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ABSTRACT

A difficulty of global-level translation is to preserve instance-
level details in an image. Although some instance level trans-
lation methods can retain the details, most of them require
either pre-trained object detection/segmentation network or
annotation labels. In this work, we propose a novel method
namely CyEDA to perform global level domain adaptation
that can preserve image contents without any pre-trained net-
works integration or annotation labels. Specifically, we intro-
duce blending masks and cycle-object edge consistency loss
which exploit the preservation of image objects. We show
that our approach can outperform other SOTAs in terms of
image quality and FID score in both BDD100K and GTA
datasets. The code and pre-trained models are publicly avail-
able at https://github.com/bjc1999/CyEDA.

Index Terms— domain adaptation, image-to-image
translation

1. INTRODUCTION

Object detection on images under sub-optimal lightning re-
mains a very challenging task despite the rapid advancement
of object detection algorithms. This is because images cap-
tured in real life are often under the influence of various light-
ing issues such as weak lightning which complicated the task
[1,2]. Image translation-based domain adaptation (DA) is one
of the approaches widely studied for object detection in low-
light condition. It normally translates normal light images to
low-light ones and trains an object detection model with the
translated low light images as done by [3–8]. While these
methods are self-supervised, they suffer different issues dur-
ing the translation process.

In this paper, we propose a new approach to achieve
instance-level domain adaptation results. Particularly, we
introduce blending mask when translating the images from
one domain to another domain to ensure that every object
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Fig. 1: Our sample results: day → night on BDD100k [10].

is preserved during the translation process without any need
for a pre-trained detection network. Next, we also introduce
cycle-object edge consistency loss to replace the conventional
cycle-consistency L1 loss to enforce the model to preserve
only instance-level details in terms of content, instead of
pixel-level details to prevent information hiding in the gen-
erated images. Without any need for annotation labels and
pre-trained networks, our model can produce high fidelity
results as illustrated in Fig 1. We compare our results both
quantitatively via FID [9] score, and qualitatively to show
that our approach can outperform current SOTAs. We also
successfully perform unsupervised domain adaptation on an
object detection model by means of data augmentation to
show that the mAP performance of the detection model is
boosted with the help of generated images from our model.

2. RELATED WORK

Image-to-image Translation. The goal of image-to-image
translation (I2I) is to translate an image from its original
domain (e.g., daytime) to a target domain (e.g., night-time).
Pix2Pix [11] initiated the trend on GAN-based I2I which
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can produce visually impressive results in the target domain
given a paired dataset. CycleGAN [3] further improved I2I
by introducing cycle-consistency loss to remove the depen-
dency of paired dataset. DRIT [4] proposed to disentangle
content and style representation of images to achieve diverse
I2I. All these methods have made great progress in improv-
ing translation results, but they all suffered from translating
content-rich images such as driving images with cars and
pedestrians across complex domains (e.g., day-to-night).

AugGAN [5] and multimodal AugGAN [6] overcame
the structure-consistency by using segmentation annotation
to avoid content distortion. Although both methods [5, 6]
can preserve image-structure details very well, they required
segmentation annotations which are expensive to obtain in
most cases. To alleviate this issue, INIT [7] proposed to
make use of bounding box annotations to perform instance-
level I2I by implementing code bank structure. However,
INIT [7] disposed the instance level module after training and
thus it lost the instance-level information during inference.
DUNIT [8] can preserve instance-level details by integrating
an object detection network pre-trained on source domain
as a constraint, such that the generated images with anno-
tated instances are still detectable by the detection network.
However, the detection network is only pre-trained on the
source domain. It is thus arguable whether it can make valid
detection on translated images. In this work, our model can
preserve instance-level details by integrating blending masks
and cycle-object edge consistency loss without relying on any
pre-trained networks and annotations.

Domain Adaptation. Most of the methods discussed afore-
mentioned had been applied to unsupervised domain adapta-
tion for object detection by the mean of data augmentation.
This is done by translating a fully labeled dataset to the de-
sired target domain where annotations are not available. Fol-
lowing this, these translated images are used to train a detec-
tion model with annotations from the source dataset to im-
prove the detection accuracy without the need of creating a
new fully annotated dataset in the target domain. Due to the
nature of this problem, the quality of objects after translation
is very important as it affects the performance of the detec-
tion network. As discussed, methods that are struggling in
preserving instance details could not adapt the object detec-
tion network to a new domain well. Other methods that can
retain instance-level details can perform domain adaptation
well but they require either expensive annotation labels or pre-
trained networks. Most domain adaptations are experimented
on [12–14]. In our work, we used YOLOv5 [14] to assess the
quality of the translated images.

3. METHODOLOGY

Generally, the goal of unsupervised I2I is to translate an im-
age from a source domain to a target domain with an unpaired

(a) Translation from day-time (night-time) to night-time (day-time).

(b) Mask UNet. The last layer of Mask Unet outputs color changes
C, and blending masks M which is the degree of the color changes.
The image is translated by blending C with the original image O.

Fig. 2: Our proposed model architecture.

dataset. Given two sets of images X and Y that are unpaired
from two different domains S and T , where XS ∈ RH×W×3

and YT ∈ RH×W×3, I2I learns a mapping to translate XS to
XT where XT should be similar to XS in terms of contents,
and similar to YT in terms of style. The same is also applied
for YT to YS in terms of translation. Our work also has a sim-
ilar structure but with our proposed blending masks and edge
loss. Our schematic model is shown Fig. 2.

3.1. Mask UNet

Our GAN architecture uses UNet [18] as the backbone be-
cause the skip connection design enables precise segmenta-
tion as done in their work. To retain instance-level detail dur-
ing the translation process, we argue that color changes to
every pixel of the original image should not be sophisticated.
To this end, we modify the last layer of UNet into two sep-
arate blocks: (i) a convolution layer that yields 3N channels
of output followed by tanh activation layer, and (ii) a con-
volution layer that yields N channels of output followed by
sigmoid activation layer, where N represents the number of
masks, inspired by [19]. The block (i) outputs the predicted
color changes, C ∈ [−1, 1]N×H×W×3, to the original im-
age and the block (ii) outputs the predicted degree of color
changes, C ∈ [0, 1]N×H×W , to the original image. The final
image is the normalized blending between element-wise mul-
tiplication of C with M and original image O with inverted
mask (1 − M). Note that the generation of M neither re-
quires segmentation nor any other form of mask label during
the learning. We name this architecture Mask UNet (see Fig.
2b). The process can be represented as:

XT = ((C ⊗M)⊕ (O ⊗ (1−M)))⊘N. (1)
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Fig. 3: Quality Evaluation. Left to right: Original daytime image, NICE-GAN [15], Multimodal AugGAN [6], MUNIT [16]
and our work (CyEDA). First row: GTA [17] dataset. Second row: BDD100k [10] dataset.

Eq. 1 is essentially computing a translated image by summing
the weighted mask of color changes and the inverted weighted
mask of the original image. We think that this is easier for the
model to translate the original image with all the instances
preserved. This is because the translated image is not gener-
ated from its hidden embedding. Rather, it is translated from
the original image directly to retain the instance level details.

Comparison with DUNIT [8]. DUNIT integrates a de-
tection subnet to encourage similar detection results. In con-
trast, our work guides the translation by blending model out-
puts with the original image to retain instance-level detail.
This approach enjoys some benefits over DUNIT: (i) DUNIT
only encourages the bounding box predicted by the detection
subnet from XS to be similar to the one from XT using L1
loss, but not the content (i.e. it only ensures the detection can
still locate the objects but neglects the classification of the ob-
jects). (ii) The integrated detection subnet is only pre-trained
on the source domain which makes the validity of its predic-
tion results on the target domain XT arguable. (iii) Since the
architecture requires a pre-trained detection model, the whole
model is thus not end-to-end trainable.

3.2. CyEDA: Cycle-Object Edge Consistency Loss

In unsupervised I2I translation, a cycle-consistency loss is
used to train the model since we do not have any ground truth,
e.g., the case in supervised I2I translation. However, [20]
shows that CycleGAN learns to hide information in the net-
work to satisfy the cycle consistency requirement. When L1
loss is being used as cycle consistency loss, GAN tries to
hide/preserve every single details (e.g., leaves) when trans-
lating the image. This causes unrealistic translation results.

We argue that the cycle consistency loss should only en-
force the preservation of objects in the images instead of every
details. To this end, we propose cycle-object edge consistency
loss to replace L1 loss. Instead of computing the L1 loss be-
tween XS and X̂S , we first extract the edge information EXS

and EX̂S
from XS and X̂S respectively by any differentiable

edge detection (Sobel Filter [21] is used in this work, but not
limited to). We then compute L1 loss between EXS

and EX̂S
.

GAN model annotation? GTA BDD100k
MUNIT [16] No 1.066 2.461
NICE-GAN [15] No 2.466 1.913
AugGAN [5] Yes 0.825 0.332
Multimodal AugGAN [6] Yes 1.023 0.496
CyEDA (Our work) No 0.737 0.297

Table 1: FID score comparison of our approach with SOTAs
on GTA (val-night and val-day day-to-night) and BDD100k
(det-val-night and det-val-day day-to-night) datasets.

In this way, we only enforce the overall content (e.g., shape)
of XS and X̂S to be similar, instead of every pixel detail. Our
proposed edge loss is formulated as:

LEdge = L1(EXS
, EX̂S

). (2)

We also exploit the same domain adversarial loss terms as
CycleGAN [3], LA

adv(GA, DA) and LB
adv(GB , DB) with cor-

responding domain discriminators DA and DB . Overall, we
minimize the following loss function:

L = LA
adv + LB

adv + LEdge. (3)

4. EXPERIMENTS

4.1. Unsupervised Image-to-image Translation

Dataset. Datasets used to verify the effectiveness of our I2I
model architecture are BDD100k [10] and GTA [17]. Due
to GPU limitation, we resize the images in those datasets to
256× 455 for faster training and experiments.

Benchmark. We compare our results with several SOTA
unpaired I2I methods as follows: (i) MUNIT [16], which dis-
entangles the image feature into content (domain invariant)
and style (domain-specific) and then switches content and
style features between two domains to generate the translated
images. (ii) NICE-GAN [15], which reuses the discriminator
model for image encoding. (iii) AugGAN [5] and multimodal
AugGAN [6], which integrate segmentation subnets to ensure
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Fig. 4: Qualitative: Ablation study on different settings.

structure-consistency in translated image. However, INIT [7]
and DUNIT [8] do not provide complete source code; thus,
they are not compared here.

Results. We compare our results with other SOTAs in terms
of image quality in Fig. 3. It shows that our work outper-
forms other SOTAs in terms of fidelity. SOTAs, such as
NICE-GAN [15] and MUNIT [16], that did not use any extra
detection or segmentation subnet to exploit the instance con-
sistency suffer from preserving the image-objects in image-
translation. While multimodal AugGAN [6] successfully
preserves the instances after translation, it fails to produce
high fidelity translation result even though they leveraged
segmentation labels in their work. Our result is better not
only in terms of salient objects such as vehicles, but also
the backgrounds such as buildings. To objectively evaluate
the quality of generated images, we also compare the FID
score [9] of whole images among our proposed model and
other SOTAs. As shown in Table 1, our model outperforms
other SOTAs, yet does not require any pre-trained detection
subnet and annotation labels. Thanks to the blending mask,
our model only has to learn how to fine-tune the color of
the original image instead of redrawing the whole image in
the target domain which makes it easier to produce a better
quality image.

Ablation Study. To understand the effects of the proposed
blending mask and edge loss, we train models with different
combinations of both proposed modules. With CycleGAN [3]
as baseline (Fig. 4(a)), it is the model without both proposed
blending mask and edge loss. The generated image is dark
and unrealistic and the instance details are blurry. In Fig. 4(b),
when we use edge loss without the masking module (like a
typical UNet), the loss alone can only produce a gray-scale
version of the original daytime image. It can be attributed
to the edge loss which cannot guide the model to translate
across domains because the model only exploits on the edge
(the shape) information instead of the pixel details. In Fig.
4(c), we can see that color contrast is well preserved com-
pared to 4(a) and 4(b) with the help of masking. However,
some unnecessary details like leaves were kept inside the im-
age which look unrealistic for a night-time image. We argue
that this is because the model has to translate all the details

Experiment Settings FID
No mask + L1 (CycleGAN + UNet) 0.551
No mask + Edge 0.579
Mask + L1 0.389
Mask + Edge (CyEDA) 0.297

Table 2: Quantitative: Ablation study on different settings.

Training Dataset (BDD100k) mAP (whole) AP (car)
det-train-night 0.444 0.627
+ det-val-day day-to-night 0.465 0.644

Table 3: Object detection domain adaptation at night-time.
Testing on BDD100k-det-val-night.

back to the original daytime image (i.e., XS to XT to X̂S)
due to L1 cycle consistency loss, which worsens the learning.
In Fig. 4(d), our CyEDA model can produce high-quality im-
ages with instance details retained. The translated images is
a weighted summation of the original image and the color
changes. We believe this has simplified the translation pro-
cess where instance details are directly kept from the original
images.

4.2. Domain Adaptation

We make use of the generated night-time images from our
proposed model to train a YOLOv5 [14] object detection
model to examine the effect of including the generated im-
ages in training object detector in the target domain. We
experimented in two settings: training the small YOLOv5
model (YOLOv5s) using BDD100k real night-time training
images (around 2000 images) with and without the translated
images (around 1000 BDD100k-det-val-day-to-night images)
generated by our proposed model. The YOLOv5s model is
pre-trained on COCO128 [22] dataset. The result of the ex-
periment is presented in Table 3, and it shows that include the
generated images as training images does help to boost the
performance of YOLOv5s in detecting objects in the target
domain (night-time) as the model has more data to learn from.

5. CONCLUSION

This paper introduces an approach to retain instance-level de-
tail when translating images to a target domain by generating
blending masks from UNet and performing color fine-tuning
on original images according to the masks. We also proposed
cycle-object edge consistency loss to remove information hid-
ing in generated images, which gives extra capacity to per-
form more realistic image-translation. Our model is able to
produce SOTA results in terms of FID score and image qual-
ity. In the future, we plan to investigate the use of masking in
skip connections of UNet so that the effects of masking can
be applied to different levels of features.
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