phase, making
it particularly useful for the interactive applications. We conduct extensive ex-
periments using the real-world datasets and the results show that Fast-PSPer
can synthesize realistic, diverse RSP images efficiently.
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