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Decision EstimationDecision Estimation
•Decision estimation and classification are ones of 

active research areas.
–Classic measurements of the environment, … , AI (vision, 

speech recognition.)
Systems perform "pattern recognition" or "decision making".

–Often the information is less than precise, and frequently the 
decision procedures are statistical in nature.

•Objects of interests are classified into one of classes.
–These objects are "patterns": printed letters, biological cells,…

–Systems learn the training data to classify the testing data.
•Supervised vs. un-supervised.

Derive a classification 
algorithm

Classification 
algorithm

Training 
samples Modification 

algorithm
“Teacher”

Testing 
samples Results of classification
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Classification ApproachClassification Approach
•The observation vector x is first transformed into 

another vector y whose components called features.
–Feature extraction: the features are intended to be fewer in 

numbers than the observations.

–However, they should collectively contain most discernible 
information for pattern classification.
•Reduction of the observations to a smaller number of features is

anticipated to help design a reliable decision rule.

Feature 
transformation

Classifier Output decision

Feature vector y

Observation x

–Extraction procedures or transformations attempt to compute 
the components based on intuition or physical considerations 
of the problem. ⇒ dimensionality reduction.
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ThreeThree--class Recognition Exampleclass Recognition Example

1 2 1

1 2 2

3

if 3 9 : class of 1's,
else if 3 3 : class of x's,

else : class of 0's.

y y w
y y w

w

+ <
− + >

Discriminant functions:

1 1 2

2 1 2

3 1 2

( ) 3 9,
( ) 3 3,
( ) ( ) ( ).

g y y
g y y
g g g

= − − +
= − + −
= ⋅

y
y
y y y

Decision Rule:

Choose   where ( ) max [ ( )].i i j jw g g=y y

•Decision region Ri is the set
–Discriminant functions can be evaluated computationally.

•Decision boundaries are defined by

{ :  ( ) max [ ( )].i i j jR g g= =y y y

( ) ( ), .i jg g i j= ≠y y
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Probability Theory for Random VectorsProbability Theory for Random Vectors
•Event A has the associated probability P(A).

–P(not A) = 1 – P(A).
–The joint probability of two events A & B, denoted as P(AB) or 

P(A and B) is the probability that A and B both occur 
simultaneously.
•P(A or B) = P(A) + P(B) - P(A and B).

•Suppose x is a random vector.
–Its distribution function F(x) is defined as

•F(-∞)=0, F(+∞)=1.

–Its density function f(x) is defined as

1

2

n

x
x

x

 
 
 =
 
  
 

x
#

1 2, , , 1 2 1 1 2 2( ) ( , , , ) ( ) ( , , , ).
nx x x n n nF F x x x P P x x x x x x= = ≤ = ≤ ≤ ≤x x x x"� � � � � � � �" "

1 2

1 2
1 2

( ) ( )( ) ( ) ( ) ( ) .n
n x x x

n
n

dF Ff F f d f dx dx dx
d x x x −∞ −∞ −∞ −∞

=

 ∂
= = ⇔ = = ∂ ∂ ∂ 

∫ ∫ ∫ ∫
x

x x
x x x x

x x

x xx x x x x
x

� � � �

�

� �� � " "
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Joint Distribution and Density FunctionsJoint Distribution and Density Functions
•Suppose y is another random vector.

•The joint distribution of x and y is defined by

•The joint density is

1

2

m

y
y

y

 
 
 =
 
  
 

y
#

( , ) ( , ).F P= ≤ ≤xy x y x x y y� � � �

2

1 2 1 2 ,

( ) ( )( , ) .
m n

n m

d F Ff
d d x x x y y y

= =

 ∂ ∂
= =  ∂ ∂ ∂ ∂ ∂ ∂ 

x x
xy

x x y y

x xx y
x y � �

� �� �
" "

( , ) 0, ( , ) 1, ( , ) ( ), ( , ) ( ).F F F F F F⇒ −∞ −∞ = ∞ ∞ = ∞ = ∞ =xy xy xy x xy yx x y y� � � �
Marginal p.d.f.

1 2 1 1 2 1( 3 ) 0 , , 1,
( , )

0 otherwise.
x x y x x y

f
+ ≤ ≤

= 


xy x y
� � � � � �

� �• Example: the joint p.d.f. is

1

2

x
x

 
=  
 

x ( )1y=y 1
1

1 2 1 1 1 2 1 220
( 3 ) ( 3 ) 0 , 1,

( )
0 otherwise.

x x y dy x x x x
f

 + = + ≤ ≤= 


∫
x x

� � � � � �
�
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Probability Functions jointly with EventsProbability Functions jointly with Events
•The joint distribution of a random vector x and an 

event A is defined by

1 1
( , ) ( , ) ( , ), .mm

A i ii i
F A P A P A A A

= =
= ≤ = ≤ =∑x x x x x x� � � ∪

•The conditional probability:
( ) ( | ) ( )( | ) .

( ) ( )
P A B P B A P AP A B
P B P B
∩

= =

|
( , )( , )( | ) ( | ) .

( ) ( )
A

A
F AP AF A P A

P A P A
≤

⇒ = ≤ = = x
x

xx xx x x
��� �

|

( , )
( | ) .

( )
f

f
f

⇒ = xy
x y

y

x y
x y

y
� �

� �
�

( , ) ( ) ( ), if ,  are independent.f f f⇒ = ⋅xy x yx y x y x y� � � �

Bayes’s Rule

1

|
|

|

( ) ( | ) ( )( | )
( ) ( | )

( , ) ( | ) ( )
( | ) .

( ) ( | ) ( )

i i i
i m

ii

P A B P B A P AP A B
P B P B A

f f f
f

f f f d

=

∞

−∞

∩
= =

⇒ = =

∑

∫
xy y x x

x y
y y x x

x y y x x
x y

y y x x x

� � � � �
� �

� � �
Posterior density

Prior density
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Likelihood Ratio TestLikelihood Ratio Test
•The hypothesis that a given pattern x belongs one of 

Nc classes is tested to minimize the probability of error.

1 2

1 2

| 1 1 | 2 2
| 1 | 2 1

2

( | ) ( ) ( | ) ( )
If  ( | )  ( | )  class,

( ) ( )
else   class.

w w
w w

f w P w f w P w
f w f w w

f f
w

= > = ⇒x x
x x

x x

x x
x x

x x
� �

� �
� �

1

1

2
2

| 1 2

| 2 1

( | ) ( )( ) .
( | ) ( )

w

w

w
w

f w P wL
f w P w

>
<

x

x

x
x

x
�

� �
�

•The decision rule can be

Likelihood Ratio

• Example: the conditional p.d.f. are 1

2

21 1
| 1 22

21 1
| 2 22

( | ) exp[ ( 4) ]
.

( | ) exp[ ( 10) ]
w

w

f w x

f w x
π

π

 = − −


= − −

x

x

x

x

�

�
1 2( ) ( ).P w P w= 1 1

2 2

2 2 2 21 1
2 2( ) exp[ ( 4) ( 10) ] 1 ( 4) ( 10) 0.

w w

w w

L x x x x> <
⇒ − − + − ⇒ − − −

< >
x� �

1

2

7.
w

w

x <⇒ =
>

x�
⇒ Usually, the log likelihood Ratio is used.
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Probability of MisclassificationProbability of Misclassification
•The probability of error, i.e. Bayes risk, determines 

the quality of a decision rule.
–A lower value implies a better rule.

1 1 2 2( ) ( | ) ( ) ( | ) ( ) ( | ) ( ).P error P error f d P error w P w P error w P w
∞

−∞
= = +∫ xx x x

1
2

2
1

1 1 2 1 | 1

2 2 1 2 | 2

( | ) (choose | ) ( | ) .

( | ) (choose | ) ( | ) .

wR

wR

P error w P w w f w d

P error w P w w f w d

ε

ε

= = =

= = =

∫

∫

x

x

x x

x x

•Bayes risk under Multiple hypotheses can be defined:

1,
( | ) ( | ) 1 ( | ), if  .cN

j i ij j i
P error P w P w R

= ≠
= = − ∈∑x x x x

–Ri should be defined to be the region where P(wi|x) is largest.

Choose   where ( | ) max [ ( | )].i i j jw P w P w=x x
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Distance FunctionsDistance Functions
•There are several ways to measure the distance d(x,y) 

between two vectors x & y.
–Generally, a distance function is any scalar-valued function 

satisfying the following conditions:
•d(x,y)>0 for x≠y; d(x,y)=0 if x=y. 
•d(x,y)= d(y,x).
•[Triangular inequality] d(x,y)+d(y,z) ≥ d(x,z). 

–Euclidean distance: 

–Maximum value distance:

–Absolute value distance (city block):

( )
1
22

1
( , ) ( ) .n

E i ii
d x y

=
= − = −∑x y x y

( , ) max .M i i id x y= −x y

1
( , ) .n

A i ii
d x y

=
= −∑x y
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Linear Transformation Linear Transformation 
•If x is a vector in X and y is the corresponding 

(mapped) vector in Y, then y = A x.
•Matrix A is said to be positive definite

– if the quadratic product, xTAx, is strictly greater than zero for 
all non-zero vector x.

1 1
.n nT

ij i ji j
a x x

= =
=∑ ∑x Ax

•Matrix A is said to be positive semidefinite
– if the quadratic product, xTAx, ≥ 0 for all non-zero vector x.

• Example: the positive definite matrix 1 1
.

1 2
− 

=  − 
A

2 2 2 2
1 1 2 2 1 2 21 1

2 2 ( ) 0, .n nT
ij i ji j
a x x x x x x x x x

= =
⇔ = = − + = − + > ∀ ≠∑ ∑x Ax x 0

2 1 1
1 2 1
3 3 0

 
 = − 
 
 

B is not a positive definite matrix.



11

Differentiation Differentiation w.r.tw.r.t. Vectors. Vectors
•If s is a scalar function of a vector x ∈ Rn,

– the derivative of s w.r.t. x is defined as the vector (gradient)

1 2

.
T

n

ds s s s
d x x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ x

"

1

1 1

1

.

m

m

n n

ss
x x

d
d

ss
x x

∂∂ 
 ∂ ∂ 
 =
 ∂∂ 
 ∂ ∂ 

s
x

"

# % #

"

•If s is a vector ∈ Rm,
– the derivative of s w.r.t. x is the matrix

•If r is a linear transformation of s,
–Namely, r=Bs, then .d d

d d
=

r sB
x x

.d d d
d d d

=
r r s
x s x

Chained rule

•If r is a nonlinear transformation of s,

( ) ( ) 2 .d
d

= = + =
T

Tx Bx B B x Bx
x

"

If B is symmetric

•For the quadratic product,
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Correlation and Covariance MatricesCorrelation and Covariance Matrices
•The correlation matrix R of a random vector x is

( ) ( ), ( ).ij ij i jE r r E x x= = =TR xx

•The covariance matrix K of a random vector x is

[( )( ) ] ( ), [( )( )].ij ij i i j jE k k E x m x m= − − = = − −TK x m x m

–The diagonal elements kii are the variances of the vector 
components. 2 2( ) [( ) ].ii i i i ik Var x E x mσ= = = −

[( )( ) ] [ ]
[ ] [ ] [ ] [ ] .
E E
E E E E

= − − = − − +

= − − + = − = −

T T T T T

T T T T T T T

K x m x m xx xm mx mm
xx x m m x mm xx mm R mm

.⇒ = + TR K mm

•Given a vector y = A x, [ ] [ ] .E E= = =y xm Ax A x Am

[( )( ) ] [ ] .T T T TE E= = =y xR Ax Ax A xx A AR A .T=y xK AK A

–If A is orthogonal, i.e. has orthonormal column vectors,

, ( ) ( ), , ( ) ( ).tr tr tr tr= = = =y x y x y x y xR R R R K K K K
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Independent Random VectorsIndependent Random Vectors
•If random vectors x and y are independent, they are 

uncorrelated.
–The converse is generally not true.

–Both are uncorrelated if
( ) ( ) ( ) ,

[( )( ) ] .

TE E E

E

= = =

= − − =

T T
xy x y

T
xy x y

R xy x y m m

K x m y m 0

•Gaussian Random Vectors:
2( ) 122

/ 2
( ) ( )1 1

22 (2 )
( ) ( ) exp[ ].

x T

nf x e f
µ

σ

σ π π

− −− − −= ⇒ = − x

x

x m K x m
K

x

• Recall: a/(a+c), better for a smaller value of c.

The ratio of the number of shots detected 
correctly over the actual number of shots.

• Precision: a/(a+b), better for a smaller value of b.

The ratio of the number of shots detected correctly over the total 
number of shots detected.

correct shots

detected shots

a

b

c
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Support Vector Machines (SVM)Support Vector Machines (SVM)
•SVM is a novel kind of Neural Networks.

–Multi-Layer-Perceptron (MLP): Classifier, regressor, etc.

•Single-layer & Multi-layer with feed-forward connections.

•Back propagation algorithm, maximum likelihood principle.

•Training, self-structured: supervised, unsupervised.

•The performance is justified by a loss function (say, MSE) over 

unseen samples of the test set.

–The expected risk of the classifier on the test set [2] ≤

The empirical risk on the training set [0] + the estimation error [1].

(Vapnik-Chervonenkis)= the maximal 
number of samples correctly classified 
in the training set.

Training Set ,
Estimation error log(1 2 ),

VC dimension of the classifer.
ch c

c h h
=

+
=

�

[0] & [1] should be both min.

Minimizing [0] alone do no good!!
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Graphical IllustrationGraphical Illustration

Hypothesis
Space

Target Space

True ( )f x

Ideal ( )nf xˆEmpirical ( )nf x

Approximation Error
Generalization Error

Estimation Error ⇐ Control VC Dimension

Maximum
⇐ Likelihood

principle

• In Modeling, the approximation error stems from the model 
mismatch.
– The true f(x) may lie outside the hypothesis space.

• In Learning, the estimation error occurs due to the imperfect 
learning procedure.
– The non-optimal model (empirically obtained) may be chosen.

• During the testing (evaluation), the generalization error is met.

• SVM minimizes the Expected risk by controlling VC dimension.

– Learning becomes solving the problem of Quadratic Programming.
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SVM = Optimal Hyperplane AlgorithmSVM = Optimal Hyperplane Algorithm
• Learning how to classify is estimating a function f: Rn → ±1 over 

the training data set = {(xi, yi) ∈ Rn × ±1 : i=1…c)}

– f will correctly classify other unseen example (x, y) under the same 
unknown probability distribution P(x, y). ⇒ namely, f(x)=y.

– It is often assumed the data are i.i.d. (identically independent 
distributed).

,
Hyperplanes : 0,

.

nw R
w x b

b R
∈

⋅ + =
∈

Decision Functions : ( ) sgn( ).f x w x b⇔ = ⋅ +

( ), a unique hyperplane( , ) max min : , 0, 1 .n
w b i iw b x x x R w x b i c⇒ ∃ ∋ − ∈ ⋅ + = = "

Maximize the separation margin.

⇒ Optimization problem:  21
2min ( )

( ) 1, 1 .i i

L w w
y w x b i c

=


⋅ + ≥ = "
 Good separation

Correct

21
2 1

( , , ) [ ( ) 1].c
i i ii

L w b w y w x bα α
=

= − ⋅ + −∑
Minimized w.r.t. w & b, maximized w.r.t. αi.

⇒ Solution = the saddle point 
of the Lagrangian:0iα ≥
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SolutionSolution
( , , )

1

( , , )
1

0 0,

0 .

cL w b
i ib i
cL w b

i i iw i

y

w y x

α

α

α

α

∂
∂ =

∂
∂ =

 = ⇒ =


= ⇒ =

∑
∑

Lying on the margin
0iα ≠ ⇒ Support vectors

The solution vector is a linear combination of
a subset of the training patterns.

⇒ Support vectors summarize the information.

1
2 ( ), 0, 0, 1, 1, for any SV , .p q p q p q p qb w x x y y x xα α⇒ = − ⋅ + > > = = −

• However, most classification problems are not linear separable. 
– Transform xi to a high-dimension space to regain linear separation.

( ).x x⇒ Φ Φ(x) is hard to compute.

( )
( )

1

1

Decision Functions : ( ) sgn( ) sgn ( )

( ) sgn ( ( ) ( )) .

c
i i ii

c
i i ii

f x w x b y x x b

f x y x x b

α

α

=

=

= ⋅ + = ⋅ +

⇒ = Φ ⋅Φ +

∑

∑
The scalar (inner) product, Φ(xi) ⋅ Φ(x), is easy to compute by a simple kernel.

As an example, the polynomial kernel k(x,y) = Φ(x)⋅Φ(y) = (x⋅y)d.

Matrices (Kij) are positive definite, where Kij = k(xi,xj), i, j=1…c.
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DilemmaDilemma
• Typically, the data will only be linearly separable in some, 

possibly very high dimensional space.

– Separating the data exactly, particularly for a finite amount of data 
with noise, is favorable. However it will generalize badly.

– In practice, it may be necessary to employ the non-separable 
approach (allow some classification error).

• To allow some overlapping between classes, the slack variables 
τi ≥ 0 is introduced.

⇒ Optimization problem:

21
2 1

min ( , ) ,  is some constant 0.

( ) 1 , 1 .

c
ii

i i i

L w w C C

y w x b i c

τ τ

τ
=

 = + ≥


⋅ + ≥ − =

∑
"

21
2 1 1

( , , , , ) [ ( ) 1 ] .c c
i i i i i ii i

L w b w y w x bα τ β α τ βτ
= =

⇒ = − ⋅ + − + −∑ ∑
0iC α≥ ≥

1 1
0, , .c c

i i i i i i ii i
y w y x Cα α α β

= =
= = + =∑ ∑

Saddle points

0iτ ≥

(Any SV xi has τi=0.)

1
21 1 1

max ( ) ( ).c c c
i i j i j i ji i j

W y y x xα α α α α
= = =

⇒ = − ⋅∑ ∑ ∑
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NonNon--linear Separationlinear Separation
• Using the kernel,

1
21 1 1

max ( ) ( , ).c c c
i i j i j i ji i j

W y y k x xα α α α α
= = =

⇒ = −∑ ∑ ∑G

( , ).ij i j i jQ y y k x x=
G G 1

2

1
2

( ) 1

(1 ).

T T

T

W Q

Q

α α α α

α α

⇒ = −

= −

GG G G G
GG G

• Define the matrix Q,

• Decomposition: break the entire training set into smaller ones.
– Select the working (active) subset.

•Other αi are fixed in the current iteration.

– Shrink the problem.
•There are much less SVs than c.

•Many SVs have αi = C.

•Caching and incremental updates of the gradient & the termination criteria.
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Generalized Discriminant Analysis (GDA)Generalized Discriminant Analysis (GDA)
•GDA is the eigenvalue problem resolution for nonlinear 

discriminant analysis.

–It is similar in functionality to SVM.

• The input set X has m vectors, x1…xm, belong to n classes, X1…Xn.

– The cardinality of the subset Xi is mi. ⇒

– The covariance matrix C of all xi: 

11
, .n n
i iii

X X m m
==

= =∑∪
1

1
.m T

i im i
C x x

=
= ∑

( ).x x⇒ Φ 1
1

( ) ( ).m T
i im i

C V x x
=

⇒ = Φ Φ∑
Center Φ(xi) in the transform space: 1

1
( ) ( ) ( ).m
i i km k
x x x

=
Φ = Φ − Φ∑�

Suppose

– The inter-class inertia B is the covariance matrix of the class centers. 
1 1

,1 1
, ( ).i

i

n mT
i i i i i km mi k

B m x
= =

= Φ Φ Φ = Φ∑ ∑ The kth vector of 
Class i is xi,k.

1 1
, ,1 1 1

( ) ( ) ( ) ( ).im n mT T
i i i k i km mi i k

V x x x x
= = =

= Φ Φ = Φ Φ∑ ∑ ∑ total inertiaLikewise,
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FormulationFormulation
• Using Kernel function:

,( , ) ( ) ( ).T
i j i j i jk x x k x x= = Φ Φ

( ), , ,,
( ) ( ).T

i j p i q jp q
k x x= Φ ΦFor classes p & q,

• Define a mxm matrix K: ( ) ( ), , , ,, 1 1 , 1
, .

p q

T
p q p q i j q pp q n i m j m

K K K k K
= = =

= = =
" " "

A mxm block diagonal 
matrix W: ( ) ( )1

1
, .

t
t t

t t mt n m m
W W W

= ×
= ="

• The classical criteria for class separability is defined by the 
quotient between the inter-class inertia and the intra-classes 
inertia.
– Its maximization is equivalent to the eigenvalue resolution.

• Assume the classes follow a multivariate Gaussian distribution, 
and each observation can be assigned to the class having the 
maximum posterior probability using the Mahalanobis distance.
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Eigenvalue ResolutionEigenvalue Resolution
• Given two symmetric matrices A & B with the same size, and B-1

exists,
– The quotient            is maximal for eigenvector v of B-1A associated  

to the large eigenvalue λ.

T

T

v Av
v Bv

Since
1

2

( )(2 ) ( )(2 ) 0 .
( )

T T T

T T

v Bv Av v Av Bv v AvB Av v
v Bv v Bv

−  −
= ⇒ =  

 

1: eigenvalue, : eigenvector of .
T

T

v Av v B A
v Bv

− 
⇒  

 

Therefore, the quotient      of both inertia’s in the problem is maximized:
B
V

1
1 : the largest eigenvalue, : eigenvector of .

T

T

Vv Bv v Bv v V B
v V Bv v Vv
λ

λ
λ

−
−

=  
⇒ = =  

1 1
,1 1

, ( ).i

i

n mT
i i i i i km mi k

B m x
= =

= Φ Φ Φ = Φ∑ ∑
1 1

, ,1 1 1
( ) ( ) ( ) ( ).im n mT T
i i i k i km mi i k

V x x x x
= = =

= Φ Φ = Φ Φ∑ ∑ ∑

, ,1 1
( ).in m

i k i ki k
v xα

= =
= Φ∑ ∑
Linear combination
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FormulationFormulation

•Proof:

1
, , , ,1 1 1 1

1
, , , ,1 1 1 1

( ) ( ) ( )

( ) ( ) ( ).

p q

q p

n m n mT
p i p i q k q km p i q k

n m n m T
q k p i p i q km q k p i

Vv x x x

x x x

α

α

= = = =

= = = =

= Φ Φ × Φ

= Φ Φ Φ

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

( ) ( ),1 1
, .

i

T T
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Eigenvalue ResolutionEigenvalue Resolution
• By the eigenvectors decomposition of K,

– P contains the normalized eigenvectors, say v.

•P is orthonormal since K is symmetric.

– Γ is the diagonal matrix with non-zero eigenvalues. 
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Also,

Given a test vector z, the projections can be computed as
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SummarySummary
• GDA procedure is summarized in the following steps:

1. Compute K and W.

2. Decompose K using eigenvectors decompositions.

3. Compute eigenvectors β and eigenvalues of the system.

4. Compute eigenvectors v using α and normalize them.

5. Compute projections of test points onto the eigenvectors v.
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Kernel FunctionsKernel Functions
•Various kernel functions can be used:

–Gaussian kernel, RBF-kernel:

–Polynomial kernel:

( )22
( , ) exp .

dx yk x y
σ

− −=

2 2
1 1 2

( 1)2 ( , , , , , , ) :  terms for .
2

t
t i j

t td x x x x x x x R−
= ⇒ ∈" " "

( , ) ( ) .dk x y x y= ⋅

•Threshold values are learned and chosen.
–The number of classes minus one is the number of thresholds 

chosen for classification.
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Biased Discriminant Transform (BDT)Biased Discriminant Transform (BDT)
•MM information retrieval relies on the descriptors (or 

feature vectors), a set of real numbers.

–Effectiveness of the representation in descriptors.

–Selection of similarity metric.

•Difference between Traditional and MM DB:

– Binary “Hit-or-Miss” decision using keywords in traditional DB.

•The occurrences of the keywords or their synonyms, or

•Rule-based ranking. etc.

–In MMDB, the feature space is Rn (continuous).

•Inherently, it is a nearest neighbor or a top-k ranking problem.
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Why OnWhy On--Line Learning?Line Learning?
•"Consensus" interpretation on MM contents:

–Among all the users

–Among all the times

The correct answer should match the context of conversation.

• “The bat slipped from his hand.” shows different meaning in the 

context of a baseball game or a cave exploring.

Medical image DB may define specific functionalities to perform 

off-line pre-clustering.

•On-learning is indispensable.

–The system need to communicate with the user to perceive 

the specific goal of the queries.

•In CBIR, a user is required to offer the feature-weighting scheme.

•In "Relevance Feedback", a user is kept in the loop to tell the 

relevance of an image or video. (NO R/W of textual description)
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Supervised Classification ProblemSupervised Classification Problem
•One descriptor is assumed to represent the MM object.

–By it, the media type becomes transparent to the system.

–The object can be an whole image, image block, segmented 
region, shorts, frames, or a key frame.

A point is associated with the descriptor in the feature space.

•Relevance feedback: supervised classification problem.

–Learning Speed: the number of iterations.

–Training Size: the number of samples, i.e. their population.

•Class density, positive/negative samples, etc.

–Top-k returns: not a binary decision.

•Binary classification (two-class) may not be optimal.

Initial results are returned; returns/evaluation are iterated.

The goal is to learn the discriminating subspace.
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Variants of Relevance FeedbackVariants of Relevance Feedback
•Objectives:

–A user may look for a particular object or a similar one.

•Feedbacks:
–A user may give back the positive feedback, negative, or both.
–The degree of relevance for each result may be returned.
–Partial likeness: it is like A in color, like B in shape, etc.

•Multiple Descriptors per Sample:
–A mixed model can be used for refinement (intersection, union) 

to emphasize the local features.

•Class distribution:
–Two or more target classes may be assumed.

•Gaussian: two; Kernel-based: more for non-linearity.

•Data Organization:
–A hierarchical tree structure may slow learning in real-time.

•Focus:
–To learn a linear transformation, consider the correlations of 

feature components, estimate the class density, etc.



31

Fisher & Multiple Discriminant AnalysesFisher & Multiple Discriminant Analyses
•The consensus is to find the features to best cluster & 

separate the positive examples from the negative.
•Traditional approaches:

–Two-class assumption (FDA): to find a lower dimensional 
space in which the ratio of between-class scatter over within-
class scatter is maximized.
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Biased Discriminant Analysis (BDA)Biased Discriminant Analysis (BDA)
•(1+x)-class assumption:

–The user is only interested in one class, while there are an 
unknown number of other classes.
•“All happy families are alike, each unhappy family is unhappy in 

its own fashion”- Leo Tolstoy's Anna Karenina.

•All positive examples are alike in a way; each negative example is 

negative in its own way.
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–Regularization and Discounting Factors:
•Sample-based estimates may be severely biased for small 

number of training examples.
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KernelKernel--based BDA (KBDA)based BDA (KBDA)
•For non-linearity in the data, a non-linear mapping 

Φ:x→Φ(x) is used to restore linearity in the 
transform space.
–The evaluation of kernel K = (kij), where kij = ΦT(xi)Φ(xj).
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–Let w is the eigenvector associated with the largest 
eigenvalue for W.

1 1
( ) ( ) .x y

x

N N
i i Ni j

α α += =
= Φ + Φ =∑ ∑i iw x y Φα

1

1

( ( ) )( ( ) )

( )

( ) .

y

y

NT T T T
i

NT T
i

T T

Φ Φ Φ
=

=

 = Φ − Φ − 
 =  
 =  

∑
∑ i i

x x

y i x i x

y mx y mx

y y
y x N y x N

w S w α Φ y m y m Φα

α K -K )(K -K α

α K -K I )(K -K I α

( )

( )

:,
( ) ,

,
1 .

T

j

T Φ

×

= Φ =

=

=

i

x x y

y i y

mx x

y
N N N

x

K Φ y K

K Φ m

I 1
N

N×Ny



34

KBDA (contKBDA (cont’’d)d)
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Solve to get α: the eigenvector with the largest eigenvalue.

Given a new pattern z, find its projection onto w by
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•In this new space, the nearest neighbors of the 
positive centroid are returned in each iteration.
–Combined with the subsequent feedbacks, the new nearest 

neighbors are output.
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