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Abstract. Anomaly detection in human actions from video has been a
challenging problem in computer vision and video analysis. The human
poses estimated from videos have often been used to represent the fea-
tures of human actions. However, extracting keypoints from the video
frames are doomed to errors for crowded scenes and the falsely detected
keypoints could mislead the anomaly detection task. In this paper, we
propose a novel GCN autoencoder model to reconstruct, predict and
group the poses trajectories, and a new anomaly score determined by the
predicted pose error weighted by the corresponding confidence score asso-
ciated with each keypoint. Experimental results demonstrate that the
proposed method can achieve state-of-the-art performance for anomaly
detection from human action videos.

Keywords: Video anomaly detection · Human pose · GCN ·
Confident scores

1 Introduction

Anomaly detection in human activities from videos is a challenging research
problem that attracts great attention from academia and industry in recent
years. Due to the lack of abnormal data, anomaly detection is usually treated
as an unsupervised task. Since almost all the training data is assumed to be
normal, models are trained to learn the characteristics from the normal data,
such as grouping, reconstructing the data, or predicting the future frames in a
video. Since this skill is only learnt from normal data, it should work badly on
abnormal data so that anomalies can be detected.

Due to the rarity of the abnormal data, anomaly detection is usually treated
as an unsupervised task. With all (or most of) the training data are normal, the
model is asked for learning a “skill” such as grouping [1–3], reconstructing the
data [2–7], or predicting the futures [6–8] of the videos. Since this skill is only
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learnt from normal data, it might work badly on the anomalies. As a result, the
normality can be classified.

Dealing with events in videos, most recent methods focus on the appearance
of the time-consecutive images [2,5,6], while the proposed method is focused on
the human poses. Human poses are often used in analysis of human behaviors.
[9] used pose features to recognize human actions. [10] estimated 3D-poses from
2D-poses. The pose data has the advantage that only the human features are
used in the models. However, while extracting the keypoints from the images,
the pose estimation may involve large errors for crowded scenes, which makes the
follow-up works very difficult. To alleviate this problem, we add the confidence
scores into our model so the result will be less sensitive to the errors in keypoint
detection.

To classify the normal and the abnormal human actions in the videos, we
reconstruct, predict and group the poses trajectories. Considered poses as graphs,
our proposed model is based on the graph convolutional networks (GCN), which
is recently applied to many deep learning methods on pose data. To group the
poses trajectories, we use a multi-centers loss to gather the latent features to
their corresponding centers. Moreover, to score the abnormality of the poses,
we propose a new method, applying the confident scores, to evaluate the error
between the output and the original keypoints.

The main contributions of this work are listed as follows:

– We propose a temporal poses autoencoder (TP-AE) framework (Fig. 1) to
reconstruct and predict the poses trajectories.

– We propose the multi-centers loss function to cluster the latent features of
the poses trajectories.

– We propose a novel anomaly score involving the confidence scores of pose esti-
mation, to reduce the influence brought from the falsely detected keypoints.

2 Related Work

Anomaly Detection on Image Data. Anomaly detection on image data is
usually considered as an one-class classification problem. Lukas et al. in [1] used
a CNN model to gather the features of the normal images to a center and then
detected the outliers by the distance between the features and the center. Schlegl
et al. in [4] used a GAN model so that the generator learnt to construct, from
the random latent vectors, the images similar to the normal class, while the
abnormal images would not able to be constructed.

Appearance-based Anomaly Detection on Video Data. To detect
anomaly events in videos, most of the current works are based on the appear-
ance of the frames. To extract the temporal information, the motion information
such as optical flows are often used. Liu et al. in [5] used a CNN U-net model to
predict the future image from a sequence of frames. To improve the prediction,
the intensity difference, gradient difference, optical flows and the GAN structure
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Fig. 1. Architecture of TP-AE model. After the pose estimator evaluates the keypoints
and their confidence scores, the poses are separated into global and local information.
The yellow pipeline is consisting of fully-connected layers and is to reconstruct and
predict the global information. The blue and red parts are the GCN-based layers which
reconstruct and predict the local information. The green pipeline, based on linear
functions, produces weights to assist the TCWG blocks. The total loss function is
composed of the errors of the reconstruction/prediction and the loss of multi-centers
clustering.

are also used. Nguyen et al. in [6] predicted the optical flow by a single frame.
Chang et al. in [2] predicted the difference between frames and reconstructed,
clustered them in the same time.

Pose-based Anomaly Detection on Video Data. As the appearance-based
methods, pose-based anomaly detection also focused on reconstruction or predic-
tion. Morais et al. in [7] first separated the poses into global and local informa-
tion. Then the RNN-based model reconstructed the input poses and predicted
the future poses. Based on 1D-CNN, Rodrigues et al. in [8] proposed a multi-
timescale model to make future and past predictions at different timescales.
Markovitz et al. in [3] used GCN-based autoencoder to reconstruct the poses
trajectories, while the point of this work was the grouping of the latent features
by the Dirichlet process mixture model (DPMM). Different from the above error-
based anomaly scores, the normality score of each sample was computed by its
log probability using the fitted model.

Referring to [7] and [8], our model also reconstructs the inputs and predicts
the future pose trajectories, while different from them, we use GCN-based net-
works and apply confidence scores of the keypoints to the networks and to the
computation of anomaly scores. Moreover, we add a loss function to group the
pose trajectories unsupervisedly.
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3 Proposed Model

In this section, we present the details of our method. As [7] and [8], we estimate
the human poses trajectories by applying poses detector and human tracker to
the dataset. In addition, we preserve the confidence scores of the keypoints for
later usage. To detect anomalies, we first train a model to reconstruct and predict
poses on the training videos which contain only normal human behaviors. Then
we apply the model to the testing videos to detect anomaly behaviors by the
performance of the reconstruction and prediction. Instead of RNN or CNN, our
proposed model, temporal poses autoencoder (TP-AE), is based on GCN and
applies confidence scores to alleviate the problems of missing nodes. Moreover, to
further improve our model, we use the multi-centers SVDD loss function to group
the latent vectors. Finally, applying the confidence scores again, we propose a
new score to detect anomalies.

3.1 Confidence-weighted Graph Convolution Network

To reduce the influence of the keypoints with low confidence scores, we use
the confidence-weighted graph convolution network (CWGCN) [11]. Before we
introduce CWGCN, let’s recall the function of the classical GCN. For a graph
G = (V,E), where V is the set of N vertices and E are the edges, including
all the self-loops. Then E induces an adjacency matrix A ∈ {0, 1}N×N . Let
X ∈ R

F×N be the input of the GCN, where F is the dimension of the feature
vector of each vertex. Then the output of the GCN is

X = WX ˜A , (1)

where W ∈ R
F ′×F is a learnable matrix, F ′ is the number of features of the next

layer, and ˜A denotes the column normalization of A, that is, for each i, j,

˜Ai,j =
Ai,j

∑N
k=1 Ak,j

. (2)

In (1), we can observe that the output feature vector of the j-th vertex is X ,j =
W (X ˜A) ,j , where

(X ˜A) ,j =
1

∑N
k=1 Ak,j

N
∑

i=1

X ,iAi,j (3)

is the average of {X ,i|(i, j) ∈ E}; in the other words, all the jointed vertices
have the same influence on X ,j .

However, in case some input vertices have lower confidence scores, those
unreliable features shouldn’t have the same influence as others. Therefore, we
take the confidence score as a weight to indicate the influence of each vertex.
Let {ci}Ni=1 be the confidence scores and C = diag{ci}. Then the output of the
CWGCN is

X = WX˜CA , (4)
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where ˜CA denotes the column normalization of CA, that is,

˜CAi,j =
ciAi,j

∑N
k=1 ckAk,j

. (5)

In this case, X ,j is determined by

(X˜CA) ,j =
1

∑N
k=1 ckAk,j

N
∑

i=1

X ,iciAi,j , (6)

which is the weighted average of {X ,i|(i, j) ∈ E}.

3.2 Temporal Confident Weighted Graph Convolution

To consider a single pose P = {Pi|1 ≤ i ≤ N} as a graph, it is natural to regard
the keypoints as vertices and the skeletons as edges, including all the self-loops.
However, when things comes to a sequence of poses, various strategies might be
taken. Our definition is as follow.

First we define some notations. Let S ⊂ N2 denote the set of indices of the
skeletons of a pose, that is, (i, j) ∈ S if the i-th and the j-th keypoints are
jointed. For a poses trajectory {Pt}Tt=1 = {Pt,i|1 ≤ t ≤ T, 1 ≤ i ≤ N}, we define
the temporal poses graph by TG = ({Pt,i}, TS), where Pt,i is the i-th keypoint
in the time t and

TS = {(t1, i, t2, j)|t1 ≤ T, t2 ≤ T, (i, j) ∈ S} . (7)

In other words, a keypoint Pt1,i is jointed to every Pt2,j with (i, j) ∈ S, for any
t1 and t2.

Next, let P 1 and P 2 be two poses trajectories with time-lengths T1 and
T2, respectively. For further usage, we are going to define the “temporal edges”
between P 1 and P 2 by an analogous definition of TS above, that is, the keypoints
P 1
t1,i

∈ P 1 and P 2
t2,j

∈ P 2 are jointed if (i, j) ∈ S. More specifically, the temporal
edges are defined by

TE = {(t1, i, t2, j)|t1 ≤ T1, t2 ≤ T2, (i, j) ∈ S} . (8)

Note that the adjacency matrices of TE can be simply derived by AS , the
adjacency matrix of S. First we rearrange the index of the keypoints by

Pt,i ∼ P rearrange
(t−1)∗N+i . (9)

Then if AS
i,j = 1, that is, (i, j) ∈ S, we have P rearrange

(t1−1)∗N+i and P rearrange
(t2−1)∗N+j are

jointed for any t1 and t2. Therefore, ATE , the adjacency matrix of TE, is a
(T1 ∗ N) by (T2 ∗ N) matrix generated by repeating AS (T1 × T2) times. For
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example, if N = 3, AS =

⎛

⎝

1 1 0
1 1 1
0 1 1

⎞

⎠, T1 = 2 and T2 = 3, then

ATE =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

Following the above result, if we apply ATE to GCN or CWGCN, the
time-lengths of the input trajectory and the output trajectory can be dif-
ferent. This benefits the GCN-based models when doing poses prediction or
using an autoencoder architecture. However, it also leads to a problem that
the outputs X ,(t1−1)∗N+i and X ,(t2−1)∗N+i are the same for any t1 and t2
since ATE

i,(t1−1)∗N+i = ATE
i,(t2−1)∗N+i, which means the output poses are the same

regardless of time.
To correct this problem, we design the temporal confidence weighted graph

convolution network (TCWGCN) as follows. Let X ∈ R
F×T1N be the input of

the TCWGCN and C ∈ R
T1N be the confidence scores, where F is the number

of the input features, T1 is the input time-length and N is the number of nodes.
Let F ′ be the number of the output features, T2 be the output time-length. The
output of the TCWGCN at the time point t is

Xt = W tXC̃ATE , (11)

where each W t ∈ R
F ′×F is a learnable matrix for the time t, 1 ≤ t ≤ T2. In

addition, we also define the temporal graph convolution network (TGCN) to be
the TCWGCN with all scores are replaced by 1.0.

3.3 Network Architecture

As [7], our model first separates each pose into global and local parts. Let B be
the bounding box of the pose P = {Pi}Ni=1. The global information of P is a
4−dimensional vector PG = (w, h, x, y) formed by the width w, the height h and
the center (x, y) of B. Then the local information PL is obtained by regularizing
P by PG, that is,

PL
i = (

Pi,x − x

w
+ 0.5,

Pi,y − y

h
+ 0.5), (12)

where (Pi,x, Pi,y) = Pi.
As shown in Fig. 1, the TP-AE model contains 3 pipelines: the global pipeline,

the local pipeline and the confidence score pipeline. The global and the local
pipelines aim to reconstruct and predict the global and the local information, so
each contains one encoder and two decoders. On the other hand, the confidence
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Fig. 2. (a) TCWG and TG block (b) Linear block

score pipeline contains only one encoder and one decoder since the prediction of
the confidence scores is unreasonable.

The global encoder and decoders are composed of fully-connected layers,
while the local encoder and decoders are composed of TCWG blocks or TG
blocks. As shown in Fig. 2 (a), each TCWG block (or TG block) contains three
TCWGCNs (or TGCNs). As [10], we use residual blocks, and each TCWGCN
is followed by a batch normalization and a ReLU activation. In the encoder, the
first TCWGCN in each block may remain or half the time-lengths of the inputs,
while in the decoders the first TCWGCN may remain or double the time-lengths.

The confidence score pipeline is almost the same as the local pipeline, except
that the TCWGCN’s are replaced by linear functions, and there is no residual
block (Fig. 2 (b)). As a result, the midterm outputs, as simulated confidence
scores, can be passed to all the TCWGCN’s in the local pipeline.

3.4 Loss Function

In our model, the total loss function consists of AE-Loss and the multi-centers
loss.

The AE-loss is the combination of the loss of pose estimation errors and the
loss of the confidence scores. The loss of pose estimation errors is determined by
the error between the estimated and the real poses. As [8], the error of a pose is
the weighted mean square error

e(P ) =
N

∑

i=1

ci
∑N

k=1 cK

(

Pi − P̂i

)2

, (13)

where ci is the i-th confidence score, Pi and P̂i are the real and the estimated
i-th keypoints of P , respectively. Then the loss of pose estimation errors is given
by

Lp =
1

|REC|
∑

b∈REC

e(P̂ b) +
1

|PRED|
∑

b∈PRED

e(P̂ b) , (14)

where REC and PRED are the sets of indices of the reconstructed and the pre-
dicted poses.
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On the other hand, we use L2-loss to evaluate the reconstruction loss of the
confidence scores Lc.

Lc =
1

|REC|
N

∑

i=1

1
N

(

cbi − ĉbi
)2

, (15)

Then the AE-loss is
LossAE = λpLp + λsLc . (16)

Consider a pose trajectory as an action, we propose to include unsupervised
action grouping to facilitate the detection of abnormal human actions. The clas-
sifier, training by the normal actions, should consider the abnormal actions as
outliers of all the groups.

Let {yi} denote the latent features extracted by the encoders, and yi be the
vector formed by concatenating the outputs of the local and global encoders.
Inspired by the SVDD loss in [1], we define the multi-center loss function by

Lossmc =
1
n

n
∑

i=1

min
1≤d≤D

‖yi − centerd‖2 , (17)

where centerd is the center of the d-th group and D is the number of groups.
From (17), it is obvious that the action xi is assigned to the d-th group if centerd
is the closest center to xi’s latent feature yi. While minimizing Lossmc, all the
latent features of the actions belonging to the d-th group would be gathered to
centerd. As a result, the model would learn to classify the actions.

In the first 20 training epochs, only LossAE is used to warm up the model.
Then all the {centerd}’s are initialized by applying K-Means on the latent vectors
{yi} and they are updated for every 5 epochs. Then the total loss function is
defined by

Losstotal = LossAE + λmcLossmc . (18)

3.5 Anomaly Detection

Similar to most of the works on anomaly detection of human action videos, we
evaluate the accuracy of anomaly detection at frame level. Similar to [7] and [8],
the anomaly score of a frame F is the maximum of the anomaly scores for the
human poses in this frame, that is,

Score(F ) = max
Pt∈F

score(Pt) . (19)

In this paper, score(Pt) is composed of the score of errors, scoree, and the score
of grouping, scoreg.

Let P = {Pt}T1+T2
t=1 be a pose trajectory, where T1 and T2 are the time-

lengths of inputs and predictions, respectively, and the pose Pt is composed of
the keypoints {Pt,k}Kk=1. Let ct,k be the confidence score of Pt,k, both given by the
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pose estimator, and let P real
t,k denote the “real” location of the k-th keypoint of

Pt. In general, lower the confidence score ct,k, longer the distance ‖Pt,k −P real
t,k ‖.

Therefore, we assume that there is a high possibility that P real
t,k is lied in a

circle with center Pt,k and radius Rt,k, which is inversely proportional to ct,k.
We call Rt,k the confidence radius and define it by

Rt,k =
β

100 ∗ ct,k
. (20)

Under this assumption, the error of reconstruction or prediction of Pt,k should
be ignore during anomaly detection if it is less than Rt,k.

Moreover, let f denote the TP-AE model and f(P ) denote the output of f
with input {Pt}T1

t=1. Since P real is around P , the output f(P real) should lie in
a neighborhood Nb of f(P ), while in case P has detection errors, the distance
of f(P real) and f(P ) could be large. Therefore, a large size of the neighborhood
Nb should represent a higher “tolerance” of the reconstruction/prediction errors.
Now we use rt,k to simulate the radius of the neighborhood of f(P )t,k and call
it the simulated confident radius.

To estimate rt,k, let P + R be the pose trajectory consisting of the poses

Pt + Rt = {Pt,k + (Rt,k, Rt,k)}Kk=1 , (21)

that is, Pt + Rt is one of the farthest “neighbor” of P and is standing on the
border of the region in where P real

t is lied. Therefore, f(P +R) can be considered
as the trajectory staying on the border of the above neighborhood. Then rt,k is
defined by

rt,k = ‖f(P + R)t,k − f(P )t,k‖1 . (22)

Fig. 3. Confidence radius and simulated confidence radius. After computing the confi-
dence radius of the gray pose trajectory P , the red pose trajectory P +R is one of the
farthest “neighbor” of P . Then the simulated confidence radius is given by the distance
between f(P ) and f(P + R).

Now we define the error of the output P̂t by

e′(P̂t) =
K

∑

k=1

‖P̂t,k − Pt,k‖1
Rt,k + rt,k

. (23)
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In addition, to bridge the gap between the large size pose and small size pose,
we normalize the pose error by the pose height h(Pt) as follows:

ē(P̂t) =
e′(P̂t)
h(Pt)

. (24)

Thus, the anomaly score of errors of a pose Pt is defined by

scoree(Pt) =
1

|B|
∑

b∈B

ē(P̂ b
t ) , (25)

where {P̂ b
t }b∈B are the reconstructions and the predictions of Pt with the index

set B.
On the other hand, since the TP-AE model has learned to group the normal

actions by Lossmc (17), an abnormal action can be detected if its latent feature
is far away from all the centers. Therefore, the anomaly score of grouping of Pt

is defined by

scoreg(Pt) =
1

|B|
∑

b∈B

min
1≤d≤D

‖yb − centerd‖2 . (26)

Finally, the total anomaly score of pose Pt is given by

score(Pt) = λescoree(Pt) + λgscoreg(Pt) . (27)

4 Experiments

Table 1. Frame-level AUC score of the experiments. * is evaluated by [7]’s open-source
code.

Method Avenue ShanghaiTech

Appearance-based Chang [2] 86.0 73.3

Liu [5] 84.9 72.8

Nguyen [6] 86.9 –

Pose-based Morais [7] 81* 73.4

Rodrigues [8] 82.9 76.0

Markovitz [3] – 76.1

Ours (a) 81.0 76.6

Ours (b) 85.5 69.5
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4.1 Data Preparation

In this paper, we experiment with two of the most widely used datasets for
anomaly detection tasks, namely the ShanghaiTech Campus [12] and CUHK
Avenue datasets [13]. Each of them presents specific challenges due to their
singularity. Here, we present a brief introduction to these datasets.

With 13 different scenes and 130 abnormal events spanning over more than
400 videos, the ShanghaiTech Campus dataset [12] contains more realistic scenar-
ios than other anomaly detection datasets making it very challenging for current
anomaly detection models. This dataset is known for its diversity but equally
important is its complex light conditions and view angles. Also, it includes new,
more challenging anomalies such as chasing and brawling.

Smaller than the ShanghaiTech Dataset, the CUHK Avenue Dataset [13]
consists of 37 video clips (16 for training and 21 for testing) that were captured
on the CUHK campus avenue, hence the name. The training videos only contain
normal situations with a few outliers whereas the testing videos contain both
normal and abnormal ones. The dataset includes anomalous behaviors such as
people running or moving in an unexpected direction as well as challenging
settings like slight camera shake.

Fig. 4. Examples of the detected anomalies (in the red boxes). (a) In Avenue, the one
unnaturally throwing the papers is detected since the model fails to reproduce his pose.
(b) In ShanghaiTech, the one riding on the footway is detected since the model fails to
adapt his speed. (Color figure online)

To estimate the poses trajectories, [7] first utilized AlphaPose [14–16] to
detect poses in the video frames. Then they combined sparse optical flow with
the detected skeletons to assign similarity scores between pairs of skeletons in
neighboring frames. On the other hand, [8] run a human detector and a multi-
target tracker to obtain human trajectories, and run a pose detector to get the
poses and the confidence scores.

Different from them, we directly obtain the poses trajectories and the con-
fidence scores by the poses trackers LightTrack [17] or AlphaPose [14–16]. The
estimated poses contain 15 keypoints for LightTrack and 17 keypoints for Alpha-
Pose. Due to the crowded and staggered people, in some trajectories part of the
poses might missing. Therefore, we construct the missing poses and their confi-
dence scores by interpolation.
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4.2 Implementation Details

For Avenue dataset, we apply LightTrack, and set the time-lengths T1 = 8 of
the input, T2 = 4 of predicted poses, D = 5, the number of the groups, and
λg = 5. For ShanhhaiTech, we apply AlphaPose, and set T1 = T2 = 4, D = 5
and λg = 0.1. For both dataset, λp = λs = 1, λmc = 0.01, β = 0.1 and λe = 1.
Moreover, before the total AUC of the 12 scenes in ShanhhaiTech is counting,
we linearly transform the anomaly scores of frames in a scene so that the lowest
anomaly score is 0 and the top 0.5% score becomes 1.

4.3 Results and Discussion

In Table 1, we compare our method with [2,3,5–8]. The scores represent the
frame-level AUC.

Fig. 5. (a) The running man is a failed case that the pose estimator and the human
tracker are failed. (b) The bike is a failed case since our model has no information
about it. (c) The dancing man is hard to be considered as anomaly unless he waves
arms significantly. The upper images of (b) (c) show the poses given by the pose
estimator; the bottom images of (b) (c) show the output poses of our model.

Specially, we present two results for our method. Ours(a) is implemented as
mentioned above, while Ours(b) does not use equation (24), that is, the poses
errors are not normalized by the poses’ heights when computing the anomaly
scores, which is similar to the pose-based methods [8] and [8]. In fact, in the
Avenue dataset, most of the abnormal people are relatively close to the monitor
and have larger sizes. Therefore, (24) will decrease their anomaly scores. As a
result, though Ours(a) is more reasonable, it has a lower accuracy of the anomaly
detection on Avenue dataset.

[2,5,6] are methods based on the appearance and the optical flows of the
frames. By contrast, [3,7,8] and our method are at a disadvantage since there is
no information about the abnormal vehicles can be extracted from the human
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poses. However, all the pose-based methods perform better on ShanghaiTech
and the AUC score of our method is only 1.4 less than [6] on Avenue.

Comparing with previous pose-based methods, our method performs 2.6%
better than [8] on Avenue (85.5 vs 82.9), and 0.8% better than [3] on Shang-
haiTech (76.6 vs 76.1).

Case Discussion. Fig. 5 shows some failed cases and a hard example.
The anomaly in Fig. 5 (a) is a running man who moves too fast so that the

human tracking is failed and since his appearance is a little bit blurred, the pose
estimator cannot find him in some frames. As a result, this man is got rid of the
pose data in our experiments, so the anomaly detection failed.

The anomaly in Fig. 5 (b) is a man walking a bike. Since he is walking like
others and his speed is normal, our model considers his action normal. Therefore,
the anomaly detection failed because of lack of information about the bike.

Figure 5 (c) is a hard example. The anomaly is a man dancing in place. Our
model detects the anomaly only when he waves his arms. On the other hand,
since the appearance is a normal human and his speed is not obvious, it is much
more difficult for appearance-based anomaly detection methods, which usually
rely on the appearance and the optical flows of the frames.

In conclusion, (a) and (b) shows the weakness of pose-based methods, that is,
the abnormal object has to be detected by the pose estimator. On the other hand,
(c) shows an advantage of pose-based methods that it helps to find anomalies
which are irrelevant to the objects’ appearance and speeds. Combining the two
types of methods and extracting their respective strengths can be the future
research direction.

4.4 Ablation Study

Table 2. AUC of the experiments with/without lossmc and scoreg, and the experi-
ments of replacing (23) by (13).

Grouping scoree Avenue ShanghaiTech

(13) 76.7 74.0

� (13) 77.5 73.3

(23) 81.1 74.2

� (23) 85.5 76.6

Table 2 depicts the result of the ablation study. We first examine the effect of the
multi-center grouping. If the model does not group the latent features, that is,
lossmc and scoreg are not used, the AUC decreases 4.4% on Avenue and 2.4%
on ShanghaiTech.



Confidence-Aware Anomaly Detection in Human Actions 253

[8] uses equation (13) to evaluate the anomaly scores from the errors of
reconstruction or prediction, so we do the experiments that (23) is replaced by
(13). In this case, Table 2 shows that the AUC decrease 8.0% on Avenue and
3.3% on ShanghaiTech.

5 Conclusion

In this work, we present a GCN autoencoder model to reconstruct and predict
the pose trajectories in the videos. In this model, we also group the actions
by gathering the latent features to the group centers. In addition, we develop
the new anomaly score weighted by the confidence radii to detect abnormal
human actions. Our experimental results show that we achieve the state-of-the-
art accuracy among all the pose-based anomaly detection methods.
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