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Abstract— Deep learning approaches have achieved highly
accurate face recognition by training the models with very large
face image datasets. Unlike the availability of large 2D face
image datasets, there is a lack of large 3D face datasets available
to the public. Existing public 3D face datasets were usually
collected with few subjects, leading to the over-fitting problem.
This paper proposes two CNN models to improve the RGB-D
face recognition task. The first is a segmentation-aware depth
estimation network, called DepthNet, which estimates depth
maps from RGB face images by including semantic segmen-
tation information for more accurate face region localization.
The other is a novel mask-guided RGB-D face recognition
model that contains an RGB recognition branch, a depth map
recognition branch, and an auxiliary segmentation mask branch
with a spatial attention module. Our DepthNet is used to
augment a large 2D face image dataset to a large RGB-D face
dataset, which is used for training an accurate RGB-D face
recognition model. Furthermore, the proposed mask-guided
RGB-D face recognition model can fully exploit the depth map
and segmentation mask information and is more robust against
pose variation than previous methods. Our experimental results
show that DepthNet can produce more reliable depth maps
from face images with the segmentation mask. Our mask-guided
face recognition model outperforms state-of-the-art methods on
several public 3D face datasets.

I. INTRODUCTION

Face recognition has been a rapidly developing research

task in recent years and has been widely used for many

different applications, such as video surveillance, biometric

identification, security verification, etc. Although 2D face

recognition based on deep learning has achieved very high

accuracy in most public datasets, face recognition is still very

challenging under large pose variations [1]. To overcome

this problem, some face-frontalization methods have been

proposed to normalize profile face images to frontal pose

[11][30], and some focused on RGB-D face recognition.

Unlike the 2D face recognition approach that uses only

RGB images as input, RGB-D face recognition includes

depth as additional information, thus leading to more robust

performance against large pose and illumination variations.

The development of 3D or RGB-D face recognition is

slower than 2D face recognition. The main reason is the lack

of large 3D or RGB-D face datasets available to the public.

The numbers of subjects in most 3D or RGB-D face datasets

are much smaller than those in 2D face datasets. Numerous

2D datasets contain more than thousands of identities and

millions of images [39][5][14], whereas existing public 3D

face datasets usually contain only hundreds of subjects or at

Fig. 1. The pipeline of the proposed RGB-D face recognition system

most thousands of images. [40][29][9]. It is easy to fall into

the overfitting problem when we only use a limited number

of subjects in a 3D dataset to train a face recognition model.

To address the problem of lacking large 3D face datasets

for model training, many works [44][19][4] applied different

data augmentation methods to train their face recognition

models. [19] changed the values of expression parameters of

3DMM model and randomly generated rigid transformations

matrices to the input 3D point cloud to synthesize expression

and pose variations. [39] generated new identities by morph-

ing two 3D face models of different identities. These methods

construct the augmented face data with virtual identity, and

it is tough to generate realistic identity-preserving intra-

person variations for the synthesized 3D face data for virtual

identities.

This paper presents a new method to convert a 2D face

dataset to a 3D face dataset to address inadequate numbers

of subjects in 3D face datasets for model training. Our

system has two major parts, i.e., the depth estimation module

(DepthNet) and the mask-guided face recognition module.

We include a face semantic segmentation branch into the

depth estimation network model as an auxiliary task for

the depth estimation module. The module can correctly

recognize where the facial features are located to estimate

realistic face depth images. The proposed mask-guided face

recognition model takes RGB face images, segmentation

masks, and generated depth maps as input, and this model

can achieve high-accuracy RGB-D face recognition. Thus,

we can convert a large 2D face dataset to the corresponding

RGB-D face dataset with the same number of subjects

and intra-variations for training the RGB-D face recognition

model. The main contributions of this work can be summa-

rized as follows:

1) We propose a novel depth estimation CNN model978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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called DepthNet, which includes semantic segmenta-

tion to estimate a more accurate depth map than the

existing face depth estimation networks.

2) By applying the proposed DepthNet to a large RGB

face image dataset, we obtain the corresponding RGB-

D dataset with a large number of subjects and large

intra-variations, which can be used for training accu-

rate RGB-D face recognition models.

3) We propose a mask-guided face recognition model

which contains an RGB recognition branch, a depth

map recognition branch, and an auxiliary segmentation

mask branch with spatial attention module to overcome

challenging variations in expression, pose, and occlu-

sion.

4) Experiments on several public 3D face datasets demon-

strate that the proposed mask-guided face recognition

model outperforms the state-of-the-art methods for

RGB-D face recognition.

II. RELATED WORKS

A. 3D Data Augmentation

Due to 3D face data scarcity, many 3D face recognition

works focused on developing different 3D data augmentation

methods. Kim et al. [19] proposed a 3D face augmentation

technique that synthesizes several different facial expressions

from a single 3D face scan. Each point cloud from FRGCv2

dataset [29] was fitted to a BFM [28] model to produce 25

expressions for each face model by modifying the expression

parameters. Gilani et al. [44] generated millions of 3D

facial models of different virtual identities by simultaneously

interpolating between the facial identity and facial expression

spaces. Zhang et al. [42] applied GPMM to generate a large

3D face training dataset and compensated the distribution

difference between the generated data and real faces by

constraining the face sampling area.

The methods mentioned above proposed to achieve 3D

face data augmentation either via sampling from a low-

dimensional identity and expression parametric space for a

3D face morphable model, such as GPMM, or interpolating

3D face models from actual 3D face scans. However, it

is still not clear how effective the data synthesis of new

virtual identities will benefit the training of face recognition

models. This paper proposes converting an existing 2D face

dataset to an RGB-D face dataset by estimating associated

depth maps from 2D face images. A new CNN-based face

depth estimation model, called DepthNet, is developed for

this specific image-to-image translation problem.

B. RGB-D Face Recognition

Deep learning-based RGB-D face recognition research is

not very active compared to 2D face recognition. One reason

is that an effective way to pass the 3D data to the neural

network is still under research. Additionally, there is a lack

of large 3D face datasets available in public, as mentioned

above. Therefore, many works [19][20][33][37] employed

the CNN that was pre-trained on 2D face images to fine-

tune on the relatively small 3D dataset. Gilani et al. [44]

Fig. 2. Architecture of the proposed DepthNet model. Each input image
(X̂input) is first fed into the encoder to encode the face feature vector. Then,
the two branches of the decoder generate the semantic segmentation mask
(ŷmask), the depth map (ŷdepth), and the reconstructed image (ŷrgb) from
the embedded features.

took depth, azimuth, and elevation angles of the normal

vector as a 3-channel input and proposed the first deep CNN

model specifically designed for RGB-D face recognition.

Jiang et al. [18] normalized the depth values to the same

range as the RGB values and proposed an attribute-aware

loss function for CNN-based face recognition to improve

the accuracy of recognition results. Li et al. [23] presented

a fusion CNN, which took six types of 2D facial attribute

maps (i.e., geometry map, three normal maps, curvature

map, and texture map) as input for RGB-D facial expression

recognition. Instead of using depth data as input, Zhang et

al. [42] proposed a data-free 3D face recognition method

that only used synthesized unreal data from 3D Morphable

Model to train a deep point cloud network.

III. PROPOSED METHOD

We aim to build a robust RGB-D face recognition model

from the 2D face image dataset. To achieve this goal, we

propose a new CNN model for generating the associated

depth map and segmentation mask from an input face image.

We can then generate a large RGB-D face dataset from

a large 2D RGB face dataset to improve the training of

RGB-D face recognition models. Our system consists of two

modules: (1) the DepthNet and (2) the mask-guided RGB-D

face recognition model. In Fig. 1, it is clear to understand

the whole process of our method. For each 2D image, we

apply FAN face alignment [3] as the first step. Second, the

augmented depth image and semantic segmentation mask

image are generated by the DepthNet. Third, we set the

background pixels of the RGB image as zero according to

the semantic segmentation mask image. Finally, the face

representation is computed by a mask-guided RGB-D face

recognition model for RGB-D face recognition. Our mask-

guided RGB-D face recognition model can also take the

acquired depth map as the input by simply replacing the

augmented depth image in Fig. 1 with the actual depth image.
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A. DepthNet

Fig. 2 illustrates the framework of the proposed DepthNet

model, which includes a generator and three discriminators.

The generator can be divided into three networks, the face

encoder, the face decoder, and the auxiliary decoder. This

generator is based on the UNet [31] architecture, which is

an encoder-decoder model with a skip-connection module.

With the skip-connection module, the decoder can directly

use the features from the encoder. For a given source face

image Xinput, which passes through the face encoder and

the auxiliary decoder to encode image xinput information.

We obtain the reconstructed image ŷrgb with the face

decoder. To minimize the distance between the reconstructed

image ŷrgb and source face image Xinput, we adopt the L1

loss as follows:

Lrecon = Ex∼Px
[∥xinput − ŷrgb∥1] (1)

Meanwhile, the auxiliary decoder generates the corre-

sponding depth map ŷdepth and semantic segmentation mask

ŷmask of the input face image Xinput. We design a shared

weight architecture to output the segmentation mask and

depth at the same time. To minimize the distance between the

generated depth image ŷdepth and ground truth depth ydepth,

we adopt the L1 loss as follows:

Ldepth = Ex∼Px
[∥ydepth − ŷdepth∥1] (2)

We adopt the binary cross-entropy loss to train the network to

generate the semantic segmentation mask for an input image.

This loss enforces the output of the encoder to be similar to

the ground-truth semantic segmentation. It is given by

Lmask =Ex∼Px
− (ymask · log(ŷmask)

+ (1− ymask) · log(1− ŷmask))
(3)

where ŷmask denotes the generated segmentation mask for

the input face image, and ymask is the ground truth segmen-

tation mask. We also leverage generative models to learn

to reconstruct images to train the RGB discriminator Drgb,

depth discriminator Dd, and mask discriminator Dm, given

by

LGen
adv =Ey∼Py

[(Drgb(ŷrgb)− 1)2]

+ Ey∼Py
[(Dd(ŷdepth)− 1)2]

+ Ey∼Py
[(Dm(ŷmask)− 1)2]

(4)

LDis
adv =Ey∼Py

[(Drgb(xinput)− 1)2]

+ Ex∼Px
[(Drgb(ŷrgb))

2]

+ Ey∼Py
[(Dd(ydepth)− 1)2]

+ Ex∼Px
[(Dd(ŷdepth))

2]

+ Ey∼Py
[(Dm(ymask)− 1)2]

+ Ex∼Px
[(Dm(ŷmask))

2]

(5)

The overall loss function for training the DepthNet is given

as follows:

LTotal =LG + LDis
adv (6)

LG = λ1Ldepth + λ2Lmask + λ3L
Gen
adv + Lrecon (7)

where λ1, λ2 and λ3 are the weights used to balance the

three loss terms.

B. Mask-Guided RGB-D Face Recognition

Fig. 3 demonstrates our mask-guided RGB-D face recog-

nition network architecture, which contains an RGB recogni-

tion branch, a depth map recognition branch, and an auxiliary

segmentation mask branch with spatial attention module

proposed in [35]. At the training stage, the RGB recognition

branch extracts the face representation feature, fRGB in

the figure, by the backbone network SENet [17] network

denoted as SENet RGB. Similarly, the depth map recognition

branch extracts corresponding fD by SENet D. The auxiliary

segmentation mask branch extracts different level of feature

map from segmentation mask by SENet M, and then applies

spatial attention module (SAM) on those feature maps to aid

RGB and D branches while training. This SAM is shared-

weighted across the RGB recognition branch and D recog-

nition branch. It can provide auxiliary information from the

segmentation branch to help recognition branches focus on

the informative parts on segmentation feature maps. Finally,

the classifier with ArcFace [8] additive angular margin loss

predicts a vector of probabilities with one value for each

possible identity.

The proposed mask-guided RGB-D face recognition net-

work is a two-stream-multi-head architecture, and we apply

the cross-entropy loss as classification losses Lcls on individ-

ual branches. We adopt the cross-modal focal loss L
m,n
CMFL in

[12] to learn robust representations jointly, which is defined

as

L
m,n
CMFL = −α(1− w(mt, nt))

γ log(mt) (8)

α and γ are tunable hyper-parameters.

w(mt, nt) = nt

2mtnt

mt + nt

(9)

where mt and nt denote the classification probabilities after

fully connected layer in current branch m and the other

branch n, respectively. The CMFL contributed by branch n

will reduce when branch n can predict with high confidence.

Although the inputs to the mask-guided RGB-D face

recognition network could be a different combination of

modalities, their inputs should represent the same semantic

meaning as the subject identity. Inspired by [2], we add

another semantic alignment loss L
m,n
SA to share semantics

for the extracted feature vectors fm and fn, given by

L
m,n
SA = ρm,n(1− cosine similarity(fm, fn)) (10)

where ρm,n is the focal regularization parameter to make

sure the network will only transfer information from the

more accurate network to the weaker network. For current

modality m and the other modality n, we use the difference

of classification losses between m and n to measure the

performance of the network, and it is denoted as Lm
cls−Ln

cls.

If the difference is positive, then it means modality m is
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Fig. 3. The proposed mask-guided RGB-D face recognition network architecture.

weaker than modality n. The model will enforce fm to be

similar to fn. The focal regularization parameter is defined

as follows

ρm,n =

{

eβ(L
m
cls−Ln

cls) − 1, if Lm
cls > Ln

cls

0, if Lm
cls ≤ Ln

cls

(11)

where β is a positive focusing parameter.

The overall loss functions in branch RGB and D are given

as

LRGB
total = (1− λ1)L

RGB
cls + λ1L

RGB,D
CMFL + λ2L

RGB,D
SA

(12)

LD
total = (1− λ1)L

D
cls + λ1L

D,RGB
CMFL + λ2L

D,RGB
SA

(13)

The total loss of RGB branch LRGB
total optimizes the parame-

ters of RGB recognition branch and auxiliary segmentation

branch. Similarly, the total loss of D branch LD
total optimizes

the parameters of the D recognition branch and auxiliary

segmentation branch.

At the testing stage, instead of simply concatenating

fRGB and fD, we compute two cosine similarity scores and

perform score-level fusion by averaging two cosine similarity

scores to give the final prediction. Our experimental result

shows that the combination of all modalities provides the

most accurate result for face recognition. More details will

be provided in the next section.

IV. EXPERIMENTAL RESULTS

A. Experimental Datasets

Here we introduce the datasets that were used in the

training and evaluation. The DepthNet model is trained with

BU-3DFE 3D database [24] dataset. The VGGFace2 [5] 2D

face dataset is augmented to the corresponding RGB-D face

dataset by applying the DepthNet model, and then is used

to train the mask-guided RGB-D face recognition model.

We experiment on public 3D datasets: BU-3DFE [24], Texas

FR3D [15], Bosphorus [32], FRGCv2 [29], and Lock3DFace

[41] to evaluate the proposed DepthNet and mask-guided

RGB-D face recognition model.

1) Training Data Preparation: Since we aim to make

DepthNet learn how to convert an RGB face image to the

corresponding depth image, we adopt 90 identities from BU-

3DFE 3D face database[24] as the training data. Also, the

pose augmentation is implemented by rotating the original

frontal face point cloud along with the yaw and pitch axis.

Next, We modify the BiSeNet[6] model to generate the

semantic segmentation mask for an input face image and take

the results as the pseudo ground truth segmentation mask.

The segmentation mask consists of seven channels represent-

ing different labels: background, skin, brows, eyes, glasses,

nose, and mouth. Then, we use these RGB-D images and

the corresponding pseudo-ground-truth segmentation masks

to train our DepthNet.

For RGB-D face recognition, we select VGGFace2 [5] as

our training data. It contains 9,131 subjects and a total of

3.31 million RGB images. The proposed DepthNet model

produces the corresponding depth images and segmentation

masks. The augmented depth images will be gray images

with a channel equal to one and a seven-channel image

representing the segmentation mask. We can generate an even

larger RGB-D dataset for model training by using larger

RGB datasets. However, due to the memory and training

time consideration, we choose to use the VGGFace2 dataset

for conversion into the RGB-D dataset to train our face

recognition model.

2) 3D Face Datasets:

BU-3DFE 3D database[24] includes 100 subjects with

2,500 scans. Each identity performs seven expressions with

four levels of intensity for each expression except for the

neutral one. There is no pose variation in this database.

The evaluation protocol as [13] is adopted so that we have

100 images in the gallery and 2,400 images in the probe to

calculate the identification accuracy.

Texas FR3D database[15] contains 1,149 scans of 118

subjects. All the scans are frontal with different expressions.

We select the first images for all the 118 subjects as the

gallery and put the remaining 1,031 images as the probe.
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Bosphorus database[32] consists of 4,666 scans of 105

subjects in various poses, expressions and occlusions. There

are two settings for evaluation. Setting-1 considers expression

variations for recognition. The first neutral image of each

subject is selected as the gallery. The other 2,797 images are

regarded as probe images. Setting-2 takes all the remaining

4,561 images in the probe and 105 images in the gallery.

FRGCv2 database[29] contains images from 466 subjects

collected in 4,007 scans with two facial expression variances

(e.g., neutral and smile). We select the first neutral images

from all the 466 subjects as the gallery and take the remain-

ing 3,541 images as the probe.

BUAA Lock3DFace database[41] contains 5711 RGB-D

face videos of 509 subjects with variations in facial expres-

sion, pose, occlusion and time-lapse. We follow the same

testing protocols as described in [41]. The first neutral image

of each subject in Session-1 (S-1) is selected as the gallery.

And then divide the remaining into four test sets: Probe Set 1

for images with expression changes in S-1; Probe Set 2 for

images with pose variations in S-1; Probe Set 3 for images

with occlusions in S-1; and Probe Set 4 for all images in

Session-2 (S-2).

B. Implementation Details

For training DepthNet, we adopt Adam as the optimizer

with setting β1 = 0.5, β2 = 0.999 and learning rate γ is

set to 0.0002. For the hyper-parameter of the loss function

in (7), we set λ1 = 100, λ2 = 100 and λ3 = 1. We train

the DepthNet model on a GTX1080Ti GPU card with batch

size equal to 16 and image size 256x256.

When training the RGB-D face recognition model, we use

SGD as the optimizer with momentum = 0.9, weight decay

= 0.0005 and learning rate = 0.1 divided by 10 at 6, 10, 17

epochs. The SAM is applied on feature map with size of

56x56x64 and 14x14x256. We set α = 1 and γ = 3 in (8)

and set β = 2 in (11). For the hyper-parameter of the loss

function in (12) and (13),we set λ1 = 0.5 and λ2 = 0.05.

We train RGB-D face recognition on 2 Tesla V100 GPUs

with batch size 256 and image size 112x112.

C. DepthNet Evaluation

In this section, we demonstrate some results of our pro-

posed depth estimation method. Our proposed DepthNet

aims to produce additional augmented depth images and

segmentation mask images for 2D datasets. As a result, in

Fig. 4, we depict some examples of applying our DepthNet

to VGGFace2 2D face database, which is the training set

for our RGB-D face recognition model. The results show

that our method can produce well-preserved face contour

and face shape features of different expressions.

In Table I, we compute Mean Square Error (MSE) between

the generated depth images and ground truth depth images

with comparison with two 3D face depth estimation methods,

3DDFA [36] and PRNet [38]. For a fair comparison, we only

calculate the MSE in the intersection of ground truth depth

and all predicted depth images from our DepthNet, 3DDFA,

and PRNet. For the BU3DFE database, it is evident that we

Fig. 4. Generated augmented depth and segmentation images of VG-
GFace2. Rows from top to bottom: RGB images, augmented depth images,
and segmentation images.

TABLE I

QUANTITATIVE COMPARISON OF DEPTH ESTIMATION ERRORS FOR

DIFFERENT METHODS: MSE BETWEEN GROUND TRUTH DEPTH AND

ESTIMATED DEPTH IMAGES.

Method BU3DFE FRGCv2 Bosphorus

3DDFA [43] 125.78 597.17 540.48
PRNet [10] 74.86 216.29 615.99
Ours 16.65 435.88 421.46

have the best performance on the testing set of BU3DFE

partially because we train DepthNet with the training set of

BU3DFE, which leads to negligible bias between training

and testing data. For FRGCv2 dataset, although the estima-

tion results by our model are not the best among the three

methods, our DepthNet model can generate a more accurate

depth image around the face contour than the other two

methods, as shown in Fig. 5. This is because our model in-

cludes semantic segmentation together with depth estimation.

Our DepthNet is trained with BU3DFE which was acquired

with a structured-light-based 3D sensor. The Bosphorus 3D

images were also acquired using a structured-light-based

device. However, the FRGCv2 3D images were captured by

a laser-based sensor. As a result, the improvement is not

as significant as the others. Our DepthNet achieves the best

performance on the Bosphorus dataset, which contains large

pose variations, and our DepthNet was trained with such

variations.

In Figure 6, we further illustrate how our DepthNet

provides superior depth estimation for face images with

large poses. The other two methods have large deviations

near the face profile regions. With an additional semantic

segmentation branch, our DepthNet can recognize the facial

regions from the image to generate an accurate and plausible

depth map that is consistent with the RGB face image.

D. Mask-Guided RGB-D Face Recognition Evaluation

Our mask-guided RGB-D face recognition model has good

generalization ability on other 3D datasets, even though it is

trained with a depth-augmented 2D dataset. Our network is

trained on VGGFace2 [5] and directly tested on all other

3D face datasets without any fine-tuning. Our mask-guided

RGB-D face recognition model takes RGB face image,
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Fig. 5. Depth estimation results by using different methods on some sample
images in FRGCv2 dataset (top row) and Texas dataset (bottom row).

Fig. 6. Depth estimation results by using different methods on the
Bosphorus dataset. We utilize hot colormap to illustrate the MSE. The darker
the color, the smaller the error.

augmented depth image generated by DepthNet (D∗), and

augmented segmentation mask generated by DepthNet (M∗)

as input. We demonstrate the rank-1 identification results on

some public 3D face databases in table II. For all the datasets,

our method provides state-of-the-art verification accuracy.

Especially for Bosphorus-2, which has pose variations, the

proposed method marginally outperforms the other methods

by around 1.7% accuracy.

Table III further shows that our model can also be applied

to different modalities. We compare our results with other

RGB-D face recognition methods and report the rank-1 iden-

tification accuracy on FRGCv2 and Bosphorus-1. Our mask-

guided recognition model trains the RGB and D branches

jointly; the training data that includes the augmented depth

or segmentation mask images of VGGFace2 are denoted as

VGGFace2∗. Our DepthNet can effectively transform a 2D

face image into the corresponding RGB-D image to resolve

the problem that the existing public 3D face database usually

has inadequate subjects or intra-person variations. Jiang et

al.[18] proposed an attribute-aware loss function and a newly

collected RGB-D face database with 60K subjects to improve

the accuracy of RGB-D face recognition results. We can

observe that our proposed method, trained with the RGB-D

dataset with augmented depth, segmentation masks, and 9K

subjects, is superior to the model trained with ground truth

depth images and many more subjects. With the proposed

TABLE II

THE RANK-1 IDENTIFICATION ACCURACY ON PUBLIC 3D FACE

DATABASES.

Method BU3DFE Texas Bosphorus-1 Bosphorus-2

Li et al.[22] - - 98.8 96.6
Lei et al.[21] 93.25 - 98.9 -
Mian et al.[26] 95.9 98.0 - 96.4
Lin et al.[25] 96.2 - 99.71 -
Kim et al.[19] 95.0 - 99.2 -
FR3DNet [44] 98.64 100 - 96.18
Ours 100 100 100 97.94

method, we can get an RGB-D database with sufficient

subjects from the existing 2D face databases and do not need

to collect a new 3D face database.

The rank-1 identification accuracies for the Lock3DFace

dataset are shown in Table IV. Especially in the subset with

pose variations, our result achieves a 96.55% accuracy which

is significantly better (+25%) than others. For occlusion

variations such as covering the face with hand or glasses, we

reach an accuracy of 97.31% obtaining about +12% perfor-

mance gain. In the subset over time scenario, our method also

accomplished an accuracy of 92.38%, which exceeds others

by +11%. It is worth noting that some other methods include

part of the Lock3DFace in their training set; However, our

mask-guided directly test on Lock3DFace without any fine-

tuning. In general, our mask-guided RGB-D recognition

model achieves a much higher (+9%) average accuracy of

96.43% comparing to other state-of-the-art methods. This

indicates that our mask-guided FR model fully exploits the

augmented depth and segmentation mask information and is

more robust against pose variation than other RGB-D face

recognition methods.

Fig. 7 demonstrates visualization results of the mask-

guided spatial attention module on some pulic 3D datasets.

The result shows some samples with expression, pose, and

occlusion variations. The segmentation mask branch provides

auxiliary information to spatial attention module; therefore,

we can observe that the attention have selectively focused

on the informative parts such as eyes, nose, eyebrows, and

lips for RGB-D face recognition.

V. ABLATION STUDY

A. Effect of the Segmentation Mask

In this section, we first analyze the effects of the seg-

mentation mask branch in the proposed DepthNet. Table V

demonstrates significant improvement of the depth estimation

by including the semantic segmentation into the model.

Different from section IV-C, we directly calculate the MSE

between the estimated depth image and the ground truth

image. We can observe that with the addition of the semantic

segmentation branch, it can focus on the face features and

provide precise depth estimation. We can easily perceive the

expression of both profile images and frontal images with

the segmentation mask.
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TABLE III

RANK-1 IDENTIFICATION ACCURACY APPLIED TO DIFFERENT MODALITIES. VGGFACE2∗ DENOTES THE AUGMENTED DATA OF VGGFACE2 THAT

PRODUCED BY DEPTHNET. D∗ AND M∗ DENOTES THE AUGMENTED DEPTH MAP AND SEGMENTATION MASK GENERATED BY DEPTHNET.

Method Training data Subjects Testing Modality FRGCv2 Bosphorus-1

VGG-Face[5] Private[44] 100 RGB 87.92 96.39
Jiang et al.[18] TRAINING-SET-I[18] 60,000 RGB 95.69 96.08
Ours VGGFace2∗[5] 9,131 RGB + M∗ 99.07 99.75

Li et al.[22] Part of Bosphorus[32] 105 Depth 96.30 95.40
FR3DNet[44] Private[44] 100 Depth 97.06 96.18
Jiang et al.[18] TRAINING-SET-I[18] 60,000 Depth 97.45 99.37

Ours VGGFace2∗[5] 9,131 D∗ + M∗ 98.42 98.61
Li et al.[22] Part of FRGCv2[29] 466 RGB + Depth 95.20 99.40
Jiang et al.[18] TRAINING-SET-I[18] 60,000 RGB + Depth 98.52 99.52
Ours VGGFace2∗[5] 9,131 RGB + D∗ + M∗ 99.27 100

TABLE IV

THE RANK-1 IDENTIFICATION ACCURACY ON LOCK3DFACE DATABASES. D∗ AND M∗ DENOTES THE AUGMENTED DEPTH MAP AND SEGMENTATION

MASK GENERATED BY DEPTHNET.

Accuracy
Method Input Expression Pose Occlusion Time Average

He et al.[16] RGB 96.3 58.4 74.7 75.5 76.2
Hu et al.[17] RGB 98.2 60.7 77.9 78.3 78.7
Cui et al.[7] RGB + D 97.3 54.6 69.6 66.1 71.9
Mu et al.[27] RGB + 3D Model 98.2 70.4 78.1 65.3 84.2
Uppal et al.[34] RGB + D 99.4 70.6 85.8 81.1 87.3
Ours RGB + D∗ + M∗ 99.92 96.55 97.31 92.38 96.43

TABLE V

THE COMPARISON OF MSES OF DEPTH ESTIMATION WITH AND

WITHOUT INCLUDING THE SEMANTIC SEGMENTATION TASK.

Method BU3DFE FRGCv2 Bosphorus

DepthNet w/o mask 84.62 880.99 848.88
DepthNet w mask 42.66 605.48 839.86

TABLE VI

IDENTIFICATION ACCURACY ON LOCK3DFACE DATASET OF OUR

MASK-GUIDED RGB-D FACE RECOGNITION MODEL AND ITS VARIANTS

WITH DIFFERENT MODALITIES.

Lock3DFace
Method Expression Pose Occlusion Time Average

D∗+M∗ 99.46 81.36 79.08 71.89 83.12
RGB+M∗ 99.77 93.98 94.22 88.68 94.09
RGB+D∗+M∗ 99.92 96.55 97.31 92.38 96.43

B. Effect of the DepthNet

We report the rank-1 face identification results of the

proposed mask-guided RGB-D face recognition module and

its variants with different combination of modalities, RGB

images or augmented depth images D∗ or segmentation

mask images M∗, as the ablation study. The comparison

results are presented in Table VI. The first row is the

result that we test with augmented depth and the augmented

segmentation mask images. The second row is tested with

RGB and the augmented segmentation mask images. The

third row is tested with RGB, the augmented depth, and

the augmented segmentation mask images. We can observe

Fig. 7. Spatial attention maps four RGB-D face datasets. First row: BU-
3DFE dataset; Second row: Bosphorus datase; Third row: FRGCv2 dataset;
and Last row: Lock3DFace dataset.

that using both augmented depth and segmentation mask

images achieves the highest accuracy, which indicates each

component is essential in our mask-guided RGB-D face

recognition method.

VI. CONCLUSIONS

In this paper, we propose a novel framework that esti-

mates depth maps from RGB face images by including a

semantic segmentation module for more precise face region

localization. The estimated depth maps can be combined with

2D images to augment the 2D face image dataset to RGB-

D face dataset. This data augmentation approach helps to
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improve the accuracy and stability for training the RGB-

D face recognition model. Furthermore, we developed a

mask-guided RGB-D face recognition model, which includes

the auxiliary segmentation attention module to fully exploit

the augmented depth and segmentation mask information.

Our experiments showed that our DepthNet model provide

accurate depth map estimation and the proposed mask-guided

RGB-D face recognition model outperforms state-of-the-art

face recognition methods on several public 3D face datasets.
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