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Abstract—We address a novel problem of stylized-colorization
which colorizes a given line art using a given coloring style in text.
This problem can be stated as multi-domain image translation
and is more challenging than the current colorization problem
because it requires not only capturing the illustration distribution
but also satisfying the required coloring styles specific to anime
such as lightness, shading, or saturation. We propose a GAN-
based end-to-end model for stylized-colorization where the model
has one generator and two discriminators. Our generator is based
on the U-Net architecture and receives a pair of a line art and a
coloring style in text as its input to produce a stylized-colorization
image of the line art. Two discriminators, on the other hand,
share weights at early layers to judge the stylized-colorization
image in two different aspects: one for color and one for style.
One generator and two discriminators are jointly trained in
an adversarial and end-to-end manner. Extensive experiments
demonstrate the effectiveness of our proposed model.

I. INTRODUCTION

Anime character illustration consists of three main steps:
(i) drawing a sketch of a character, (ii) drawing a line art
of the character, i.e., outline of the character in black and
white, from the sketch, and (iii) colorizing the line art. Inspired
by the coloring practice table available for the online artist
community, the colorizing step is more than just filling with
the color. Using different ways to colorize, one line art creates
(colorized) illustrations in different styles, which we call
“coloring styles”.

Five typical coloring styles are shown in Fig. 1. If we use
the “watercolor” style for example, we see that the saturation
in colorized illustration is lower and the neighboring colors are
more blended together, giving different impression to the same
character, compared with the case of using the “anime” style.
Accordingly, coloring styles takes an important role in anime
character illustration. Different coloring styles are popularly
used even for the same character depending on situations and
scenarios.

We aim at colorizing line arts in coloring styles given in
text. This task is challenging because it has two aspects:
colorization and style transfer. The outline of the character
in a line art is sparse unlike images, and, therefore, existing
colorization methods developed for gray-scale images [1], [2],
[3] or for comic images [4], [5] do not work so well. Moreover,
colorization taking into account properties specific to anime is
required. The difference from style transfer is that the structure
of the outline of a character should be preserved without
distortion. Methods for style transfer [6], [7], [8], [9] usually
bring distortion of object contours to reflect painting styles.
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Fig. 1: Example of stylized-colorization.

Moreover, we specify colorizing styles by texts unlike style
transfer where styles are given as images.

We propose a GAN-based end-to-end model for colorizing
line arts in coloring styles. Our model consists of one generator
and two discriminators. Our generator is designed using the U-
Net architecture and receives a pair of a line art and a coloring
style in text as its input to produce a stylized-colorization
image of the line art. Two discriminators are designed to
share weights at early layers to judge the stylized-colorization
image in two different aspects: one for color and one for style.
One generator and two discriminators are jointly trained in
an adversarial and end-to-end manner. Extensive experiments
show that our proposed method outperforms the state-of-the-
art image translation methods and style transfer methods.

II. RELATED WORK

Image-to-image translation: Pix2pix [10] is one of the most
famous GAN-based image-to-image models. It learns the
mapping from the input domain to the output domain through
paired data, and can handle many image translating problems
such as converting labeled segmentation images to scenes or
transferring edges to realistic photos. Paired training data,
however, are not easily available in many situations. Cycle-
GAN [11] was then proposed for unpaired image translation.
StarGAN [12] and AsymmetricGAN [13] were later proposed
for multi-domain image translations using only a single model.
Such models are flexible to translate an input image to any
desired target domain.
Automatic/Semi-automatic colorization: Methods relying on
GANs for automatic colorization have shown remarkable
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results. They include gray-scale photo colorization [1], [2],
[3], colorization of sketch or line art to realistic image [14],
[15], and anime illustration [5], [4], [16], [17].

The colors of resulting images may be uncontrollable if we
do not give any color guidance to an input gray-scale image,
sketch or line art. Guidance-based methods were thus proposed
that allow users to input the color guidance optionally as
they like. A simple and intuitive way is to put scribble color
strokes onto an input image [1], [14], [18]. A reference image
is also used as a palette to colorize [4], [5], [16]. Semantic
methods [3], [19], [20] were also proposed to control colors
through texts.
Style transfer: Style transfer is to render a given image con-
tent in a given style. Gatys et al. [6] proposed a convolutional
neural network to learn the representations of content and
style from images. As follow-up work of [6], several improved
methods for style transfer have been proposed [21], [22], [23].

Although visual effect and efficiency have been significantly
improved, problems still remain open such as distorted content
of stylized images, inconsistent spatial distribution, or insuffi-
cient stylization.

Different from the aforementioned work, our task requires
solving colorization and style transfer simultaneously while
retaining the outline structure of an input character and con-
sidering anime specific colorization properties such as lighting
or shading of colors. Our proposed model deals with such task.

III. PROPOSED METHOD

A. Network design

The stylized-colorization problem involves both colorization
and style transfer aspects. We may approach this problem with
a two-step model in which the image colorization step is fol-
lowed by the style transfer step. However, this straightforward
approach is not good because such a model tends to have
a large amount of parameters to learn and thus training the
model becomes difficult due to a limited number of available
training data. We thus use an end-to-end GAN-based network
having a less number of parameters to approach the problem.

The generator adopts the U-Net architecture as in image
translation [10]. Since our task has two aspects, we prepare
two discriminators for each: one for judging whether a gen-
erated image is real or fake in color, and one for judging it
in style. In order to reduce the number of parameters in the
discriminators, we enforce to share weights at the early layers
of the two discriminators. The whole pipeline of our proposed
model is illustrated in Fig. 2.

B. Network architecture

The input of our network is a pair of a line art x with the
size of 256× 256× 1 and a coloring style s in text.

1) Generator: We condition a pair of x and s on generator
G in order to generate stylized-colorization image G(x, s)
with the size of 256 × 256 × 3. For G, we employ the U-
Net architecture [24] as in [10] with our modification so that
G receives a pair of x (optionally together with the color
guide) and s as its input. Namely, x is fed into the network

from the encoder part while s is injected into the network
from the decoder part (Fig. 2). The skip-connections between
the encoder and the decoder are used to retain structure
information of x.

Our generator firstly encodes line art x through the encoder
to obtain the line art features with the size of 512× 8× 8. At
the same time, the model embeds coloring style s to produce
a one-hot style vector with the initial size of n × 1 and then
replicates to the size of n × 8 × 8 where n is the number
of coloring styles (n = 5 in our case). The line art features,
the one-hot style vector, and a noise vector z with the size
of 64 × 8 × 8 are concatenated and fed into the decoder to
produce the generated image G(x, s).

2) Discriminators: We employ two discriminators Dc and
Ds to judge G(x, s) from two aspects: (i) color discriminator
Dc evaluates whether the color of G(x, s) is real or fake, and
(ii) style discriminator Ds distinguishes whether the style of
G(x, s) is real or fake.
Color discriminator Dc is identical to PatchGAN [10].
This is because PatchGAN [10] has the ability of evaluating
clearness and sharpness of color in details. Dc receives either
a ground-truth color image or a generated image as its input,
outputting real or fake.
Style discriminator Ds is designed following conditional
GAN [25] where we condition coloring style s. Ds receives
either a ground-truth stylized image or a generated image as its
input, outputting whether the input agrees with the conditioned
coloring style or not.

To stabilize training and to avoid collapsing our model, we
replace the default normalization layers in both Dc and Ds

by spectral normalization layers [26]. We also adopt shared-
weights at the first three layers between the two discriminators
to reduce the size of our model.

C. Loss function

Let yc be a ground-truth color image, ys be a ground-truth
stylized image corresponding to a coloring style s. We jointly
train our network in an adversarial and end-to-end manner by
minimizing the weighted sum of three losses: adversarial loss,
per-pixel loss, and style feature loss.
Adversarial loss: The cross-entropy used in [27] may cause
a problem in evaluating the similarity of distributions between
ground-truth and generated data since it does not take into
account the distance between a data sample and decision
boundary. We instead employ the hinge loss in our adversarial
learning. This is because the hinge loss helps the adversarial
learning to be strong and stable [26], [28].

Let D(·) denote the discriminator (Dc or Ds). At each
iteration in training D(·), we randomly select a set (yc, ys, x, s)
from the training dataset, and feed it to D(·). The loss
functions for D(·) are defined as follows:

LDc = Eyc∼pdata

[
max(0, 1−Dc(yc))

]
+ E(x,s)∼pdata

[
max(0, 1 +Dc(G(x, s))

]
,

(1)

LDs = E(ys,s)∼pdata

[
max(0, 1−Ds(ys, s))

]
+ E(x,s)∼pdata

[
max(0, 1 +Ds(G(x, s), s)

]
,

(2)
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Fig. 2: Overview of our proposed model.

where pdata denotes all the training data and E(·)∼pdata
is the

expectation over pdata.
Since our network is trained in the adversarial way, we

minimize the loss function for generator G:

LG =− E(x,s)∼pdata

[
Dc(G(x, s)]

− E(x,s)∼pdata
[Ds(G(x, s), s))].

(3)

Per-pixel loss: Lpix = E(yc,x,s)∼pdata
‖yc −G(x, s)‖1 keeps

the structure of input line art x and is helpful in learning the
color of yc.
Style feature loss: We introduce the style feature loss to learn
styles of images. We enforce our style feature loss to have
the capability of evaluating how much the outline structure
of the character in an input line art is undistorted. We also
take into account lightness, shading, and saturation of colors,
all of which are specifically important for anime specific
colorization. Our style feature loss is thus able to learn what
a coloring style is.

We first train style classifier C by employing the center
loss [29]. The style classifier C learns center cs of style
features of images with coloring style s through penalizing the
distances between the style features and their corresponding
center.

We follow the ResNet-18 architecture [30] to design C.
For each input image, its style feature f is obtained from
the last fully connected layer in C. Like [29], we train C by
minimizing:

Lcls = − log
exp (W>

s fs + bs)∑n
i=1 exp (W

>
i fs + bi)

+
λc
2
‖fs − cs‖22 ,

(4)
where Wi denotes the i-th column of the weight W in the
last fully connected layer; i indicates the coloring style. bi is
the bias term for i. fs and cs denote the style feature and
the center corresponding to coloring style s, respectively. n
is the number of coloring styles (n = 5 in our case) and the
hyper-parameter λc is used for balancing the two terms.

TABLE I: The numbers of pairs of line arts and their corre-
sponding colored images for training, and the numbers of line
arts for testing collected from each dataset.

Dataset name Training data Testing data

Line arts Colored images Pairs Line arts Colored images Pairs

Style dataset 1077 5069 5069 85 425 425
Paired dataset 2111 2111 2111 0 0 0
Danbooru2018 0 0 0 498 10426 0

Total 3188 7180 7180 583 10851 425

In each iteration, cs is updated by averaging all the style
features of its corresponding coloring style s over a training
mini-batch. After the training, cs obtained from the trained C
becomes the feature representation for coloring style s.

We then employ the pre-train classifier C to define our style
feature loss:

Lstyle = E(x,s)∼pdata
‖cs − C(G(x, s))‖22 , (5)

where C(G(x, s)) is the style feature of generated image
G(x, s) extracted using C.

In summary, our (total) loss function is defined by

L = LG + λpixLpix + λstyleLstyle, (6)

where λpix and λstyle are the hyper-parameters.

IV. EXPERIMENTS

A. Data setup

To our best knowledge, there is no well-collected open
dataset for stylized-colorization. We thus collected our training
data and testing data from three different datasets. We used
7180 pair data for training and 583 line arts for testing in
total, see Table I. We note that we call a line art and its color
image in a style as a pair. The details of these datasets are
described below.

Style dataset. In order to practice coloring styles, the artists
use the same line art template and colorize it in different styles.
The typical styles are realistic, galgame, watercolor, anime,
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TABLE II: Tags we used to collect line arts and illustrations
from the Danbooru2018. We also show the total number of
images we collected for each coloring style.

Coloring style Used tag Collected number

Line arts line art, sketch 498

Realistic realistic 2744
Watercolor watercolor (medium) 1811
Anime anime coloring 345
Monochrome monochrome 5526
(Total) (10426)

and monochrome. We found these kinds of practice tables from
Pixiv [31] which is an online community aiming to provide
a venue for artists to exhibit their illustrations, and collected
5154 pairs of line arts and their corresponding color images
in styles. We used 5069 pairs (1077 line arts colorized in five
styles (some line arts are colorized in less than five styles))
for training and 425 pairs (85 line arts colorized in five styles)
for testing.

Paired dataset. Li [32] released the links between some
line arts and their corresponding color images in Pixiv [31].
We thus crawled images using the links and collected 2111
pairs of line arts and their corresponding color images. We
used them only for training. Note that we do not have any
style information of the color images in this dataset.

Danbooru2018. Danbooru2018 [33] is a large-scale anime
image dataset collected from a longstanding image database
web-site, Danbooru [34]. Each image in this dataset is an-
notated with some detailed tags for the character, author or
descriptions. Tags for descriptions include eye color, clothing,
coloring medium and so on. We collected line arts and (color)
illustrations using specific tags. The details are shown in
Table II. The 498 collected line arts were used for testing,
and the 10426 collected color images (together with 4 coloring
styles) were used for evaluation (see Section IV-E).

B. Implementation and training details

We implemented the style classifier C used for the style
feature loss and our proposed model in Pytorch. We firstly
pre-trained the style classifier C using images from the style
dataset. For optimization, we used the SGD optimizer with the
batch size of 64 for 200 epochs and the learning rate of 0.01.
We set λc = 0.5 in the classifier loss function (Eq. (4)).

Next, we jointly trained our proposed method in the end-
to-end manner using images from both the style and paired
datasets. Since there is no ground-truth stylized image from
the paired dataset, we first randomly chose a coloring style as
the target style. We then randomly selected a colored image
in the target style from the style dataset as the ground-truth
stylized image. To augment input data, we extracted line arts
from ground-truth color images using the XDoG [35] filter.
When training, our model randomly loaded a real line art or
a line art extracted from the ground-truth color images.

Our model is optimized using the Adam optimizer [36] with
the batch size of 8 for 200 epochs. The initial learning rate

is 0.0002 and it decays linearly to zero after 100 epochs.
Experimentally, we set the hyper-parameters λpix = 50, and
λstyle = 5 in our loss function (Eq. (6)).

C. Compared methods
We compared our method with single/multi-domain image

translation methods. They are pix2pix [10] (single-domain),
StarGAN [12] (multi-domain), and AsymmetricGAN [13]
(multi-domain). We also compared our method with style
transfer methods. They are AAMS [23] and the method
combining online colorization tool Petalica Paint [18] and
AAMS [23] (called Petalica+AAMS). Since these compared
methods do not address colorization in different coloring
styles, we carefully retrained the official implementations
(pix2pix1, StarGAN2, AsymmetricGAN3, AAMS4) to adapt
our problem setting. In particular, for pix2pix [10], we
trained one model for each coloring style. For StarGAN [12]
and AsymmetricGAN [13], we used the same setting as in
our method to train one model for all coloring styles. For
AAMS [23], we regarded line arts as content images and
color images randomly selected from the style dataset as
style images. For the Petalica+AAMS ([18]+[23]), we firstly
colorized line arts using Petalica to obtain color images and
then used those color images as content images. We randomly
selected color images from the style dataset as style images.

D. Qualitative comparison
Fig. 3 shows the visual comparison of stylized-colorization

results. From the results by the single/multi-domain image
translation methods, we observe that StarGAN [12] and Asym-
metricGAN [13] do not achieve pleasant colorization results.
We also observe that the quality of the results by pix2pix [10]
is unstable. Indeed, pix2pix [10] failed to fill the color well in
some cases. From the results by AAMS [23], we observe that
directly using a line art as a content image is not appropriate;
the results are blurred. Petalica+AAMS solves this problem to
some extent, however, some unnatural patterns newly appear.
These observations indicate the difficulty of the stylized-
colorization task and inability of existing methods for this task.
In contrast, we observe that our method successfully colorized
line arts in different styles.

E. Quantitative comparison
We adopted PSNR, SSIM [37], and FID [38] metrics for

evaluation. PSNR and SSIM are two well-known image quality
metrics. A higher PSNR (SSIM as well) value indicates that
the image structure is preserved better. Since PSNR and SSIM
evaluate only how well the image structure is preserved, we
also used FID for evaluating the quality of generated images.
FID measures the feature distribution distance between gener-
ated images and real samples through a pre-trained Inception-
v3 model. Lower FID value indicates that the distribution of
generated and real images is more similar.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2https://github.com/yunjey/stargan
3https://github.com/Ha0Tang/AsymmetricGAN
4https://github.com/JianqiangRen/AAMS
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Fig. 3: Visual comparison against pix2pix [10], StarGAN [12], AsymmetricGAN [13], AAMS [23], and Petalica+AAMS. For
each example, we show line arts and generated images in different coloring styles. Note that the line arts used in Petalica+AAMS
are firstly colorized by Petalica Paint [18].
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TABLE III: Comparison of the overall quality using PSNR (larger is better), SSIM (larger is better) and FID (smaller is
better). R, G, W, A, and M stand for Realistic, Galgame, Watercolor, Anime, and Monochrome, respectively.

Metric PSNR SSIM FID

Coloring style R G W A M R G W A M R W A M

pix2pix [10] 8.378 11.028 11.488 10.535 7.357 0.389 0.516 0.501 0.506 0.407 146.62 123.91 129.03 93.87
StarGAN [12] 4.978 5.062 6.288 5.112 3.649 0.145 0.158 0.222 0.184 0.165 165.83 161.03 176.79 106.89
AsymmetricGAN [13] 5.180 5.095 6.047 4.927 3.486 0.165 0.151 0.226 0.201 0.157 173.20 163.75 197.24 114.30
AAMS [23] 8.995 9.379 10.867 8.873 6.866 0.363 0.436 0.414 0.362 0.297 167.27 151.42 187.63 189.27
Petalica+AAMS 9.266 9.504 10.764 9.454 6.688 0.377 0.459 0.442 0.412 0.302 151.86 126.66 160.61 141.69
Ours 10.753 11.511 12.957 11.165 7.799 0.455 0.573 0.563 0.548 0.445 118.88 117.38 125.49 88.34

Since PSNR and SSIM needs pair data, we used only the
style dataset to compute PSNR and SSIM. We firstly generated
425 (85 line arts colorized in five styles) stylized-colorization
images. Then, PSNR and SSIM were computed using the
stylized-colorization images and ground-truth color images.
FID, on the other hand, requires a massive amount of images
to compute data distribution. We thus used the style and
the Danbooru2018 datasets together to compute FID. More
precisely, 2332 generated images (85 + 498 line arts colorized
in four styles) and 10766 color images (340 + 10426) were
used for computing FID. We remark that we do not compute
FID for the “Galgame” style (see Section IV-A).

Table III shows PSNR, SSIM, and FID values illustrating
comparison of our method and the other methods. We observe
that our method overall outperforms the other methods on
all the metrics. We see that StarGAN [12] and Asymmetric-
GAN [13] are poor on PNSR and SSIM, meaning that they
are not able to preserve the image structure well. Pix2pix [31],
AAMS [23] and Petalica+AAMS, on the other hand, have
similar PSNR (and SSIM) values with each other whereas
pix2pix is better than AAMS and Petalica+AAMS on FID.
This indicates that pix2pix has better ability of generating
images having closer distribution to ground-truth color images
than AAMS and Petalica+AAMS. Although the compared
methods do not show the advantage on both preserving the
image structure and better distribution, our method is not the
case. Our method not only achieves better image structure but
also learns closer illustration distributions than the others.

F. Ablation study

To evaluate the contribution of each individual loss term,
we compared our complete model with models dropping each
component (except for the per-pixel loss) in our loss function,
and the model without using shared-weights between the two
discriminators.

Some visual results are shown in Fig. 4. Obviously, we
see that the model w/o shared-weights is not able to generate
pleasant color images. This is because as discussed earlier,
the size of the model is too large to train from a given limited
number of training data. The model w/o LDc

brings serious
unnatural artifacts in some cases while the model w/o LDs

fails to colorize line arts in the monochrome style. We see that
the generated results by the model w/o Lstyle become similar
with each other even in different coloring styles. These all

observations indicate that all the terms of our loss function
are necessary and that each term contributes to generate better
images. We remark that we do not show the visual results by
the model without per-pixel loss. This is because the per-pixel
loss value dominates the full loss value and the model was not
trained well when we drop the per-pixel loss.

We also evaluated these models on PSNR, SSIM, and
FID metrics, see Table IV. Overall, our complete model
achieves better scores on these metrics, in particular on SSIM.
Although in some cases, the model w/o LDs

or the model
w/o shared-weights performs better than our complete model
on three metrics, the performances of our complete model
are comparable with those of the best method even in those
cases. This indicates that our complete model has the ability
to generate well-balanced results in structure and quality.

To allow users to control the color as they like, we im-
plemented a semi-colorization method based on our model.
Following [14], [18], we sampled a random number of color
strokes from ground truth illustration at random locations as
the color guide when training. Fig. 5 shows an example of our
generated results with the color guide. We observe that our
model successfully colorizes images according to the given
color guide while the style difference is not significant due
to the saturation of the color guide. Handling the color guide
more flexibly is left for our future work.

G. User study

To further evaluate the effectiveness of our method, we con-
ducted two user studies using 24 subjects. The first user study
is for the evaluation with respect to the coloring style while the
second one is with respect to the colorization. In these studies,
we used 10 line arts to generate 300 (= 10× 5× 6) stylized-
colorization images in five coloring styles by six methods
including our method, and our five compared methods.

For the first user study, we created 50 sets, each of which
consists of a line art, the definition of the five coloring styles,
and randomly aligned six generated images from the line art in
the same coloring style. The six generated images are obtained
by our method and the other five methods. We then displayed
for 5 seconds with 2 seconds interval break, each set one by
one (50 sets in total) to a subject, and asked the subject to
give an absolute rating (from 1 (insufficient) to 5 (excellent);
higher is better) with respect to the coloring styles to each of
six shown images.
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Fig. 4: Visual examples generated images by ablation models.

TABLE IV: Ablation study using PSNR (larger is better), SSIM (larger is better) and FID (smaller is better).

Metric PSNR SSIM FID

Coloring style R G W A M R G W A M R W A M

Model w/o LDc 10.646 11.553 12.548 11.020 7.647 0.428 0.549 0.522 0.507 0.423 121.68 117.95 126.95 90.52
Model w/o LDs 10.895 11.971 12.914 11.371 8.465 0.448 0.571 0.550 0.527 0.448 132.36 118.41 123.18 114.28
Model w/o Lstyle 10.504 11.549 12.750 10.982 7.500 0.434 0.561 0.544 0.522 0.435 129.74 121.06 128.76 90.58

Model w/o shared-weights 4.625 4.703 5.634 4.519 4.830 0.193 0.217 0.212 0.188 0.183 171.41 114.09 168.31 108.63

Our complete model 10.753 11.511 12.957 11.165 7.799 0.455 0.573 0.563 0.548 0.445 118.88 117.38 125.49 88.34

Realistic Galgame Watercolor Anime
Mono

chrome
Line art +

Color guide

Fig. 5: Visual example generated images by model with color
guide. The first row shows our results, the second row shows
the ground-truth images.

We measured the Mean Opinion Score (MOS) to evaluate
the overall sufficiency in coloring style. MOS is calculated
by averaging the scores that each method received from
the subjects. A higher MOS indicates better performance in
coloring style. The MOS results are shown in Table V. Our
method received the best scores among all the methods. We

see that our method received significantly higher scores than
the other methods in all the five styles, showing that our
method performs better visual results on the coloring style
characteristics than the other methods. We also see that the
image translation methods (pix2pix, StarGAN, Asymmetric-
GAN) outperform the style transfer methods (AAMS and
Petalica+AAMS). This means that the existing style transfer
methods are limited to handle transferring the anime specific
colorization properties.

For the second user study, we employed Petalica Paint [18]
(colorization method), pix2pix [10], and Petalica+AAMS for
comparison. We created 50 sets, each of which consists of a
line art, and randomly aligned four generated images from the
line art in the same coloring style. We then displayed for 5
seconds with 2 seconds interval break, each set one by one
(50 sets in total) to a subject, and asked the subject to vote
for the best result in colorization among four shown images.
We collected 1200 votes in total from the 24 subjects.
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TABLE V: Mean opinion score (MOS) on sufficiency in
coloring styles on line arts.

Method Coloring style Total
R G C A M

pix2pix [10] 3.27 3.31 3.98 3.65 3.11 3.46
StarGAN [12] 2.46 2.30 2.80 2.35 3.78 2.74
AsymmetricGAN [13] 2.25 2.33 2.73 2.35 3.16 2.56
AAMS [23] 1.53 1.55 1.76 1.56 1.59 1.60
Petalica+AAMS 2.01 1.65 1.95 2.03 2.24 1.98
Ours 4.35 4.59 4.15 4.58 4.55 4.44

TABLE VI: Votes for choosing best colorization on line arts.

Method Votes (percentage(%))

pix2pix [10] 140 (11.67)
Petalica Paint [18] 255 (21.25)
Petalica+AAMS 20 (1.67)
Ours 785 (65.41)

We computed the percentage of the votes that each method
received, showing in Table VI. We see that our method
received over 65% supports and significantly outperforms the
other methods. This means that our method is recognized as
most excellent in colorization.

These user studies enable us to conclude that our method
outperforms the others in both stylization and colorization.

V. CONCLUSION

We addressed a novel problem of stylized-colorization for
line arts, and presented a GAN-based end-to-end model having
two discriminators for this problem. The stylized-colorization
problem requires to handle colorization and style transfer
tasks simultaneously. Our two discriminators work for judg-
ing in each task, stylized-colorization images produced by
the generator. Our experiments demonstrated that our model
successfully retains the outline structure of a character in an
input line art with considering anime specific colorization
properties, which is difficult to achieve with just combining
existing colorization and style transfer methods.

Although we demonstrated stylized-colorization of face line
arts in our experiments, there is no component in our model
that is specific to the face. Our model is able to handle
more complex line arts such as a complete character with
background if training data are available.
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