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ABSTRACT
Deep learning has achieved unprecedented accuracy for
monocular 3D human pose estimation. However, current
learning-based 3D human pose estimation still suffers from
poor generalization. Inspired by skeletal animation, which is
popular in game development and animation production, we
put forward an simple, intuitive yet effective interpolation-
based data augmentation approach to synthesize continuous
and diverse 3D human body sequences to enhance model gen-
eralization. The Transformer-based lifting network, trained
with the augmented data, utilizes the self-attention mech-
anism to perform 2D-to-3D lifting and successfully infer
high-quality predictions in the qualitative experiment. The
quantitative result of cross-dataset experiment demonstrates
that our resulting model achieves superior generalization
accuracy on the publicly available dataset.

Index Terms— Data augmentation, skeletal interpola-
tion, transformer, 3D human pose estimation

1. INTRODUCTION

Monocular human pose estimation [1] is the process of es-
timating joint position in a given image or video, which has
recently received increasing attention due to its wide appli-
cation in many areas, such as virtual reality and sports per-
formance analysis. Current learning-based 3D human pose
estimation models can be roughly divided into two types of
popular architectures: one-stage model and two-stage model.
One-stage models [2, 3] simply map perceived intensities to
3D pose representation, whose generalization ability suffers
from the limited variation of indoor training pairs. Two-
stage models [4, 5] estimate the 3D pose by first estimating
the 2D pose from image appearance and then lifting the 2D
pose by modeling the relationship between 3D skeletons and
their 2D projections. Abundant in-the-wild images with 2D
pose annotations can be utilized for easing the generaliza-
tion dilemma in the first stage, which makes the two-stage
approach increasingly popular. However, two-stage models
still face a tricky problem in the second stage: poor general-
ization. Training sequences from the existing indoor datasets
have limited variations, which lead to poor generalization
for in-the-wild data. Evolution-based data augmentation [6]
synthesized new-fashioned 3D human poses for developing

better generalization. However, the discrete generated data
cannot enable deep networks to leverage the temporal infor-
mation and thus brings slight improvement for generalization.

Based on the above observations, we propose a simple
yet effective data augmentation method, termed InterAug, for
3D human pose estimation by adopting skeletal interpolation.
This augmentation strategy explicitly synthesizes enriched
variations of body movement from existing 3D human skele-
tons, which import massive temporal information and greatly
enhance the data diversity for pose estimator to learn body
movement coherence and improve generalization capability
jointly. We use Transformer [7, 8] as a geometric lifting
function and demonstrate the feasibility and effectiveness of
self-attention mechanism in the task of 2D-to-3D pose lifting.

The main contributions of this paper are summarized as
follows: 1) We develop a 3D pose data augmentation method
based on the skeletal interpolation technique. This method is
able to synthesize abundant and reasonable 3D body move-
ment, which effectively expands the training domain and thus
enhance model generalization; 2) To our best knowledge, we
are the first to investigate the continuous pose augmentation
for training multi-frame 3D human pose estimation model; 3)
With the powerful regularization benefited from the proposed
augmentation approach, our model achieves superior general-
ization ability and outperforms most of the existing methods
in the cross-dataset experiment.

2. INTERAUG

This section illustrates how the InterAug works. Given a
training set consisting of P = {p1,p2,p3, . . . ,pn}, each 3D
pose pi ∈ R3Nj can be represented as the combination of
Nj joints, i.e. pi = {jni }

Nj

n=1, where Nj denotes the num-
ber of body joints and jni represents the n-th joint location
in 3D world space. We can further obtain bone vectors ~b by
referencing the skeleton hierarchy of human body. The rela-
tionship between jni and ~b

n

i is defined as

~b
n

i = child (jni )− parent (jni ) , (1)

where parent() and child() denote the parent and child of
the joint, and they are defined from the human joint tree.
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2.1. Local coordinate transformation

In order to manipulate human pose for convenience, we need
to convert bone vectors in world space to the local coordinate
system [9, 6]. The local bone vector ~β can be computed by
the following equation:

~βi = Ri
~bi, (2)

where Ri ∈ SO3 indicates the rotation transformation of local
coordinate system attached to the corresponding parent joint
of bone ~bi. It can be obtained by first computing the basis
vector around hip joint and neck joint. The local bone vector
~β ∈ R3×(Nj−1) can be represented as (rn, θn, φn)

Nj−1
n=1 after

being transformed into the spherical coordinates, where θ and
φ determine the bone orientation and r is the bone length.
This transformation allows more flexibility in the selection of
the different human subjects during the interpolation process
since the limitation caused by the skeleton size (rn)

Nj−1
n=1 can

be eliminated.

2.2. Skeletal interpolation

Since there is no need to consider the skeletal size of the hu-
man body, two poses are randomly selected from the training
set as our source pose and target pose. We can calculate the
corresponding local bone vector ~βs and ~βt with Equation 2,
where ~βs,

~βt ∈ R3×(Nj−1).
Interpolation processing. Spherical linear interpolation
(SLERP) is used to generate vector between ~βs and ~βt on
the unit sphere. Equation 3 and Figure 1 show how ~βitpl is
interpolated.

~βitpl(T ) =
sin [(1− T ) Ω]

sin Ω
~βs +

sin [TΩ]

sin Ω
~βt, (3)

where Ω is the angle between ~βs and ~βt, and T ∈ [0, 1] de-
notes the interpolation transition from the source orientation
to the target orientation.

After rotating the orientation of the bone, the next step
is to interpolate the position of the hip joint in world space
linearly. This is because the translation of root joint can drive
the whole body to translate. The linear interpolation process
is defined as:

jhipitpl(T ) = jhips +
(

jhipt − jhips

)
T, (4)

where jhips and jhipt denote the hip joint of source pose and
target pose.
Validation function. To avoid generating unreasonable 3D
human poses, such as those beyond the joint-angle limits, [9]
explored a wide range of human postures and construct statis-
tics of joint-angle limits. We utilize their statistics to vali-
date the generated pose. Here, the pose validation function

Time

Existing pose Synthetic pose

Fig. 1: Visualization of local bone vectors and interpolation
process. Existing poses are indicated by blue boxes and syn-
thesized poses are indicated by orange boxes. The upper and
lower limbs are marked with different colors, corresponding
to the same color vector in the local space.

V alid (·) is defined to check whether θ and φ are beyond the
valid range by applying Equation 5:

V alid
(
~βitpl

)
=

{
1,∀ (θn, φn)

Nj−1
n=1 ∈ [valid]

0,∃ (θn, φn)
Nj−1
n=1 /∈ [valid]

(5)

If the interpolated pose cannot satisfy the validation function,
the new target pose will be re-sampled from the training set.
Postprocessing. To further generate 2D-3D pose pairs for
training our pose estimator, we obtain 2D joint coordinate
from the corresponding 3D pose by using perspective projec-
tion, i.e.

x = Mp, (6)

where x denotes the 2D joint location in image plane and the
camera projection matrix M is provided by the dataset.
Implementation details. During the augmentation pro-
cess, we randomly sample a pose as our initial pose. Nkf

keyframes are further selected after the initial pose to form a
single training sequence. The time step between keyframes
Nts is set to 20. Nkf is set to 50. The skeleton size of the
initial pose is saved and applied to all the remaining poses.
After the augmentation process, the synthetic sequences will
be added to the original dataset to form a larger dataset. The
total number of synthetic poses is the same as the total num-
ber of poses in the original training set. Generating such an
amount of data takes about one hour on a regular PC.

3. LIFTING NETWORK

Our 2D-to-3D pose lifting network consists of two fully con-
nected layers and Nb Transformer encoders. The keypoint
matrix (x̄1, x̄2, . . . , x̄Nf

) ∈ RNf×2Nj , which is obtained
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by concatenating continuous Nf normalized 2D poses, is
mapped to input embedding X ∈ RNf×Nd by the first fully
connected layer. HereNf denotes the number of input frames
along the temporal dimension and Nd is the embedding di-
mension. Note that we do not apply the positional encoding
in Transformer, which is used in the standard Transformer
[7]. The input embedding X enters the Transformer encoder,
which consist of multi-head self attention (MSA) module,
layer normalization [10], and feed forward network (FFN).
The second fully connected layer, designed for dimension
reduction, outputs predicted 3D pose Y ∈ RNf×3(Nj−1). In
our experiment, we set the hyperparamaters of our model
architecture as: Nf = 5, Nd = 512, Nh = 2, Nb = 6. Nh

and Nb are the head number and block number respectively.

3.1. Transformer encoder

Multi-head self attention. The MSA module first maps in-
put embedding X identically to query Q ∈ RNf×Nd , key
K ∈ RNf×Nd and value V ∈ RNf×Nd . Then, Q, K and V are

divided into Nh heads, Qi,Ki,Vi ∈ RNf×
Nd
Nh , each of which

is subsequently linearly transformed by its following fully
connected layer. The embedding dimension Nd should be di-
visible by the number of head Nh. Assuming Q1,K1,V1 ∈
RNf×

Nd
Nh represent the query, key, and value in head 1, re-

spectively. The operation in head 1 is defined as:

Y1 = Softmax

(
Q1 ·KT

1√
Nd

)
V1 (7)

where Y1 ∈ RNf×
Nd
Nh denotes the output of head 1. For other

heads, the same procedure are performed equally as Equa-
tion 7. All the output of different heads are concatenated, and
further linearly transformed, as the output of the MSA mod-
ule.
Feed forward network. FFN consists of two fully connected
layers withGelu [11] activation function. The simple process
is defined as

FFN(x) = FC2 (Gelu (FC1 (x))) (8)

where FCi(x) are linear transformations of the form Wi ·x+
bi.
Overall process. Eventually, we can express the whole en-
coding process as follows:

XA = LN(MSA(X) + X)

Encoder(X) = LN(FFN(XA) + XA)
(9)

where LN indicates the layer normalization.

3.2. Loss function

We train our model by minimizing the L2 distance between
all the output branches and their corresponding ground truths

Table 1: The comparison between our method and other
existing methods on cross-dataset evaluation in terms of
MPJPE, PCK, and AUC. † indicates less joints are included.
* indicates equal experimental setup.

Method MPJPE PCK AUC
Wang et al. (ICCVw’19) [12] – 71.2 33.8
Habibie et al. (CVPR’19) [13] 127.0 69.6 35.5
Yang et al. (CVPR’18) [14] – 69.0 32.0
Zeng et al. (ECCV’20) [15] – 77.6 43.8
Kanazawa et al. (CVPR’18) [16] 113.2 77.1 40.7
Chen et al. (CVPR’19) [17] – 61.4 29.4
Gong et al. (CVPR’21) [18] † 73.0 88.6 57.3
Ours (with InterAug) * 93.4 81.6 48.2
Li et al. (CVPR’20) [6] * 99.7 81.2 46.1
Ours (without InterAug) * 102.6 79.2 44.4
Ours (with InterAug) * 93.4 81.6 48.2

to enforce the model to learn not only the joint positions, but
also the skeleton size consistency and movement coherence.
The loss function L is defined by:

L =

Nf∑
i=0

αi

∥∥Yi − Pi
GT

∥∥
2
, (10)

where PGT denotes the ground truth and αi is a hyperpa-
rameter. For the prediction at the middle of receptive field
and other output poses, αi equals 1 and 0.01, respectively.
AdamW optimizer is used with linear warm-up and cosine
scheduler. We set the learning rate to 8e − 5 and training
epoch to 40.

4. EXPERIMENTS

Our experiments aim to answer the following questions, i.e.
1) Does InterAug really help us to boost the generalization?
2) Can our model improve the estimation performance under
the cross-dataset setup? 3) What is the best hyperparameter
of model architecture? 4) Does the Transformer architecture
really help us to boost the accuracy?

4.1. Cross-dataset experiment

We execute the cross-dataset experiment to quantitatively val-
idate generalization capability. During the optimization pro-
cess, we adopt the pose data of S1, S5, S6, S7, S8 of Hu-
man3.6m (H36M) [19] dataset for model training. The MPI-
INF-3DHP (3DHP) [20] dataset is used for evaluation. Note
that 3DHP is a more challenging 3D pose dataset compared
to H36M and we do not use 3DHP’s training set to train our
model but directly use its test set to demonstrate the model
generalization. The mean per-joint position error (MPJPE),
Percentage of Correct Keypoints (PCK) under 150mm radius
and Area Under the Curve (AUC) are employed in the cross-
dataset evaluation.
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Fig. 2: Qualitative evaluation on in-the-wild dataset compar-
ing with [18]. Please zoom in for better observation.

Quantitative experiment. Experimental result as shown in
Table 1 shows that our method provides second-best gener-
alization performance with 93.4mm MPJPE and 81.6% PCK
and 48.2% AUC. We surpass all of the existing methods
except [18]. However, the current state-of-the-art method,
PoseAug [18] deletes the nose joint to bridge datasets’ gap
since H36M has the nose joint while 3DHP doesn’t. So our
method has more numerical errors than [18] caused by the
joint definition. Under the same experimental setup, our
method outperforms the previous SOTA result [6] by 6.3%
MPJPE, 0.2% PCK and 2.1% AUC.
Qualitative experiment. The U3DPW [6] dataset, which
contains three hundred high-quality in-the-wild images, is
used for the qualitative evaluation purpose. The first and
second visualization comparison in Figure 2 shows that both
our method and SOTA [18] provide reasonable results and
demonstrate superior generalization capability to the unseen
poses. However, It is worth noting that our method infers
more realistic estimation than [18] from the last case, high-
lighting our approach’s effectiveness and robustness.

4.2. Ablation study

Ablation study on model architecture. The number of
blocks Nb, heads Nh, embedding dimension Nd and re-
ceptive field Nf are explored in the Table 2. We performs
controlled experiments on the different hyperparameters in
turn. For example, we change the dimensionality of the hid-
den layer and fix the rest of the parameters to determine the
best dimension based on the quantitative results.
Ablation study on model type. This ablation study explores
the different model performance for 2D-to-3D lifting. Exist-
ing baseline networks, e.g. multi-layer perceptron (MLP) and
temporal convolution network (TCN), are explored in Table 3
with regards to the inference time, intra-scenario and extra-
scenario performances. All of the models are trained with the
same augmented data for a fair comparison.

Experiment results indicate TCN, which obtains the best

Table 2: Ablation study on the dimensionality of hidden
layers, multi-attention heads, encoder blocks, and receptive
fields in Transformer. Inputs are ground truth 2D keypoints
provided by dataset Human3.6m, without adding position en-
coding.

Dim. Nd Head Nb Block Nb Frames Nf MPJPE PCK AUC
256 2 6 5 94.9 81.6 46.6
512 2 6 5 93.4 81.6 48.2
768 2 6 5 95.8 81.3 46.7
512 2 6 5 93.4 81.6 48.2
512 4 6 5 97.2 80.8 46.1
512 8 6 5 94.3 81.8 47.4
512 2 2 5 99.9 78.9 45.2
512 2 4 5 96.5 80.3 46.3
512 2 6 5 93.4 81.6 48.2
512 2 6 3 95.6 80.8 46.6
512 2 6 5 93.4 81.6 48.2
512 2 6 9 97.3 81.1 45.9

Table 3: Model comparison on H36M and 3DHP using the
same augmented data. BS means batch size.

- H36M 3DHP
Method CPU(BS=1) MPJPE MPJPE PCK AUC

MLP(frame=5) [21] 5.31ms 45.6 102.2 78.7 42.7
TCN(frame=243) [22] 18.35ms 33.9 148.2 59.8 30.4

Ours(frame=5) 7.13ms 37.0 93.4 81.6 48.2

performance under intra-dataset setup but performs bad on
unseen domain, tends to overfit on training domain. Another
problem of TCN is that it requires a high computational cost
and thus brings more computing time (18.35ms). Instead of
overfitting to the training domain, Transformer generalizes
best with competitive computation time. Furthermore, Al-
though MLP performs the fastest inference, its prediction ac-
curacy is much worse than others.

5. CONCLUSION

In this paper, we present skeletal interpolation as a novel data
augmentation approach for 3D human pose estimation. This
augmentation strategy allows to synthesize rich and contin-
uous body movements, which greatly increases variations of
human pose data and effectively alleviates projection ambigu-
ity by considering the temporal continuity of body movement.
Extensive experimental results show that Transformer-based
model trained with augmented poses provides superior gener-
alization capability on cross-dataset evaluation.
Limitation Although the proposed method is simple yet
effective, there still remain some improvable points. The
SLERP algorithm has the limitation regarding the ability to
generate realistic poses and go beyond the pose domain given
by the training set. Complex augmentation methods such
as introducing nonlinear curves in body movement or using
GAN-based techniques to cross the training domain boundary
deserve further study. Moreover, developing the Transformer
architecture for lifting process is also worth trying. These
possible solutions will remain our future work.
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