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Abstract

Current state-of-the-art deep learning based face recognition
(FR) models require a large number of face identities for cen-
tral training. However, due to the growing privacy aware-
ness, it is prohibited to access the face images on user de-
vices to continually improve face recognition models. Fed-
erated Learning (FL) is a technique to address the privacy
issue, which can collaboratively optimize the model with-
out sharing the data between clients. In this work, we pro-
pose a FL based framework called FedFR to improve the
generic face representation in a privacy-aware manner. Be-
sides, the framework jointly optimizes personalized models
for the corresponding clients via the proposed Decoupled
Feature Customization module. The client-specific personal-
ized model can serve the need of optimized face recognition
experience for registered identities at the local device. To the
best of our knowledge, we are the first to explore the person-
alized face recognition in FL setup. The proposed framework
is validated to be superior to previous approaches on several
generic and personalized face recognition benchmarks with
diverse FL scenarios. The source codes and our proposed
personalized FR benchmark under FL setup are available at
https://github.com/jackie840129/FedFR.

Introduction
Face recognition has been an active and vital topic among
computer vision community for a long time. The state-of-
the-art training frameworks formulate face recognition as a
metric learning problem, and employ the large-scale identity
classification as the proxy task to learn face features, which
could discriminate between different identities robustly. Re-
cently, the quick evolution of softmax-based loss functions
for identity classification greatly promote the performance
of face recognition. However, the training of face recogni-
tion model heavily relies on centralizing a huge amount of
personal face images, which are usually not accessible due
to the uprising privacy concern in many countries. There-
fore, it is necessary to navigate the development of face
recognition under the premise of privacy preservation.

Federated learning (FL) provides a distributed and
privacy-aware framework to train models where multiple
clients collaboratively learn without sharing their data with
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Figure 1: The Federated Learning (FL) setup for face recog-
nition. Given a pre-trained face recognition model, we aim
to simultaneously improve the generic face representation at
the server, and produce an optimal personalized model for
each client without transmitting private identities’ images or
features out of the local devices.

the central server or other clients. A classical FL method
called FedAvg (McMahan et al. 2017) aggregates and aver-
ages the gradients from local clients on the server, and trans-
mit the updated model back to the clients for the next round
of local optimization. In the past few years, there has been
significant progress in FL (Kairouz et al. 2019) on image
classification task, which boosts the performance of aggre-
gated global model under diverse FL scenarios. However,
these approaches cannot be directly applied onto face recog-
nition due to several critical reasons: 1) Face recognition is
an open-set classification task, where training and testing
identity classes are different. 2) The identity classes between
local clients are different, which results in different model
architectures in clients. 3) In a more practical setup for face
recognition (Aggarwal, Zhou, and Jain 2021), the FL train-
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ing starts from a publicly available face recognition model,
rather than from scratch as in traditional FL.

In order to address these aforementioned issues, a re-
cent work FedFace (Aggarwal, Zhou, and Jain 2021) pro-
posed an FL framework for face recognition model training
in a privacy-aware manner. It tackles the challenging setup
where each of the participating clients has face images of
only one identity. It employs a mean feature initialization
method for the local identity proxy and a spreadout regu-
larizer (Yu et al. 2020) at the server side to ensure that the
identity proxies from the local clients are well separated.
However, FedFace is limited as it only addressed a single
scenario. In the real-world face recognition applications, lo-
cal edge devices could be registered by multiple identities.
Moreover, there exists a serious privacy concern in FedFace
as it requires the local device to transmit the identity proxy
to the server, which could violates the FL protocol (Duong
et al. 2020). A concurrent work (Meng et al. 2022) tries to
mitigate this privacy concern through the Differential Pri-
vacy approach.

To enable federated learning in more realistic face recog-
nition settings, we propose a novel framework called
FedFR, which could jointly improve generic and person-
alized face representations without breaking the privacy on
clients. First, we leverage the globally shared dataset to reg-
ularize the training on local clients, as the local client only
has much less identities than the pre-trained dataset. With
the additional transmission of the shared class embedding
matrix, it can effectively prevent the local model from over-
fitting and also improve the generic representation at the
server. Secondly, in order to reduce the computation over-
head and improve the training efficiency, a novel hard neg-
ative sampling strategy is proposed to select the most criti-
cal data samples from the globally shared dataset. In addi-
tion, a contrastive loss applied on the local face represen-
tation during training could further restrict the local model
drifting. Last but not least, we are interested in simultane-
ously optimizing the user experience on local clients, which
is not explored in previous works. Although personalized
FL (Kulkarni, Kulkarni, and Pant 2020) has been studied for
a while, those methods are sub-optimal on the face recog-
nition task. We propose a Decoupled Feature Customization
(DFC) module, which consists of a feature transformation
layer and one-vs-all binary classifiers. The module locally
learns a customized feature space which is optimized for
recognizing the registered identities at each client.

We validate FedFR on IJB-C (Maze et al. 2018) dataset
for the generic recognition model performance under differ-
ent FL scenarios. We also build the personalized face recog-
nition evaluation protocol with MS-Celeb-1M (Guo et al.
2016) dataset to validate the effectiveness of the proposed
DFC module. Each technique in FedFR could substantially
improve both generic and personalized face representations.
Our main contributions are summarized as follows:
• We propose a novel joint optimization federated learning

framework FedFR, which can effectively improve both
generic and personalized face recognition models under
different scenarios while strictly following the privacy
constraints.

• Several training techniques (hard negative sampling, con-
trastive regularization) are proposed and tailored for the
face recognition task, and these techniques can better
bridge the gap between global and local representations.

• We propose the Decoupled Feature Customization (DFC)
module, which is the key component to enable concurrent
optimization of the personalized face recognition model.
The proposed binary classification objectives are also ef-
fective for optimizing the performance on each client.

• Experimental results show that our proposed solution can
consistently outperform previous approaches in several
challeging generic and personalized FL benchmarks.

Related Work
Face Recognition. Recently, great progress has been
achieved in face recognition with large-scale training
data (Cao et al. 2018; Guo et al. 2016; Zhu et al. 2021), so-
phisticated network structures (Schroff, Kalenichenko, and
Philbin 2015; He et al. 2016) and advanced designs for
softmax-based loss functions (Wang et al. 2018; Deng et al.
2019; Sun et al. 2020). However, these state-of-the-art meth-
ods are not directly applicable to the federated learning set-
ting since they assume centralized data is available on a
server. Without the access to private face images from lo-
cal clients, the feature learning is prohibited as the model
cannot compare features between different identities. In ad-
dition, how to leverage additional identities to improve the
feature incrementally based on a pre-trained face recogni-
tion model was never discussed in previous works, as they
always assumed to train the model from scratch. In our fed-
erated setup, we aim to improve a publicly available pre-
trained face recognition model at the server from multiple
clients in a collaborative manner, while keeping the private
face images and identity features at the local clients.
Federated Learning. Federated Learning (FL) (Li et al.
2019a; Kairouz et al. 2019; Wang et al. 2021) is a learn-
ing setup in machine learning which aims to learn a model
over multiple disjoint clients while maintaining local data
privacy. The most well-known and commonly used FL al-
gorithm is FedAvg (McMahan et al. 2017), which learns
a global model by averaging weight parameters across lo-
cal models trained on private client datasets. Many recent
works proposed to improve FedAvg from different per-
spectives: model convergence (Haddadpour and Mahdavi
2019; Khaled, Mishchenko, and Richtárik 2020), robust-
ness (Bonawitz et al. 2019), communication (Konečnỳ et al.
2016), and non-IID clients (Li et al. 2019b; Li, He, and
Song 2021). Most of the previous computer vision related
FL works only studied image classification tasks with small-
scale datasets (e.g. MNIST, CIFAR-10). To the best of our
knowledge, FedFace (Aggarwal, Zhou, and Jain 2021) is the
only one which addressed the face recognition model train-
ing in the federated setup. To enhance the pre-trained FR
model, it applies the spreadout regularizer (Yu et al. 2020)
at the server side to ensure the identity proxies from clients
are well separated. Our work differs in that we do not trans-
mit identity prototypes as it could leak the private identity
info from clients. Moreover, our work is scalable to different
scenarios where each client contains more than one identity.
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Personalized Federated Learning. Personalized
FL (Kulkarni, Kulkarni, and Pant 2020) aims to learn
a customized model to meet each client’s objective. Instead
of training a single “general” model which is optimized
for generic metric, this FL setup seeks to acknowledge
the data heterogeneity among clients by constructing a
“personalized” model which fits each client’s need. Many
recent techniques (Liang et al. 2020; Li et al. 2021b; Chen
and Chao 2021) proposed to leverage multi-task learning
(MTL) (Zhang and Yang 2017) methods to incorporate
clients’ task objectives into the FL framework. Another
stream of approaches (Chen et al. 2018; Fallah, Mokhtari,
and Ozdaglar 2020) employed meta-learning to learn a
decent initial model that can be adapted to each client
after some steps of local fine-tuning. Besides, (Yu, Bag-
dasaryan, and Shmatikov 2020) showed that conducting
post-processing (e.g. fine-tuning) onto a generic FL model
could achieve comparable results with other personalized
methods. However, the latter two streams of approaches
would require an additional stage for local adaptation. Our
framework employs the MTL based approach which can
optimize general and customized face recognition models
simultaneously.

Proposed Method
In this work, we build a novel FL framework for the face
recognition (FR) task. In the following, we will first estab-
lish the proposed FL setup for joint generic and personalized
face recognition. Next, we introduce some preliminaries of
our framework, which are some basic techniques popularly
employed in FR and FL respectively. Then, we will describe
technical details of the proposed FedFR solution.

Problem Setup

Face recognition systems are widely applied on local user
devices. Typically, the deployed model is trained on a pub-
lic dataset in advanced on a server. To continuously improve
the generic face representation, the intuitive way is to col-
lect the images stored in local devices (clients) and update
the model trained with augmented data. However, as men-
tioned previously, due to privacy issues, it is prohibited to
upload any identity-related information, such as the face im-
ages and its features. Federated learning (FL) provides a
framework to train models where multiple clients collabora-
tively learn without sharing their data with the server or with
other clients. Different from typical FL setting that learns the
model from scratch, in face recognition, we target on how to
enhance the generic representation of pre-trained model
by leveraging the data on clients under the privacy con-
straint. Besides, we also focus on the optimized user expe-
rience. Although an improved generic model can implicitly
achieve it, a client-specific personalized model optimized by
local objectives could achieve optimal performance on the
device. Thus, we jointly consider the situation that whether
we can obtain a personalized face model which is dedi-
cated to recognize the registered identities on each client.
To the best of our knowledge, we are the first to explore the
personalized FL setup in face recognition.

Preliminaries
Face Recognition. FR is an open-set problem, where the
classes (identities) in training and testing are different. In the
training phase, current FR methods are typically based on an
identity classification objective, where the model embeds an
input image into a high-dimensional representation and gen-
erates the class logits by computing the similarity between
the input feature and all class embeddings (proxies). Then a
softmax cross-entropy loss will be adopted to supervise the
model. In our setting, the pre-trained generic face model is
trained with the commonly used Cosface loss (Wang et al.
2018), which adopts an additive margin softmax. Formally,
given the face embedding model Θ and an input image x
with y-th class, we can obtain its deep feature f = Θ(x) ∈
Rd. There is also a class embedding matrix Φ ∈ Rd×K ,
where K is the total number of classes and the j-th column
Φj means the learned proxy of j-th class. Following Cosface
loss, the original j-th logit (Φj · f + b) will be simplified by
ignoring the bias b and normalizing the ‖f‖ and ‖Φj‖ to 1,
which is just the cosine similarity cos θj . Last, the additive
margin softmax cross-entropy loss for x will be computed
as follows:

Lcos = − log
es(cos θy−m)

es(cos θy−m) +
∑K
j 6=y e

s cos θj
, (1)

where s andm are the scaling constant and the additive mar-
gin, respectively. During the testing stage, the learned face
embedding model Θ will embed the query face image into
a d-dim face feature, and the system would compare the co-
sine distance between the query feature and pre-registered
features for identity authentication.

Federated Learning. In our FL setup, we consider C lo-
cal client nodes and one central server with the face recog-
nition model Θ0

g pre-trained on a publicly available large
dataset Dg , which has Ng images from Kg identities. Each
local client i is initialized with Θ0

l(i) = Θ0
g and regis-

tered with Nl(i) images from Kl(i) identities, which is much
smaller than the public one. Our objective is to simultane-
ously improve the model Θg for generic face representation
and optimize each Θl(i) for personalized client customiza-
tion under the privacy constraints. We adopt the most com-
monly used FL algorithm, FedAvg (McMahan et al. 2017),
as our baseline method. Due to the mutual exclusive classes
between local clients, we follow previous FL works (Zhuang
et al. 2020; Li et al. 2021a) that only send the backbone
model Θ to the server, and keep the class embedding ma-
trix on clients. The steps for collaborative training by server
and clients are as follows:

1. In the t-th communication round, the server sends the
global model Θt

g to all client nodes.

2. The i-th client updates the model Θt
l(i) at round t based

on Nl(i) local data and local learned class embedding
Wl(i) with Cosface loss Lcos, which is a Kl(i)-class clas-
sification problem.

3. The local clients only send the backbone model Θt
l(i) to

the server. The server will update the global model by
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Figure 2: FedFR. We demonstrate the overall architecture of our method. For model on each client i, it will be optimized with
balanced Cosface loss, a contrastive regularization and the binary cross entroy in our Decoupled Feature Customization branch.
After training, the backbone model Θl(i) and global class embedding Φl(i) will be uploaded for FedAvg.

taking a weighted average of them as follows:

Θt+1
g =

1

N

∑
i∈[C]

Nl(i) ·Θt
l(i), (2)

where N is the total number of training images across all
client nodes.

4. Last, the updated global model will then be transmitted to
each client and steps 2−4 are repeated until convergence.

FedAvg can perform well on clients with IID-distributed
data. However, for our face recognition setup, the identity
distributions on each client are different. Just optimizing
on local data with limited number of identities to obtain
Θt
l(i) could harm the original performance of the pre-trained

model (as shown in the experimental results). Furthermore,
although Θt

l(i) can improve the personalized representation
for these Kl(i) identities, it will be continuously updated by
the global model along the communication rounds, which
cannot achieve optimal performance for the local users.

FedFR: Joint Optimization Federated Framework
To tackle the issues in FedAvg, we propose a joint optimiza-
tion framework FedFR, which can effectively improve the
generic face representation at the server with the use of glob-
ally shared data, and also optimize the personalized recog-
nition performance simultaneously at local clients. We first
provide an overview of FedFR, and the system architecture
is also illustrated in Figure 2. Built upon the baseline FL
pipeline, we introduce several novel techniques: 1) We em-
ploy the globally shared dataset Dg to better regularize the
local model training, which could prevent the model from
over-fitting on local identities. 2) The Hard Negative Sam-
pling strategy is introduced to select the most critical data
from Dg to significantly reduce the computation on local
clients. 3) The Contrastive Regularization is employed to

control the drift of model parameters and better bridge the
gap between global and local representations. 4) To simul-
taneously optimize face representation for local clients, we
propose the Decoupled Feature Customization module to
transform the global representation for better fitting the local
distributions. The corresponding margin-based binary clas-
sification loss LBCE establishes a better local objective to
supervise the learning of the decoupled branch. We elabo-
rate each technique in details as follows.

Leveraging Globally Shared Data. Some previous FL
works on image classification (Zhao et al. 2018; Lin et al.
2020) has shown that leveraging globally shared dataset can
better address the issue of heterogeneous clients. In the face
recognition FL setup, the global dataset Dg which was used
for pre-training the server model can be naturally shared to
all the local clients. We could further regularize the training
of local clients by providing the class embedding matrix Φg
of the shared Kg identities. As shown in Figure 2, given the
shared dataset Dg on client i, the local client could build
a more “balanced objective” by concatenating Φtl(i) = Φtg
with the local private embedding matrix Wl(i) as a new
learnable proxies and learn to classify Kg + Kl(i) identi-
ties with Lcos. Thus, our balanced Cosface loss would be
formulated as:

Lcos = − log
es(cos θy−m)

es(cos θy−m) +
∑Kg+Kl(i)

j 6=y es cos θj
, (3)

where the denominator is added with additional Kg nega-
tive terms. For the end of each round t, beside sending the
backbone Θt

l(i) back to server, the learned class embeddings
Φtl(i) related to Kg global identities can also be sent back
and updated by:

Φt+1
g =

1

N

∑
i∈[C]

Nl(i) · Φtl(i). (4)
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Hard Negative Sampling Strategy. Jointly training with
Dg can prevent model from over-fitting on local data. How-
ever, the large number of public data will also increase the
computation burden on local clients, which will enlarge the
training time and degrade the communication efficiency be-
tween server and clients. To obtain a better trade-off, we pro-
pose a hard negative (HN) sampling strategy to only choose
a subset DHN from Dg , which is critical for learning with
Dl(i). The proposed technique is described as follows.

At the start of each communication round t on local client
i, we first forward the global and local data to Θt

g to gener-
ate their features. Then we can calculate the pair-wise cosine
similarity between them. To make the training more efficient
but at the same time maintain the performance, we only sam-
ple the “hard” global data for model learning, which is with
similarity larger than threshold tHN to any of the local data.
Intuitively, with larger tHN , the less global data will be used
for training. We decide the threshold by leveraging the in-
herent feature space of the pre-trained model. As mentioned
above, the pre-trained model is trained with Cosface loss,
where the similarity of each sample to its proxy should be
larger than those to others by a margin m. Thus, if any neg-
ative pair with similarity larger than tHN = m, they should
be served as a hard negative pair.

Contrastive Regularization on Local Clients. Inspired
by the related work (Li, He, and Song 2021), which pro-
posed a model-contrastive loss on the local training to pre-
vent local model from deviating too much from the global
model, we also apply the similar regularization on our face
recognition task. Namely, we aim to decrease the distance
between the face representation learned by the local model
at time t (f = Θt

l(i)(x)) and the one learned by the global
model (fglob = Θt

g(x)), and increase the distance between
the face representation learned by the local model at time t
(f = Θt

l(i)(x)) and time t − 1 (fprev = Θt−1
l(i) ). Thus, the

local contrastive loss term Lcon is defined as

Lcon = − log
exp(sim(f, fglob)/τ)

exp(sim(f, fglob)/τ) + exp(sim(f, fprev)/τ)
,

(5)
where “sim(·, ·)” measures the cosine similarity between
face features, and τ denotes a temperature hyperparameter.

Decoupled Feature Customization. With the con-
trastive regularization, the local model can avoid over-
parameterizing for the local objective and continuously
improve the generic face representation. However, it will go
against the goal which we aim to simultaneously obtain a
personalized model to improve the local user experience.
Thus, as shown in Figure 2, we propose a novel Decoupled
Feature Customization (DFC) module to resolve this seemly
contradicting scenario. In order not to influence the feature
f for generic representation, inspired by (Wang et al. 2020),
we adopt a transformation Π(f) with a fully-connected
layer to map it to a client-specific feature space, which can
recognize the Kl(i) identities well. To achieve this goal,
there should be a local objective for optimization. Inspired
by (Wen et al. 2021), we propose to adopt the binary
classification on each local identity for the personalized

purpose. Given the transformed feature f ′ = Π(f), we will
feed it into Kl(i) binary classification branches (which the
total trainable weight vectors are denoted as Ωl(i)). The k-th
module contains learnable parameters which only target on
classifying the positive samples from the k-th class and the
negative samples from “any other” classes. Formally, we
follow the loss in the related work that used margin-based
binary cross-entropy (LBCE) to supervise our personalized
branch:

LBCE =
λ

s′
· log

(
1 + exp

(
− s′ · (g(cos θk)−m′)− b

))
+

1− λ
s′
·
∑
j 6=k

log

(
1 + exp

(
s′ · (g(cos θj) +m′) + b

))
,

(6)
where cos θj is the cosine similarity of transformed input
feature f ′ and the j-th weight vector Ωl(i),j in the binary
classification, b is the learned bias, and the function g(z) =

2((z+ 1)t
′
/2)−1 is used to increase the empirical dynamic

range of cosine similarity. The notations λ, s′ and m′ all fol-
low those in the related work, which are the balanced factor,
scaling constant and cosine margin.

It is worth mentioning that although there are only Kl(i)

binary classification branches, not only the local data but the
global data can be used to optimize our DFC module be-
cause each branch only needs to recognize “whether it is the
k-th identity or not”. This objective just well-fits our per-
sonalized goal that given an unseen query image, a well-
performed local face recognition system should quickly de-
termine whether it is the registered identity or not.

Learning Pipeline Our overall learning framework is
based on FedAvg, where there will be T communication
rounds and in each round, the local clients will update the
model for E epochs. In the local client training, the model
will be optimized in an end-to-end manner with the total ob-
jective Ltotal, which is formulated as:

Ltotal = α1Lcos + α2Lcon + α3LBCE , (7)
where all the modules Θt

l(i),Φ
t
l(i),W

t
l(i),Π

t
l(i),Ω

t
l(i) and

bias b would be updated. However, only the Θt
l(i) and Φtl(i)

will be sent back for globally averaged with Equation 2
and 4. In the testing phase, Θg is used for generic evalua-
tion and [Θl(i),Πl(i)] is used for personalized evaluation.

Experiments
Experimental Setup
Dataset We use the MS-Celeb-1M (Guo et al. 2016) as
the training dataset. To avoid the long-tail distribution, we
manually select 10k identities from the dataset where each
identity contains 100 face images. Within the selected sub-
set, 6000 identities (Kg) are used for pre-training the global
model, and the other 4000 identities are equally distributed
into local clients. For each identity in each local client, we
use 60 images for local training, and 40 images for person-
alized model evaluation, respectively. Besides MS-Celeb-
1M, IJB-C (Maze et al. 2018) dataset which contains 3531
identities with diverse appearance is used for evaluating the
generic model performance. The selected list for FL training
will be released for fair comparison in the future.
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Setup
Modules Generic Evaluation (IJB-C) Personalized Evaluation

HN. sampled
Global data Contrastive DFC.

Branch
1:1 TAR @ FAR 1:N TPIR @ FPIR 1:1 TAR @ FAR 1:N TPIR @ FPIR
1e-5 1e-4 1e-2 1e-1 1e-6 1e-5 1e-5 1e-4

Centrally trained on 6k IDs (pre-training) 76.42 84.58 72.06 80.30 56.28 72.50 71.73 82.33

Federated
Learning
on 4k IDs

7 7 7 73.79 83.71 67.59 78.53 67.33 85.70 82.77 92.27
3 7 7 76.79 84.64 72.76 80.76 81.75 91.91 91.97 96.09
3 3 7 77.41 85.17 73.60 81.25 77.77 89.57 89.58 94.60
3 3 3 77.60 85.21 73.60 81.27 88.32 95.46 95.17 97.94

Centrally trained on 10k IDs 77.56 85.99 73.30 82.14 93.72 97.39 98.58 99.40

Table 1: Ablation Studies. We conduct FL experiments with 40 clients; each client contains 100 identities. (results are in %)

Evaluation Metrics For the generic model evaluation, we
strictly follow the IJB-C evaluation protocol, which is com-
monly used in the face recognition community. We report
the true acceptance rates (TAR) at different false acceptance
rates (FAR) for 1:1 verification protocol, and true positive
identification rates (TPIR) at different false positive identifi-
cation rates (FPIR) for 1:N identification protocol.

Regarding the personalized model evaluation, we care-
fully build up the metrics and protocols as we are the first
to investigate the personalized face recognition setup. The
evaluation is supposed to only focus on the face recogni-
tion user experience of the registered identities on each lo-
cal client. Therefore, we establish two evaluation protocols
to better measure the client-specific performance: 1) Firstly,
similar to the 1:1 verification protocol in IJB-C, we establish
a list of positive pairs and negative pairs for evaluation. In
each client, we formulate genuine matches from local iden-
tities and build up imposter matches by pairing one local
identity with a random identity from other clients. For the
40 local clients scenario where each client is registered with
100 identities, there are 7.8k positive pairs and about 630
million negative pairs in one client. We average the true ac-
ceptance rates (TAR) across all clients as the final personal-
ized verification performance. 2) Secondly, we build up an
1:N identification protocol to estimate the login experience
on a local client (device). Intuitively, the registered images
from one local identity are combined to form its gallery fea-
ture. And the testing images from all clients are taken as the
probe features. For the 40 local clients scenario, there are
100 gallery features and 160k probe features in one client.
Similarly, we average the true positive identification rates
(TPIR) across all clients as the final personalized identifica-
tion performance.
Implementation Details For the backbone face model, we
adopt the same 64-layer CNN architecture from (Liu et al.
2017; Wang et al. 2018), which outputs a 512-dimensional
feature vector. The image preprocessing techniques are the
same as (Deng et al. 2019), where the image is cropped to
size 112× 112 and the pixel value is normalized to [−1, 1].
To simplify our network training, all hyper-parameters in
Lcos,Lcon andLBCE are empirically set as the same ones in
the related work, where m=m′=0.4, s=s′=30, τ=0.5, λ=0.7
and t′=3. For Ltotal, the α1, α2 and α3 are empirically set
as 1, 5 and 10. We adopt SGD optimizer with weight de-
cay 5 × 10−4 and learning rate 0.001. For the FL setup, we
conduct T=30 communication rounds and in each round the

local clients conduct E=4 epochs.

Ablation Studies

Effectiveness of each modules To validate the effective-
ness of each proposed module, we report the ablation studies
in Table. ??. The experiments are conducted with one cen-
tral server and 40 clients, where each client contains 100
identities. The performance is evaluated both on the generic
and personalized benchmark. If it is under the FL setup, the
global model Θg will be used to test on the generic evalua-
tion and each local model Θl(i) will be tested on personal-
ized data, where the shown scores are the average over all
clients. Notes that for the 1:N identification in personalized
evaluation, we average the feature of training images based
on their identities as the gallery features in that client.

The first row is the performance of pre-trained model
trained on public data with 6k classes, which is the target
model that needs to be improved. Start from 2nd to 5th row,
the FL setup is employed where 4k augmented IDs are added
but with privacy constraints. And for the last row, it is the
ideal situation that we can centrally optimize the model with
data of 10k IDs. We can see that in the second row, our base-
line method which directly optimizes the model with local
data and perform FedAvg on the server cannot perform well.
The performance is even worse than the pre-trained one ow-
ing to the over-fitting on local data. Leveraging the public
data is a solution, but it may suffer from long training time
and large computation overhead. With our proposed Hard
Negative sampling strategy where only a subset of global
data serving as negative pairs to the local data, in the 3rd

row, not only the generic representation but also the person-
alized evaluation can be boosted. Contrastive regularization
is designed for regularizing the local model from training to-
wards the undesired local minimum. We can see that in the
4th row, the performance improves greatly on generic evalu-
ation. However, under the same feature space parameterized
by Θ, a more generalized representation will harm the per-
formance for recognizing specific identities on clients. Thus,
in the 5th row, which is our final proposed FedFR architec-
ture with the DFC branch, we decouple the feature from the
original feature space to a new one with a transformation
Πl(i) , and optimize this space with binary cross-entropy
loss tailored for the personalization. We can see that with
Θg for generic representation and [Θl(i),Πl(i)] for personal-
ized evaluation, both of them can achieve superior results.
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Figure 3: The generic model performance and the model
training efficiency under different Hard Negative thresholds.

Analysis of the tHN in Hard Negative Sampling In our
experiments, we choose tHN equals to the margin m=0.4 in
Cosface used in pre-training the model. To validate the ef-
fectiveness, as shown in Figure 3, we demonstrate the global
performance on IJB-C and its training efficiency under dif-
ferent hard negative thresholds with 100 IDs per client. The
training efficiency is measured in terms of the training steps
per epoch. We can see that with tHN=0.4, the number of
sampled global data can be largely reduced by 10 times but
with only 0.2% drop of the global performance, which is the
best trade-off configuration in our experiments.
Comparison with FedFace
To compare the results with FedFace (Aggarwal, Zhou, and
Jain 2021), as shown in Figure 4, we construct the FL set-
ting with diverse identities per client under total 100 clients,
which is from 40 to 1. We demonstrate the results of the
pre-trained model, ideal central training (upper bound), Fed-
Face and our proposed FedFR. Because FedFace cannot be
adopted on multiple IDs in a client and their FL dataset is not
released, we re-implement their method on our setting that
uses Cosface loss as the local objective if the number of ID
is larger than 1, and also apply spreadout regularizer at the
server side to separate the class proxies from clients. From
the comparison on the generic model performance, FedFace
could easily over-fit on local dataset and performs inferior
to the pre-trained model in these scenarios. In contrast, our
proposed FedFR can still improve the generic face represen-
tation under the most challenging scenario where there is
only one identity in the client.
Comparison with Personalized FL Methods
To validate the effectiveness of our Decoupled Feature Cus-
tomization (DFC) module, we compare with the latest per-
sonalized FL method (Yu, Bagdasaryan, and Shmatikov
2020), which is a two-stage local adaptation approach. For
fair comparison, we re-implement the “Fine-tune” and “KD”
local adaptation methods, which were shown to be effective
in image classification tasks, in our face recognition setup.
In the first stage, the server and clients collaboratively learn
to obtain a great generic model, where we use the proposed
hard negative sampling strategy and the contrastive regular-
ization in the experiments. Then, in the second stage, each
client separately optimizes its local model for personaliza-

Figure 4: Generic model performance compared to FedFace.
We fix the number of clients to 100 and conduct 4 scenarios
of different #IDs in one client.

Method Modules
Personalized Evaluation

1:1 TAR @ FAR 1:N TPIR @ FPIR
1e-6 1e-5 1e-5 1e-4

Yu et al.
2020

Fine-tune 73.81 86.21 88.37 93.90
KD 75.82 87.65 89.50 94.67

Ours
(w/ branch)

Cosface 82.93 91.88 90.67 95.59
BCE 88.32 95.46 95.17 97.94

Table 2: Comparison of other personalized techniques. It is
conducted on 40 clients with 100 IDs per each.

tion. For the “Fine-tune” method, we directly optimize each
model with Cosface loss with the local and sampled global
data. For the “KD” method, it is with a Knowledge Distilla-
tion technique that besides the original Cosface loss, we also
supervise the output logits of local model (student) by the
logits generated from original global model (teacher) with
KL-Divergence loss. As illustrated in Table. ??, our pro-
posed one-stage personalization method can outperform the
two local adaptation strategies. In addition, we also conduct
a variant of our method, which is also a decoupled branch
but adopts a Cosface loss with multi-class classification for
supervision. It is clearly verified that the proposed binary
classification objective better fits the need for the personal-
ized face recognition on clients.

Conclusion
In this paper, we address the face recognition model train-
ing under the practical federated learning setting, where each
client is initialized with the pre-trained model. We propose
a novel joint optimization framework FedFR, which can im-
prove the generic face representation of the global model
and at the same time enhance the personalized user experi-
ence. While the proposed hard negative sampling and con-
trastive regularization can efficiently bridge the gap between
global and local training, the Decoupled Feature Customiza-
tion (DFC) module is another novel component to enable
concurrent optimization of the personalized face recognition
model. The effectiveness of the proposed solution is verified
on several challenging generic and personalized face recog-
nition benchmarks. We hope that the work and the release
of the personalized FR benchmark can facilitate the future
research on the federated learning for face recognition.
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