Decision Estimation

- Decision estimation and classification are ones of active research areas.
 - Classic measurements of the environment, … , AI (vision, speech recognition.)
 - Systems perform "pattern recognition" or "decision making".
 - Often the information is less than precise, and frequently the decision procedures are statistical in nature.
- Objects of interests are classified into one of classes.
 - These objects are "patterns": printed letters, biological cells,...
 - Systems learn the training data to classify the testing data.
 - Supervised vs. un-supervised.

Classification Approach

- The observation vector x is first transformed into another vector y whose components called features.
 - Feature extraction: the features are intended to be fewer in numbers than the observations.
 - However, they should collectively contain most discernible information for pattern classification.
 - Reduction of the observations to a smaller number of features is anticipated to help design a reliable decision rule.

 Extraction procedures or transformations attempt to compute the components based on intuition or physical considerations of the problem. ⇒ dimensionality reduction.

Three-class Recognition Example

if $y_1 + 3y_2 < 9$ w_1 : class of 1's, else if $-y_1 + 3y_2 > 3$ w_2 : class of x's, else w_3 : class of 0's.

Discriminant functions:

$$g_1(\mathbf{y}) = -y_1 - 3y_2 + 9,$$

 $g_2(\mathbf{y}) = -y_1 + 3y_2 - 3,$
 $g_3(\mathbf{y}) = g_1(\mathbf{y}) \cdot g_2(\mathbf{y}).$

Decision Rule: Choose w_i where $g_i(\mathbf{y}) = \max_i [g_i(\mathbf{y})]$.

- Decision region R_i is the set $R_i = \{y : g_i(y) = \max_j [g_j(y)]\}$.
 - Discriminant functions can be evaluated computationally.
- Decision boundaries are defined by $g_i(\mathbf{y}) = g_j(\mathbf{y}), i \neq j$.

Probability Theory for Random Vectors

- Event A has the associated probability P(A).
 - P(not A) = 1 P(A).
 - The joint probability of two events A & B, denoted as P(AB) or P(A and B) is the probability that A and B both occur simultaneously.
 - P(A or B) = P(A) + P(B) P(A and B).
- Suppose x is a random vector.
 - Its distribution function F(**x**) is defined as

$$F_{\mathbf{x}}(\tilde{\mathbf{x}}) = F_{x_1, x_2, \cdots, x_n}(\tilde{x}_1, \tilde{x}_2, \cdots, \tilde{x}_n) = P(\mathbf{x} \le \tilde{\mathbf{x}}) = P(x_1 \le \tilde{x}_1, x_2 \le \tilde{x}_2, \cdots, x_n \le \tilde{x}_n).$$

• $F(-\infty)=0, F(+\infty)=1.$

- Its density function f(x) is defined as

$$f_{\mathbf{x}}(\tilde{\mathbf{x}}) = \frac{dF_{\mathbf{x}}(\tilde{\mathbf{x}})}{d\mathbf{x}} = \left[\frac{\partial^n F_{\mathbf{x}}(\tilde{\mathbf{x}})}{\partial x_1 \partial x_2 \cdots \partial x_n}\right]_{\mathbf{x} = \tilde{\mathbf{x}}} \Leftrightarrow F_{\mathbf{x}}(\tilde{\mathbf{x}}) = \int_{-\infty}^{\tilde{\mathbf{x}}} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = \int_{-\infty}^{\tilde{x}_1} \int_{-\infty}^{\tilde{x}_2} \cdots \int_{-\infty}^{\tilde{x}_n} f_{\mathbf{x}}(\mathbf{x}) dx_1 dx_2 \cdots dx_n.$$

 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

Joint Distribution and Density Functions • Suppose **y** is another random vector. $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \end{pmatrix}$ • The joint distribution of **x** and **y** is defined by

• The joint distribution of **x** and **y** is defined by $F_{xy}(\tilde{x}, \tilde{y}) = P(x \le \tilde{x}, y \le \tilde{y}).$

The joint density is
$$f_{\mathbf{x}\mathbf{y}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \frac{d^2 F_{\mathbf{x}}(\tilde{\mathbf{x}})}{d\mathbf{x}d\mathbf{y}} = \left[\frac{\partial^m \partial^n F_{\mathbf{x}}(\tilde{\mathbf{x}})}{\partial x_1 \partial x_2 \cdots \partial x_n \partial y_1 \partial y_2 \cdots \partial y_m}\right]_{\mathbf{x}=\tilde{\mathbf{x}}, \mathbf{y}=\tilde{\mathbf{y}}}$$

$$\Rightarrow F_{xy}(-\infty, -\infty) = 0, \quad F_{xy}(\infty, \infty) = 1, \quad F_{xy}(\tilde{\mathbf{x}}, \infty) = F_{x}(\tilde{\mathbf{x}}), \quad F_{xy}(\infty, \tilde{\mathbf{y}}) = F_{y}(\tilde{\mathbf{y}}).$$

Marginal p.d.f.

• Example: the joint p.d.f. is $f_{xy}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \begin{cases} (\tilde{x}_1 + 3\tilde{x}_2)\tilde{y}_1 & 0 \le \tilde{x}_1, \tilde{x}_2, \tilde{y}_1 \le 1, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad \mathbf{y} = (y_1) \qquad \qquad f_{\mathbf{x}}(\tilde{\mathbf{x}}) = \begin{cases} \int_0^1 (\tilde{x}_1 + 3\tilde{x}_2) y_1 dy_1 = \frac{1}{2} (\tilde{x}_1 + 3\tilde{x}_2) & 0 \le \tilde{x}_1, \tilde{x}_2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Probability Functions jointly with Events
 The joint distribution of a random vector x and an event A is defined by

$$F_{\mathbf{x}A}(\tilde{\mathbf{x}}, A) = P(\mathbf{x} \le \tilde{\mathbf{x}}, A) = \sum_{i=1}^{m} P(\mathbf{x} \le \tilde{\mathbf{x}}, A_i), \quad A = \bigcup_{i=1}^{m} A_i$$

• The conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B | A)P(A)}{P(B)}$. $\Rightarrow F_{\mathbf{x}|A}(\tilde{\mathbf{x}} | A) = P(\mathbf{x} \le \tilde{\mathbf{x}} | A) = \frac{P(\mathbf{x} \le \tilde{\mathbf{x}}, A)}{P(A)} = \frac{F_{\mathbf{x}A}(\tilde{\mathbf{x}}, A)}{P(A)}$. Bayes's Rule $\Rightarrow f_{\mathbf{x}|\mathbf{y}}(\tilde{\mathbf{x}} | \tilde{\mathbf{y}}) = \frac{f_{\mathbf{xy}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})}{f_{\mathbf{y}}(\tilde{\mathbf{y}})}$. $\Rightarrow f_{\mathbf{xy}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = f_{\mathbf{x}}(\tilde{\mathbf{x}}) \cdot f_{\mathbf{y}}(\tilde{\mathbf{y}})$, if \mathbf{x}, \mathbf{y} are independent.

$$P(A_{i} | B) = \frac{P(A_{i} \cap B)}{P(B)} = \frac{P(B | A_{i})P(A_{i})}{\sum_{i=1}^{m} P(B | A_{i})}$$
Prior density

$$\Rightarrow \underbrace{f_{\mathbf{x}|\mathbf{y}}(\tilde{\mathbf{x}} | \tilde{\mathbf{y}})}_{f_{\mathbf{x}}(\tilde{\mathbf{y}})} = \frac{f_{\mathbf{xy}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})}{f_{\mathbf{y}}(\tilde{\mathbf{y}})} = \frac{f_{\mathbf{y}|\mathbf{x}}(\tilde{\mathbf{y}} | \tilde{\mathbf{x}})f_{\mathbf{x}}(\tilde{\mathbf{x}})}{\int_{-\infty}^{\infty} f_{\mathbf{y}|\mathbf{x}}(\tilde{\mathbf{y}} | \tilde{\mathbf{x}})f_{\mathbf{x}}(\mathbf{x})d\mathbf{x}}.$$
Prior density
Posterior density

Likelihood Ratio Test

 The hypothesis that a given pattern x belongs one of N_c classes is tested to minimize the probability of error.

If
$$f_{w_1|\mathbf{x}}(w_1 \mid \tilde{\mathbf{x}}) = \frac{f_{\mathbf{x}|w_1}(\tilde{\mathbf{x}} \mid w_1)P(w_1)}{f_{\mathbf{x}}(\tilde{\mathbf{x}})} > f_{w_2|\mathbf{x}}(w_2 \mid \tilde{\mathbf{x}}) = \frac{f_{\mathbf{x}|w_2}(\tilde{\mathbf{x}} \mid w_2)P(w_2)}{f_{\mathbf{x}}(\tilde{\mathbf{x}})} \implies w_1 \text{ class,}$$

else w_2 class.

• The decision rule can be
$$L(\tilde{\mathbf{x}}) \triangleq \frac{f_{\mathbf{x}|w_1}(\tilde{\mathbf{x}} \mid w_1)}{f_{\mathbf{x}|w_2}(\tilde{\mathbf{x}} \mid w_2)} \stackrel{w_1}{\underset{w_2}{>}} \frac{P(w_2)}{P(w_1)}.$$

Likelihood Ratio

Example: the conditional p.d.f. are $P(w_1) = P(w_2).$ $\Rightarrow L(\tilde{\mathbf{x}}) \triangleq \exp[-\frac{1}{2}(x-4)^2 + \frac{1}{2}(x-10)^2] \stackrel{w_1}{\underset{w_2}{\overset{w_1}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_1}{\overset{w_1}{\overset{w_2}{\overset{w_1}}}}{\overset{w_1}{\overset$

Probability of Misclassification

 The probability of error, i.e. Bayes risk, determines the quality of a decision rule.

- A lower value implies a better rule.

$$P(error) = \int_{-\infty}^{\infty} P(error \mid \mathbf{x}) f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = P(error \mid w_1) P(w_1) + P(error \mid w_2) P(w_2).$$

$$\varepsilon_1 = P(error \mid w_1) = P(\text{choose } w_2 \mid w_1) = \int_{R_2} f_{\mathbf{x} \mid w_1}(\mathbf{x} \mid w_1) d\mathbf{x}.$$
$$\varepsilon_2 = P(error \mid w_2) = P(\text{choose } w_1 \mid w_2) = \int_{R_1} f_{\mathbf{x} \mid w_2}(\mathbf{x} \mid w_2) d\mathbf{x}.$$

- Bayes risk under Multiple hypotheses can be defined: $P(error | \mathbf{x}) = \sum_{j=1, j \neq i}^{N_c} P(w_j | \mathbf{x}) = 1 - P(w_i | \mathbf{x}), \text{ if } \mathbf{x} \in R_i.$
 - R_i should be defined to be the region where $P(w_i | \mathbf{x})$ is largest. Choose w_i where $P(w_i | \mathbf{x}) = \max_j [P(w_j | \mathbf{x})]$.

Distance Functions

- There are several ways to measure the distance d(x,y) between two vectors x & y.
 - Generally, a distance function is any scalar-valued function satisfying the following conditions:
 - d(x,y)>0 for x≠y; d(x,y)=0 if x=y.
 - $\cdot d(\mathbf{x},\mathbf{y}) = d(\mathbf{y},\mathbf{x}).$
 - [Triangular inequality] $d(\mathbf{x},\mathbf{y})+d(\mathbf{y},\mathbf{z}) \ge d(\mathbf{x},\mathbf{z})$.
 - Euclidean distance: $d_E(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \mathbf{y}| = \left(\sum_{i=1}^n (x_i y_i)^2\right)^{\frac{1}{2}}$.
 - Maximum value distance: $d_M(\mathbf{x}, \mathbf{y}) = \max_i |x_i y_i|$.
 - Absolute value distance (city block): $d_A(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i y_i|$.

Linear Transformation

- If x is a vector in X and y is the corresponding (mapped) vector in Y, then y = A x.
- Matrix A is said to be **positive definite**
 - if the quadratic product, $\mathbf{x}^T A \mathbf{x}$, is strictly greater than zero for all non-zero vector \mathbf{x} . $\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$.
- Matrix A is said to be **positive semidefinite** if the quadratic product, **x**^TA**x**, ≥ 0 for all non-zero vector **x**.

• Example: the positive definite matrix
$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
.
 $\Leftrightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = x_1^2 - 2x_1 x_2 + 2x_2^2 = (x_1 - x_2)^2 + x_2^2 > 0, \forall \mathbf{x} \neq \mathbf{0}.$
 $\mathbf{B} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 3 & 3 & 0 \end{pmatrix}$ is not a positive definite matrix.

Differentiation w.r.t. Vectors

- If s is a scalar function of a vector $\mathbf{x} \in \mathbb{R}^n$,
 - the derivative of s w.r.t. x is defined as the vector (gradient)

$$\frac{ds}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial s}{\partial x_1} & \frac{\partial s}{\partial x_2} & \cdots & \frac{\partial s}{\partial x_n} \end{bmatrix}^T$$

If s is a vector ∈ R^m,
the derivative of s w.r.t. x is the matrix

$$\frac{d\mathbf{s}}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial s_1}{\partial x_1} & \dots & \frac{\partial s_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial s_1}{\partial x_n} & \dots & \frac{\partial s_m}{\partial x_n} \end{pmatrix}$$

 $\frac{d\mathbf{r}}{d\mathbf{v}} = \frac{d\mathbf{r}}{d\mathbf{s}}\frac{d\mathbf{s}}{d\mathbf{v}}.$

Chained rule

If **B** is symmetric

- If **r** is a linear transformation of **s**, - Namely, **r**=**Bs**, then $\frac{d\mathbf{r}}{d\mathbf{x}} = \mathbf{B}\frac{d\mathbf{s}}{d\mathbf{x}}$.
- If r is a nonlinear transformation of s,
- For the quadratic product, $\frac{d(\mathbf{x}^{\mathrm{T}}\mathbf{B}\mathbf{x})}{d\mathbf{x}} = \cdots = (\mathbf{B} + \mathbf{B}^{\mathrm{T}})\mathbf{x} = 2\mathbf{B}\mathbf{x}.$

11

• The correlation matrix **R** of a random vector **x** is $\mathbf{R} = E(\mathbf{x}\mathbf{x}^{T}) = (r_{ij}), \quad r_{ij} = E(x_{i}x_{j}).$

The covariance matrix K of a random vector x is

$$\mathbf{K} = E[(\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^{\mathrm{T}}] = (k_{ij}), \quad k_{ij} = E[(x_i - m_i)(x_j - m_j)].$$

- The diagonal elements k_{ii} are the variances of the vector components. $k_{ii} = \sigma_i^2 = Var(x_i) = E[(x_i - m_i)^2].$

$$\mathbf{K} = E[(\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^{\mathrm{T}}] = E[\mathbf{x}\mathbf{x}^{\mathrm{T}} - \mathbf{x}\mathbf{m}^{\mathrm{T}} - \mathbf{m}\mathbf{x}^{\mathrm{T}} + \mathbf{m}\mathbf{m}^{\mathrm{T}}]$$

= $E[\mathbf{x}\mathbf{x}^{\mathrm{T}}] - E[\mathbf{x}]\mathbf{m}^{\mathrm{T}} - \mathbf{m}E[\mathbf{x}^{\mathrm{T}}] + \mathbf{m}\mathbf{m}^{\mathrm{T}} = E[\mathbf{x}\mathbf{x}^{\mathrm{T}}] - \mathbf{m}\mathbf{m}^{\mathrm{T}} = \mathbf{R} - \mathbf{m}\mathbf{m}^{\mathrm{T}}.$ \Rightarrow $\mathbf{R} = \mathbf{K} + \mathbf{m}\mathbf{m}^{\mathrm{T}}$

- Given a vector $\mathbf{y} = \mathbf{A} \mathbf{x}$, $\mathbf{m}_{y} = E[\mathbf{A}\mathbf{x}] = \mathbf{A}E[\mathbf{x}] = \mathbf{A}\mathbf{m}_{x}$.
 - $\mathbf{R}_{\mathbf{y}} = E[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{T}] = \mathbf{A}E[\mathbf{x}\mathbf{x}^{T}]\mathbf{A}^{T} = \mathbf{A}\mathbf{R}_{\mathbf{x}}\mathbf{A}^{T}. \qquad \mathbf{K}_{\mathbf{y}} = \mathbf{A}\mathbf{K}_{\mathbf{x}}\mathbf{A}^{T}.$

- If **A** is orthogonal, i.e. has orthonormal column vectors, $|\mathbf{R}_y| = |\mathbf{R}_x|, tr(\mathbf{R}_y) = tr(\mathbf{R}_x), |\mathbf{K}_y| = |\mathbf{K}_x|, tr(\mathbf{K}_y) = tr(\mathbf{K}_x).$

Independent Random Vectors

- If random vectors x and y are independent, they are uncorrelated.
 - The converse is generally not true.
 - Both are uncorrelated if $\begin{cases} \mathbf{R}_{xy} = E(\mathbf{xy}^{T}) = E(\mathbf{x})E(\mathbf{y}^{T}) = \mathbf{m}_{x}\mathbf{m}_{y}^{T}, \\ \mathbf{K}_{xy} = E[(\mathbf{x} \mathbf{m}_{x})(\mathbf{y} \mathbf{m}_{y})^{T}] = \mathbf{0}. \end{cases}$
- Gaussian Random Vectors: $f(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}} \implies f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}\sqrt{|\mathbf{K}_{\mathbf{x}}|}} \exp\left[-\frac{(\mathbf{x}-\mathbf{m})\mathbf{K}_{\mathbf{x}}^{-1}(\mathbf{x}-\mathbf{m})^T}{2}\right].$
- Recall: a/(a+c), better for a smaller value of c.
 The ratio of the number of shots detected
 correctly over the actual number of shots.
- Precision: a/(a+b), better for a smaller value of b.
 - ✓ The ratio of the number of shots detected correctly over the total number of shots detected.

detected shots

correct shots

С

Ь

a

Support Vector Machines (SVM)

SVM is a novel kind of Neural Networks.

- Multi-Layer-Perceptron (MLP): Classifier, regressor, etc.
 - Single-layer & Multi-layer with feed-forward connections.
 - Back propagation algorithm, maximum likelihood principle.
 - Training, self-structured: supervised, unsupervised.
 - The performance is justified by a loss function (say, MSE) over unseen samples of the test set.
 - The **expected** risk of the classifier on the test set $[2] \leq$ The **empirical** risk on the training set [0] + the **estimation** error [1].

Estimation error
$$\simeq \sqrt{\frac{h}{c}\log(1+2\frac{c}{h})},$$

[0] & [1] should be both min.✓ Minimizing [0] alone do no good!!

c = |Training Set|,

h = VC dimension of the classifer.

(Vapnik-Chervonenkis) = the maximal number of samples correctly classified in the training set.

Graphical Illustration

 In Modeling, the approximation error stems from the model mismatch.

The true f(x) may lie outside the hypothesis space.

- In Learning, the estimation error occurs due to the imperfect learning procedure.
 - The non-optimal model (empirically obtained) may be chosen.
- During the testing (evaluation), the generalization error is met.
- SVM minimizes the Expected risk by controlling VC dimension.
 Learning becomes solving the problem of Quadratic Programming.

SVM = Optimal Hyperplane Algorithm

- Learning how to classify is estimating a function f: $R^n \rightarrow \pm 1$ over the training data set = {(x_i, y_i) $\in R^n \times \pm 1$: i=1...c)}
 - f will correctly classify other unseen example (x, y) under the same unknown probability distribution P(x, y). \Rightarrow namely, f(x)=y.
 - It is often assumed the data are i.i.d. (identically independent distributed).

Hyperplanes: $w \cdot x + b = 0$, $w \in \mathbb{R}^n$, \Leftrightarrow Decision Functions: $f(x) = \operatorname{sgn}(w \cdot x + b)$.

 $\Rightarrow \exists a unique hyperplane(w,b) \ni \max_{w,b} \min_i \left(\|x - x_i\| : x \in \mathbb{R}^n, w \cdot x + b = 0, i = 1 \cdots c \right).$ Maximize the separation margin.

 $\Rightarrow \text{Optimization problem:} \begin{cases} \min L(w) = \frac{1}{2} \|w\|^2 & \text{Good separation} \\ y_i(w \cdot x_i + b) \ge 1, i = 1 \cdots c. & \text{Correct} \end{cases}$

⇒ Solution = the saddle point $\alpha_i \ge 0$ of the Lagrangian:

$$L(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{c} \alpha_i [y_i(w \cdot x_i + b) - 1].$$

Minimized w.r.t. w & b, maximized w.r.t. $\alpha_{i \cdot 16}$

Solution

 $\begin{cases} \frac{\partial L(w,b,\alpha)}{\partial b} = 0 \Rightarrow \sum_{i=1}^{c} \alpha_i y_i = 0, & \text{Lying on the margin} \\ \frac{\partial L(w,b,\alpha)}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^{c} \alpha_i y_i x_i. & \text{The solution vector is a linear combination of} \\ a \text{ subset of the training patterns.} \\ \Rightarrow & \text{Support vectors summarize the information.} \end{cases}$

 $\Rightarrow b = -\frac{1}{2} w \cdot (x_p + x_q), \alpha_p > 0, \alpha_q > 0, y_p = 1, y_q = -1, \text{ for any SV } x_p, x_q.$

However, most classification problems are not linear separable.
 Transform x_i to a high-dimension space to regain linear separation.

 $x \Rightarrow \Phi(x)$. $\Phi(x)$ is hard to compute.

17

Decision Functions: $f(x) = \operatorname{sgn}(w \cdot x + b) = \operatorname{sgn}\left(\sum_{i=1}^{c} \alpha_i y_i(x_i \cdot x) + b\right)$ $\Rightarrow f(x) = \operatorname{sgn}\left(\sum_{i=1}^{c} \alpha_i y_i(\Phi(x_i) \cdot \Phi(x)) + b\right).$

The scalar (inner) product, $\Phi(x_i) \cdot \Phi(x)$, is easy to compute by a simple kernel. As an example, the polynomial kernel $k(x,y) = \Phi(x) \cdot \Phi(y) = (x \cdot y)^d$. ✓ Matrices (K_{ii}) are positive definite, where $K_{ii} = k(x_i, x_i)$, i, j=1…c.

Dilemma

- Typically, the data will only be linearly separable in some, possibly very high dimensional space.
 - Separating the data exactly, particularly for a finite amount of data with noise, is favorable. However it will generalize badly.
 - In practice, it may be necessary to employ the non-separable approach (allow some classification error).
- To allow some overlapping between classes, the slack variables $\tau_i \ge 0$ is introduced.

$$\Rightarrow \text{ Optimization problem:} \begin{cases} \min L(w,\tau) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^c \tau_i, \quad C \text{ is some constant} \ge 0. \\ y_i(w \cdot x_i + b) \ge 1 - \tau_i, \quad i = 1 \cdots c. \qquad \tau_i \ge 0 \end{cases}$$
$$\Rightarrow L(w,b,\alpha,\tau,\beta) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^c \alpha_i [y_i(w \cdot x_i + b) - 1 + \tau_i] - \sum_{i=1}^c \beta_i \tau_i. \quad \text{Saddle points} \\ C \ge \alpha_i \ge 0 \quad \sum_{i=1}^c \alpha_i y_i = 0, \quad w = \sum_{i=1}^c \alpha_i y_i x_i, \quad \alpha_i + \beta_i = C. \text{ (Any SV } x_i \text{ has } \tau_i = 0.) \end{cases}$$
$$\Rightarrow \max_{\alpha} W(\alpha) = \sum_{i=1}^c \alpha_i - \frac{1}{2} \sum_{i=1}^c \sum_{j=1}^c \alpha_j \alpha_j y_j y_j (x_i \cdot x_j).$$

Non-linear Separation

Using the kernel,

 $\Rightarrow \max_{\alpha} W(\vec{\alpha}) = \sum_{i=1}^{c} \alpha_i - \frac{1}{2} \sum_{i=1}^{c} \sum_{j=1}^{c} \alpha_i \alpha_j y_i y_j k(x_i, x_j).$

• Define the matrix Q, $Q_{ij} = y_i y_j k(\vec{x}_i, \vec{x}_j)$. $\Rightarrow W(\vec{\alpha}) = \vec{\alpha}^T \vec{1} - \frac{1}{2} \vec{\alpha}^T Q \vec{\alpha}$ = $\vec{\alpha}^T (\vec{1} - \frac{1}{2} Q \vec{\alpha})$.

- Decomposition: break the entire training set into smaller ones.
 - Select the working (active) subset.
 - Other α_i are fixed in the current iteration.
 - Shrink the problem.
 - There are much less SVs than c.
 - Many SVs have $\alpha_i = C$.
 - Caching and incremental updates of the gradient & the termination criteria.

Generalized Discriminant Analysis (GDA)

GDA is the eigenvalue problem resolution for nonlinear discriminant analysis.

- It is similar in functionality to SVM.
- The input set X has m vectors, $x_1 \cdots x_m$, belong to n classes, $X_1 \cdots X_n$.

- The cardinality of the subset X_i is m_i . $\Rightarrow X = \bigcup_{i=1}^n X_i$, $\sum_{i=1}^n m_i = m$.

- The covariance matrix C of all x_i : $C = \frac{1}{m} \sum_{i=1}^m x_i x_i^T$.

Suppose $x \Rightarrow \Phi(x)$. $C \Rightarrow V = \frac{1}{m} \sum_{i=1}^{m} \Phi(x_i) \Phi^T(x_i)$. Center $\Phi(x_i)$ in the transform space: $\tilde{\Phi}(x_i) = \Phi(x_i) - \frac{1}{m} \sum_{k=1}^{m} \Phi(x_k)$.

- The **inter-class** inertia B is the covariance matrix of the class centers.

$$B = \frac{1}{m} \sum_{i=1}^{n} m_i \overline{\Phi}_i \overline{\Phi}_i^T, \quad \overline{\Phi}_i = \frac{1}{m_i} \sum_{k=1}^{m_i} \Phi(x_{i,k}).$$

The $k^{\underline{th}}$ vector of Class i is $x_{i,k}$.

Likewise, $V = \frac{1}{m} \sum_{i=1}^{m} \Phi(x_i) \Phi^T(x_i) = \frac{1}{m} \sum_{i=1}^{n} \sum_{k=1}^{m} \Phi(x_{i,k}) \Phi^T(x_{i,k})$. total inertia

Formulation

• Using Kernel function: $k(x_i, x_j) = k_{i,j} = \Phi^T(x_i)\Phi(x_j)$. For classes p & q, $(k_{i,j})_{p,q} = \Phi^T(x_{p,i})\Phi(x_{q,j})$.

• Define a mxm matrix K: $K = (K_{p,q})_{p,q=1\cdots n}$, $K_{p,q} = (k_{i,j})_{i=1\cdots m_p, j=1\cdots m_q} = K_{q,p}^T$.

A mxm block diagonal matrix W: $W = (W_t)_{t=1\cdots n}, \quad W_t = (\frac{1}{m_t})_{m_t \times m_t}.$

- The classical criteria for class separability is defined by the quotient between the inter-class inertia and the intra-classes inertia.
 - Its maximization is equivalent to the eigenvalue resolution.
- Assume the classes follow a multivariate Gaussian distribution, and each observation can be assigned to the class having the maximum posterior probability using the <u>Mahalanobis distance</u>.

Eigenvalue Resolution

- Given two symmetric matrices A & B with the same size, and B⁻¹ exists, $y^T A y$
 - The quotient $\frac{v^T A v}{v^T B v}$ is maximal for eigenvector v of B⁻¹A associated to the large eigenvalue λ .

Since

$$\frac{(v^T B v)(2Av) - (v^T A v)(2Bv)}{(v^T B v)^2} = 0 \Rightarrow B^{-1}Av = \left(\frac{v^T A v}{v^T B v}\right)v$$

$$\Rightarrow \left(\frac{v^T A v}{v^T B v}\right): \text{ eigenvalue, } v: \text{ eigenvector of } B^{-1}A.$$

Therefore, the quotient $\frac{B}{V}$ of both inertia's in the problem is maximized:

 $\lambda V v = B v$ $\lambda v = V^{-1} B v \implies \left(\frac{v^T B v}{v^T V v}\right) = \lambda : \text{the largest eigenvalue, } v : \text{eigenvector of } V^{-1} B.$ $B = \frac{1}{m} \sum_{i=1}^{n} m_i \overline{\Phi}_i \overline{\Phi}_i^T, \quad \overline{\Phi}_i = \frac{1}{m_i} \sum_{k=1}^{m_i} \Phi(x_{i,k}).$ $v = \sum_{i=1}^{n} \sum_{k=1}^{m_i} \alpha_{i,k} \Phi(x_{i,k}).$ Linear combination

Formulation

 $\boldsymbol{\alpha} = \left(\alpha_{i}\right)_{i=1\cdots n}, \quad \alpha_{i} = \left(\alpha_{i,k}\right)_{k=1\cdots m_{i}} \quad \Rightarrow \quad \left(\frac{\boldsymbol{\nu}^{T} \boldsymbol{B} \boldsymbol{\nu}}{\boldsymbol{\nu}^{T} \boldsymbol{V} \boldsymbol{\nu}}\right) = \lambda = \left(\frac{\boldsymbol{\alpha}^{T} \boldsymbol{K} \boldsymbol{W} \boldsymbol{K} \boldsymbol{\alpha}}{\boldsymbol{\alpha}^{T} \boldsymbol{K} \boldsymbol{K} \boldsymbol{\alpha}}\right).$ Proof: $K = \left(K_{p,q}\right)_{p,q=1\dots,p},$ $\lambda V_V = Bv \implies \lambda \Phi^T(x_{rs}) Vv = \Phi^T(x_{rs}) Bv.$ $K_{p,q} = (k_{i,j})_{i=1\cdots m_{p}, j=1\cdots m_{q}} = K_{q,p}^{T}.$ $Vv = \frac{1}{m} \sum_{p=1}^{n} \sum_{i=1}^{m_p} \Phi(x_{p,i}) \Phi^T(x_{p,i}) \times \sum_{q=1}^{n} \sum_{k=1}^{m_q} \alpha_{q,k} \overline{\Phi(x_{q,k})} = \frac{1}{m} \sum_{q=1}^{n} \sum_{k=1}^{m_q} \alpha_{q,k} \sum_{p=1}^{n} \sum_{i=1}^{m_p} \Phi(x_{p,i}) \Phi^T(x_{p,i}) \Phi(x_{q,k}).$ $\lambda \Phi^{T}(x_{r,s}) V v = \frac{\lambda}{m} \sum_{q=1}^{n} \sum_{k=1}^{m_{q}} \alpha_{q,k} \sum_{p=1}^{n} \sum_{i=1}^{m_{p}} [\Phi^{T}(x_{r,s}) \Phi(x_{p,i})] [\Phi^{T}(x_{p,i}) \Phi(x_{q,k})].$ $\Rightarrow \lambda[\Phi^T(x_{1,m_1}),\cdots,\Phi^T(x_{m_1,m_1}),\cdots,\Phi^T(x_{1,m_n}),\cdots,\Phi^T(x_{m_n,m_n})]Vv = \frac{\lambda}{m}KK\alpha.$ $Bv = \frac{1}{m} \sum_{p=1}^{n} m_p \left[\frac{1}{m_p} \sum_{i=1}^{m_p} \Phi(x_{p,i}) \right] \left[\frac{1}{m_p} \sum_{i=1}^{m_p} \Phi(x_{p,i}) \right]^T \times \sum_{q=1}^{n} \sum_{k=1}^{m_q} \alpha_{q,k} \Phi(x_{q,k})$ $= \frac{1}{m} \sum_{q=1}^{n} \sum_{k=1}^{m_q} \alpha_{q,k} \sum_{p=1}^{n} \left[\sum_{i=1}^{m_p} \Phi(x_{p,i}) \right] \left[\frac{1}{m_p} \right] \left[\sum_{i=1}^{m_p} \Phi^T(x_{p,i}) \Phi(x_{q,k}) \right].$ $\Rightarrow [\Phi^{T}(x_{1,m_{1}}), \cdots, \Phi^{T}(x_{m_{1},m_{1}}), \cdots, \Phi^{T}(x_{1,m_{n}}), \cdots, \Phi^{T}(x_{m_{n},m_{n}})]Bv = \frac{1}{m}KWK\alpha.$

Eigenvalue Resolution

- By the eigenvectors decomposition of K, $K = P\Gamma P^T$
 - P contains the normalized eigenvectors, say v.
 - P is orthonormal since K is symmetric.

•

 $-\Gamma$ is the diagonal matrix with non-zero eigenvalues.

$$\begin{pmatrix} v^{T}Bv \\ v^{T}Vv \end{pmatrix} = \lambda = \left(\frac{\alpha^{T}KWK\alpha}{\alpha^{T}KK\alpha}\right) = \frac{\alpha^{T}(P\Gamma P^{T})W(P\Gamma P^{T})\alpha}{\alpha^{T}(P\Gamma P^{T})(P\Gamma P^{T})\alpha} = \frac{(\Gamma P^{T}\alpha)^{T}P^{T}WP(\Gamma P^{T}\alpha)}{(\Gamma P^{T}\alpha)^{T}P^{T}P(\Gamma P^{T}\alpha)}.$$

$$\beta = \Gamma P^{T}\alpha \quad \Rightarrow \quad \lambda P^{T}P\beta = \lambda\beta = P^{T}WP\beta \quad \Rightarrow \quad \alpha = P\Gamma^{-1}\beta.$$
Also, $1 = v^{T}v = \sum_{p=1}^{n}\sum_{k=1}^{m_{p}}\alpha_{p,k}\Phi^{T}(x_{p,k})\sum_{q=1}^{n}\sum_{k=1}^{m_{q}}\alpha_{q,k}\Phi(x_{q,k})$

$$= \sum_{p=1}^{n}\sum_{q=1}^{n}\alpha_{p}^{T}K_{p,q}\alpha_{q} = \alpha^{T}K\alpha \quad \Rightarrow \quad \alpha \text{ should be normalized by } \sqrt{\alpha^{T}K\alpha}$$

Given a test vector z, the projections can be computed as

$$v^{T}z = \sum_{p=1}^{n} \sum_{k=1}^{m_{p}} \alpha_{p,k} \Phi^{T}(x_{p,k}) z = \sum_{p=1}^{n} \sum_{k=1}^{m_{p}} \alpha_{p,k} k(x_{p,k},z).$$

Summary

- **GDA** procedure is summarized in the following steps: **1.** Compute K and W. $(k_{i,j})_{p,q} = \Phi^T(x_{p,i})\Phi(x_{q,j})$. $K = (K_{p,q})_{p,q=1\cdots n}, K_{p,q} = (k_{i,j})_{i=1\cdots m_n, j=1\cdots m_q}, W = (W_t)_{t=1\cdots n}, W_t = (\frac{1}{m_t})_{m \times m}$.
 - 2. Decompose K using eigenvectors decompositions. $K = P\Gamma P^{T}$
 - **3.** Compute eigenvectors β and eigenvalues of the system. $\beta = \Gamma P^T \alpha \implies \lambda P^T P \beta = \underline{\lambda \beta} = P^T W P \beta \implies \alpha = P \Gamma^{-1} \beta.$
 - 4. Compute eigenvectors v using α and normalize them.

 $v = \sum_{p=1}^{n} \sum_{k=1}^{m_p} \alpha_{p,k} \Phi(x_{p,k}).$ α should be normalized by $\sqrt{\alpha^T K \alpha}.$

5. Compute projections of test points onto the eigenvectors v.

$$\mathbf{v}^{T} z = \sum_{p=1}^{n} \sum_{k=1}^{m_{p}} \alpha_{p,k} \Phi^{T}(x_{p,k}) \ z = \sum_{p=1}^{n} \sum_{k=1}^{m_{p}} \alpha_{p,k} k(x_{p,k},z).$$

Kernel Functions

Various kernel functions can be used:

- Gaussian kernel, RBF-kernel: $k(x, y) = \exp\left(\frac{-\|x-y\|^d}{2\sigma^2}\right)$.

- Polynomial kernel: $k(x, y) = (x \cdot y)^d$.

 $d = 2 \implies (x_1^2, \dots, x_t^2, x_1 x_2, \dots, x_i x_j, \dots): \frac{t(t-1)}{2}$ terms for $x \in R^t$.

- Threshold values are learned and chosen.
 - The number of classes minus one is the number of thresholds chosen for classification.

Biased Discriminant Transform (BDT)

- MM information retrieval relies on the descriptors (or feature vectors), a set of real numbers.
 - Effectiveness of the representation in descriptors.
 - Selection of similarity metric.

- Difference between Traditional and MM DB:
 - Binary "Hit-or-Miss" decision using keywords in traditional DB.
 - The occurrences of the keywords or their synonyms, or
 - Rule-based ranking. etc.
 - In MMDB, the feature space is Rⁿ (continuous).
 - Inherently, it is a nearest neighbor or a top-k ranking problem.

Why On-Line Learning?

- "Consensus" interpretation on MM contents:
 - Among all the users
 - Among all the times
 - The correct answer should match the context of conversation.
 - "The bat slipped from his hand." shows different meaning in the context of a baseball game or a cave exploring.
 - Medical image DB may define specific functionalities to perform off-line pre-clustering.

On-learning is indispensable.

- The system need to communicate with the user to perceive the specific goal of the queries.
 - In CBIR, a user is required to offer the feature-weighting scheme.
 - In "Relevance Feedback", a user is kept in the loop to tell the relevance of an image or video. (NO R/W of textual description)

Supervised Classification Problem

One descriptor is assumed to represent the MM object.

- By it, the media type becomes transparent to the system.
- The object can be an whole image, image block, segmented region, shorts, frames, or a key frame.
- \checkmark A point is associated with the descriptor in the feature space.

Relevance feedback: supervised classification problem.

- Learning Speed: the number of iterations.
- Training Size: the number of samples, i.e. their population.
 - Class density, positive/negative samples, etc.
- Top-k returns: not a binary decision.
 - Binary classification (two-class) may not be optimal.
- Initial results are returned; returns/evaluation are iterated.
 - > The goal is to learn the discriminating **subspace**.

Variants of Relevance Feedback

Objectives:

- A user may look for a particular object or a similar one.

Feedbacks:

- A user may give back the positive feedback, negative, or both.
- The degree of relevance for each result may be returned.
- Partial likeness: it is like A in color, like B in shape, etc.
- Multiple Descriptors per Sample:
 - A mixed model can be used for refinement (intersection, union) to emphasize the local features.
- Class distribution:
 - Two or more target classes may be assumed.
 - Gaussian: two; Kernel-based: more for non-linearity.
- Data Organization:
 - A hierarchical tree structure may slow learning in real-time.
- Focus:
 - To learn a linear transformation, consider the correlations of feature components, estimate the class density, etc.

Fisher & Multiple Discriminant Analyses

- The consensus is to find the features to best <u>cluster</u> & <u>separate</u> the positive examples from the negative.
- Traditional approaches:
 - Two-class assumption (FDA): to find a lower dimensional space in which the ratio of between-class scatter over withinclass scatter is maximized.

$$\mathbf{W} = \arg_{\mathbf{W}} \max \frac{\left| \mathbf{W}^{\mathrm{T}} \mathbf{S}_{\mathbf{b}} \mathbf{W} \right|}{\left| \mathbf{W}^{\mathrm{T}} \mathbf{S}_{\mathbf{W}} \mathbf{W} \right|}.$$

$$\mathbf{S}_{\mathbf{b}} = (\mathbf{m}_{\mathbf{x}} - \mathbf{m})(\mathbf{m}_{\mathbf{x}} - \mathbf{m})^{T} + (\mathbf{m}_{\mathbf{y}} - \mathbf{m})(\mathbf{m}_{\mathbf{y}} - \mathbf{m})^{T}.$$

$$\mathbf{S}_{\mathbf{W}} = \sum_{i=1}^{N_{x}} (\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}})(\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}})^{T} + \sum_{i=1}^{N_{y}} (\mathbf{y}_{i} - \mathbf{m}_{\mathbf{y}})(\mathbf{y}_{i} - \mathbf{m}_{\mathbf{y}})^{T}.$$
Small intra

- Two-class assumption (MDA): $\mathbf{S}_{\mathbf{b}} = (\mathbf{m}_{\mathbf{x}} - \mathbf{m})(\mathbf{m}_{\mathbf{x}} - \mathbf{m})^{T} + \sum_{i=1}^{N_{y}} (\mathbf{y}_{i} - \mathbf{m})(\mathbf{y}_{i} - \mathbf{m})^{T}.$ $\mathbf{S}_{\mathbf{W}} = \sum_{i=1}^{N_{x}} (\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}})(\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}})^{T}.$

Biased Discriminant Analysis (BDA)

• (1+x)-class assumption:

- The user is only interested in one class, while there are an unknown number of other classes.
 - "All happy families are alike, each unhappy family is unhappy in its own fashion" - Leo Tolstoy's Anna Karenina.
 - All positive examples are alike in a way; each negative example is negative in its own way.

$$\mathbf{W} = \arg_{\mathbf{W}} \max \frac{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathbf{y}} \mathbf{W} \right|}{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathbf{x}} \mathbf{W} \right|}.$$
$$\mathbf{S}_{\mathbf{y}} = \sum_{i=1}^{N_{y}} (\mathbf{y}_{i} - \mathbf{m}_{\mathbf{x}}) (\mathbf{y}_{i} - \mathbf{m}_{\mathbf{x}})^{T}.$$
$$\mathbf{S}_{\mathbf{x}} = \sum_{i=1}^{N_{x}} (\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}}) (\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}})^{T}.$$

- Regularization and Discounting Factors:
 - Sample-based estimates may be severely biased for small number of training examples.

$$\mathbf{S}_{\mathbf{x}}^{r} = (1 - \mu)\mathbf{S}_{\mathbf{x}} + \frac{\mu}{n}tr[\mathbf{S}_{\mathbf{x}}]\mathbf{I}.$$

$$\mathbf{S}_{\mathbf{y}}^{d} = (1 - \gamma)\mathbf{S}_{\mathbf{y}} + \frac{\gamma}{n}tr[\mathbf{S}_{\mathbf{y}}]\mathbf{I}.$$

$$\mathbf{n} = \text{dim}(\text{original space}).$$

Kernel-based BDA (KBDA)

- For non-linearity in the data, a non-linear mapping $\Phi: \mathbf{x} \rightarrow \Phi(\mathbf{x})$ is used to restore linearity in the transform space.
 - The evaluation of kernel K = (k_{ij}) , where $k_{ij} = \Phi^{T}(\mathbf{x}_{i})\Phi(\mathbf{x}_{j})$.

$$\mathbf{W} = \arg_{\mathbf{W}} \max \frac{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathbf{y}}^{\Phi} \mathbf{W} \right|}{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathbf{x}}^{\Phi} \mathbf{W} \right|}.$$
$$\mathbf{S}_{\mathbf{y}}^{\Phi} = \sum_{i=1}^{N_{y}} (\Phi(\mathbf{y}_{i}) - \mathbf{m}_{\mathbf{x}}^{\Phi}) (\Phi(\mathbf{y}_{i}) - \mathbf{m}_{\mathbf{x}}^{\Phi})^{T}.$$
$$\mathbf{S}_{\mathbf{x}}^{\Phi} = \sum_{i=1}^{N_{x}} (\Phi(\mathbf{x}_{i}) - \mathbf{m}_{\mathbf{x}}^{\Phi}) (\Phi(\mathbf{x}_{i}) - \mathbf{m}_{\mathbf{x}}^{\Phi})^{T}.$$

 Let w is the eigenvector associated with the largest eigenvalue for W.

$$\mathbf{w} = \sum_{i=1}^{N_x} \alpha_i \Phi(\mathbf{x}_i) + \sum_{j=1}^{N_y} \alpha_{i+N_x} \Phi(\mathbf{y}_i) = \mathbf{\Phi} \alpha.$$

$$\mathbf{K}_{\mathbf{y}_i} = \mathbf{\Phi}^T \Phi(\mathbf{y}_i) = \left(\mathbf{K}_{\mathbf{y}}\right)_{:,j},$$

$$\mathbf{w}^T \mathbf{S}_{\mathbf{y}}^{\Phi} \mathbf{w} = \alpha^T \mathbf{\Phi}^T \left[\sum_{i=1}^{N_y} (\Phi(\mathbf{y}_i) - \mathbf{m}_{\mathbf{x}}^{\Phi}) (\Phi(\mathbf{y}_i) - \mathbf{m}_{\mathbf{x}}^{\Phi})^T\right] \Phi \alpha$$

$$\mathbf{K}_{\mathbf{mx}} = \mathbf{\Phi}^T \mathbf{m}_{\mathbf{x}}^{\Phi},$$

$$\mathbf{I}_{\mathbf{N}_{\mathbf{x}}} = \frac{1}{\mathbf{N}_{\mathbf{x}}} (\mathbf{1})_{\mathbf{N}_{\mathbf{x}} \times \mathbf{N}_{\mathbf{y}}}.$$

$$\mathbf{W}^T \mathbf{S}_{\mathbf{y}}^{\Phi} \mathbf{w} = \alpha^T \mathbf{\Phi}^T \left[\sum_{i=1}^{N_y} (\Phi(\mathbf{y}_i) - \mathbf{m}_{\mathbf{x}}^{\Phi}) (\Phi(\mathbf{y}_i) - \mathbf{m}_{\mathbf{x}}^{\Phi})^T\right] \alpha$$

$$= \alpha^T \left[\sum_{i=1}^{N_y} (\mathbf{K}_{\mathbf{y}_i} - \mathbf{K}_{\mathbf{mx}}) (\mathbf{K}_{\mathbf{y}_i} - \mathbf{K}_{\mathbf{mx}})^T\right] \alpha.$$

$$= \alpha^T \left[(\mathbf{K}_{\mathbf{y}} - \mathbf{K}_{\mathbf{x}} \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{y}}) (\mathbf{K}_{\mathbf{y}} - \mathbf{K}_{\mathbf{x}} \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{y}})^T\right] \alpha.$$
33

KBDA (cont'd)

$$\mathbf{w}^{T} \mathbf{S}_{\mathbf{x}}^{\Phi} \mathbf{w} = \mathbf{\alpha}^{T} \left[(\mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{x}} \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{x}}) (\mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{x}} \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{x}})^{T} \right] \mathbf{\alpha}$$

= $\mathbf{\alpha}^{T} \mathbf{K}_{\mathbf{x}} \left[(\mathbf{I} - \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{x}}) (\mathbf{I} - \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{x}})^{T} \right] \mathbf{K}_{\mathbf{x}}^{T} \mathbf{\alpha}$
= $\mathbf{\alpha}^{T} \mathbf{K}_{\mathbf{x}} (\mathbf{I} - \mathbf{I}_{\mathbf{N}_{\mathbf{x}}}^{\mathbf{x}})^{2} \mathbf{K}_{\mathbf{x}}^{T} \mathbf{\alpha}.$

Solve to get α : the eigenvector with the largest eigenvalue.
 Given a new pattern z, find its projection onto w by

$$\mathbf{w}^{T}\Phi(\mathbf{z}) = \sum_{i=1}^{N_{x}} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{z}) + \sum_{j=1}^{N_{y}} \alpha_{i+N_{x}} k(\mathbf{y}_{i}, \mathbf{z}).$$

- In this new space, the nearest neighbors of the positive centroid are returned in each iteration.
 - Combined with the subsequent feedbacks, the new nearest neighbors are output.

RBF-Kernel;

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-||\mathbf{x} - \mathbf{y}||^2 / (2 \sigma^2)\right),$$

Primal optimization problem:

 $\begin{array}{ll} \text{minimize} & \tau(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2 \\ \text{subject to} & y_i \cdot ((\mathbf{w} \cdot \mathbf{x}_i) + b) \ge 1, \quad i = 1, \dots, \ell. \end{array}$

Decision function:

Figure 5 Test results on synthetic training data: six different configurations of non-linearity. The circles are positive examples and the crosses negative. A simulated query process is used for training sample selection, i.e., the 20 nearest neighbors of a randomly selected positive point are used as training samples. The bar diagram shows the averaged hit rate in top 20 returns.