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Abstract—Near-duplicate video retrieval (NDVR) is an impor-
tant and challenging problem due to the increasing amount of
videos uploaded to the Internet. In this paper, we propose an
attention-based deep metric learning method for NDVR. Our
method is based on well-established principles: We leverage two-
stream networks to combine RGB and optical flow features,
and incorporate an attention module to effectively deal with
distractor frames commonly observed in near duplicate videos.
We further aggregate the features corresponding to multiple
video segments to enhance the discriminative power. The whole
system is trained using a deep metric learning objective with a
Siamese architecture. Our experiments show that the attention
module helps eliminate redundant and noisy frames, while
focusing on visually relevant frames for solving NVDR. We
evaluate our approach on recent large-scale NDVR datasets,
CC WEB VIDEO, VCDB, FIVR and SVD. To demonstrate the
generalization ability of our approach, we report results in both
within- and cross-dataset settings, and show that the proposed
method significantly outperforms state-of-the-art approaches.

Index Terms—Near-duplicate video retrieval, video copy de-
tection, deep metric learning, large-scale evaluation

I. INTRODUCTION

Near-duplicate video retrieval (NDVR) has received great
attention in recent years due to an increasing number of illegal,
pirate videos uploaded to the Internet. These videos contain the
content of original videos but make them look subtly different
in order to sidestep automatic copy detection systems. This is
commonly done by applying various tricks such as changing
the aspect ratio, scale, color, frame rate, and applying padding
and overlaying text. Some smart combinations of these can
make it difficult to detect near-duplicate videos.

NDVR has been well-studied in the literature. In 2008,
NIST launched the Content-based Copy Detection (CCD)
challenge [1]. Several algorithms were proposed to compete in
the challenge and near-perfect performance has been reported
just under four years [2]. Therefore, NDVR was once treated
a solved problem. However, recent large-scale real-world
datasets, such as VCDB [3], FIVR [4] and SVD [5], have
shown that traditional approaches to NVDR are ineffective in
dealing with highly complex nature of the real-world copy
patterns. This made the community reconsider NVDR as a
challenging problem again.

In this work, we focus on addressing three key challenges in
the real-world NVDR. First, traditional approaches [2], [6], [7]
typically compare videos at the frame-level and require post-
processing to aggregate per-frame results, e.g., the temporal
alignment network [8]. To capture the temporal context, we
build our network based on a two-stream architecture that

combines RGB and optical flow features. Second, real-world
duplicate videos often contain frames that are noisy – i.e.,
frames heavily edited from the original content – and irrele-
vant – i.e., unrelated frames deliberately inserted to circumvent
copy detection. To deal with this, we develop an attention-
based video encoder that aggregates frame-level information
while avoiding noisy and irrelevant frames. Lastly, traditional
“modularized” systems that combine separately developed
components, e.g., [9], are ineffective in dealing with the
complex patterns in real-world NVDR. To learn the real-world
copy patterns, we design our architecture to be a Siamese
network and train it with a triplet ranking loss based on a real-
world database containing pairs of original and copy videos.

Our approach has several benefits over the traditional,
frame-wise, and modularized methods [2], [6], [7], [9], [10].
Our network combines both RGB and optical flow information
into our video representation. This makes our approach robust
to “static” distractors – e.g., black padding and text overlay –
that are difficult to rule out only from RGB features. Also,
our approach does not require post-processing and instead
learns how to aggregate frame-level features via attention.
We show that our approach achieves state-of-the-art results
on challenging real-world NVDR datasets.

Our main contributions include: 1) We propose a two-
stream approach to utilize RGB and optical flow features
to learn discriminative video representation for NVDR; 2)
We incorporate an attention module to aggregate the most
relevant information for NVDR; and 3) we propose an ef-
fective feature aggregation approach to further enhance the
discriminative power in our representation. We show that
our method achieves the state-of-the-art result on VCDB [3],
FIVR [4], and CC WEB VIDEO [11] datasets.

II. RELATED WORK

NVDR methods typically consist of feature extraction and
similarity search. Most methods focus on extracting discrim-
inative features to improve the performance. Two types of
features have been popular: local features and global features.
Local features, such as SIFT [12] and local binary pattern
(LBP) [13], preserve detailed information useful for detecting
copy sequences but require a high computational cost and a
large storage space. On the other hand, global features, such
as color histogram, can tolerate some noisy frames but are
sensitive to image shift and the padding of black margins.



A. Local feature-based methods

Douze et al. [2] extract SIFT and center-symmetric local
binary pattern (CS-LBP) [14] features from every frame and
match them with candidate copy segments. Jiang et al. [3]
implement a system using SIFT descriptors and standard bag-
of-words representation on every frame. In addition, they
also use an inverted file structure to index SIFT features
and exclude incorrect matches with geometric verification
using weak geometric consistency (WGC). Finally, a temporal
network finds the copied segment. Zhang et al. [15] use the
fast CenSurE keypoint detector and BRIEF descriptors, and
propose Binary Temporal Alignment to efficiently find a match
between a reference and query videos. To compress the size
of SIFT descriptors, Zhu et al. [16] propose the temporal-
concentration SIFT (TC-SIFT) by tracking the SIFT features
only at representative frames.

B. Global feature-based methods

Wu et al. [11] calculate a color histogram for every
keyframe of a video as global signature. Esmaeili et al. [17]
generate temporally informative representative images (TIRIs)
from a video sequence, which contain spatial and temporal
information. Uchida et al. [18] utilize an efficient DCT sign-
based global feature to detect copy sequence. Guzman et
al. [19] propose an approach based on multiple descriptors
and use reinforcement learning to train the decision module.

Traditional NVDR methods aggregate frame-level features
into video-level representation using Global Vector (GV) [11]
and Bag-of-Words (BoW) [20]. GV averages frame-level fea-
tures, treating every frame equally, while BoW maps every
frame feature to a visual codebook and aggregates them as
either a histogram or TF-IDF to obtain video-level representa-
tion. However, GV can easily be dominated by high-frequency
patterns that appear across videos regardless of copy content,
and thus have low discriminative power. Although BoW takes
visual-word importance into account, e.g., by computing TF-
IDF, it is sensitive to the dataset used to create the visual
codebooks. In this work, we use an attention mechanism to
aggregate frame-level features into video-level features.

C. CNN feature-based methods

Jiang et al. [21] propose two baselines using CNN features,
standard CNN and Siamese CNN (SCNN). The standard
CNN uses features extracted from an ImageNet pre-trained
AlexNet [22], while SCNN uses copy/non-copy image patch
pairs as training data and the contrastive loss as the objective
function. Kordopatis et al. [4] use intermediate convolutional
layers as feature descriptors. Additionally, two-layer aggre-
gation techniques, vector aggregation and layer aggregation,
are proposed to combine features from different layers. Wang
et al. [23] obtain compact video representation from CNN
features using principal component analysis (PCA) and sparse
coding. Kordopatis et al. [24] use a video triplet as input to
CNN and train it with a triplet loss to ensure that a positive-
query distance is smaller than a negative-query distance.

In contrast to using a single feature, many algorithms
utilizing multiple features are proposed in the recent years.
Song et al. [6] argue that a single source of features is
insufficient to represent video content. Therefore, Multiple
Feature Hashing (MFH), which uses the local information
(LBP) and global features (color histogram), are exploited for
video representation.

In this paper, we use both RGB and optical flow to integrate
spatial and temporal information. We incorporate an attention
module to aggregate frame-level features into a global video
representation while filtering out irrelevant information. We
further enhance our video-level representation with multiple
features induced by multi-head attention. In addition, we use
online hard negative mining to encourage our network to learn
from difficult examples.

III. PROPOSED METHOD

In this work, we aim to learn robust and discriminative
video representation for real-world NVDR. Fig. 1 provides an
overview of our network architecture. We uniformly sample
frames from an input video and feed them into our feature
extractors to compute RGB features and optical flow features.
Real-world video copies often contain frames that are noisy
and sometimes even irrelevant to the original video. To avoid
these redundant features dominating the video feature, we
incorporate an attention module to aggregate frame-level fea-
tures into a global representation while avoiding noisy and ir-
relevant frames. In particular, we employ multi-head attention
to derive multiple video-level representations, each attending
to different parts of an input video. We train our network in a
Siamese fashion to encourage the distance between a pair of
duplicate videos to be closer than non-copy pairs.

A. Frame-Level Representation
To deal with videos of variable length, we uniformly sample

M frames from a video and use Inception-V3 [26] pretrained
on ImageNet [27] to extract frame-level RGB features. More
specifically, the set of local frame-level features is formed by
XRGB = (x1,x2, . . . ,xM ), where XRGB ∈ RDRGB×M . We
take the output of the last adaptive average pooling layer to
obtain the RGB features, DRGB = 2048. Inception-V3 is
based on a varying size of convolutional kernels, and thus
helps capture both low-level features (texture, shape) and
high-level features (abstract concepts about objects), which is
adequate for video copy detection.

Optical flow features have been shown to play an important
role in video tasks, such as action recognition [28], [29]. In
addition to RGB features, we use FlowNet 2.0 [30] pretrained
on MPI-Sintel [31] to extract optical flow features Xflow ∈
RDflow×M , Dflow = 1024. We combine XRGB and Xflow

by an attention module to form the final video representation,
which we describe next.

B. Video-Level Representation
Real-world NVDR is challenging due to noisy (e.g., heavily

edited and/or affine transformed) and irrelevant (e.g., deliber-
ated inserted to circumvent detection) frames in copied videos.



Fig. 1: We use a two-stream network to combine RGB and optical flow, and incorporate multi-head attention with shifting
operations to aggregate features from the most relevant frames. We train our network in a Siamese fashion with a margin-based
triplet ranking loss.

Fig. 2: Illustration of our attention module. It consists of Natt
attention heads (defined as 1D conv + SoftMax) and outputs a
Natt×M attention maps. We apply the shifting operation [25]
to aggregate the D×M input features into D×Natt features.

Also, the variability in video lengths makes it difficult to
detect copied segments: Video lengths vary from just a few
seconds to several minutes/hours, and copied segments can
appear only partially in long videos. Intuitively, not all frames
are necessary to solve NVDR; it is rather beneficial to focus
on a few most relevant frames/segments.

Neural attention mechanisms have been shown to be ef-
fective at learning representations that focus on the most
relevant part of the input signal [25], [32]–[34]. Motivated
by this, we incorporate an attention module to find the most
relevant frame-level features and aggregate them to get robust
video representation. Especially, we adopt multi-head attention
clusters [25] to aggregate frame-level features and form a
video-level enriched feature set (EFS).

Our attention module, shown in Fig. 2, is composed of Natt
attention heads based on a 1D convolutional layer followed by
a softmax layer (we set Natt = 4 in all our experiments). Each
of the Natt attention heads sums up to 1.0 and determines

the weights among the frame-level features in the video-level
representation,

v = X · a, (1)

where a is an M -dimensional attention vector. X can be
either XRGB or Xflow and thus the aggregated feature v is
of dimension DRGB or Dflow accordingly. To prevent the
attention units from focusing on similar signals, we adopt the
shifting operations [25] and modify Equation 1 as follows:

v =
α ·Xa+ β√

Natt‖α ·Xa+ β‖2
, (2)

where α and β are learnable parameters and act as a linear
transformation in the feature space. The transformed feature
is first L2 normalized and then undergoes another global L2

normalization among all attention units by the factor of 1√
Natt

.
Intuitively, the shifting operation enables different attention
units to diverge from each other and the scale-invariance
facilitates the optimization of the network.

To obtain the EFS, we concatenate Natt outputs of the
attention module and partition it into K parts of equal length.
The split feature vectors are then passed to K fully connected
layers to obtain the final feature set for the NDVR task. Note
that when Natt < K, the individual features in EFS only attend
to part of input video, while in the case of Natt > K, the in-
dividual features further aggregate the outputs of the attention
module to form more condensed representation. Under such
setting, the EFS is comprised of multiple features that attend to
different levels of granularity of the video-level representation
according to the number of K. We empirically show how
different K affects the performance in our experiments.

C. Distance Metric

We adopt the cosine distance to measure the similarity
between a query video Q and a reference video R,

Dist (fθ(Q), fθ(R))) = 1− fθ(Q) · fθ(R)
||fθ(Q)||2 · ||fθ(R)||2

(3)



where fθ represents the embedding function. Because we are
using multiple features from EFS that focus on different parts
of videos, we compute the distance between videos differently
during training and testing. During training, we aggregate the
distances computed over multiple features as

Disttrain (Q,R) =
K∑
i=1

Dist (fi(Q), fi(R)) , (4)

where fi represents the i-th embedding feature, and K repre-
sents the size of the enriched feature set.

On the other hand, during testing, we find only the closest
features to be the distance for video copy detection.

Disttest (Q,R) = min
∀0≤i,j<K

Dist (fi(Q), fj(R))). (5)

We consider a query video Q a duplicate of R if the distance
is smaller than a predefined threshold; we set it to 0.5.

D. Loss Function

To learn an embedding space in which near-duplicate videos
have closer distance than dissimilar videos, we design our
objective function to enforce the following constraint:

Dist
(
fθ(Q), fθ(R+)

)
< Dist

(
fθ(Q), fθ(R−)

)
,

∀Q,R+,R−
{
Q,R+ are NDV pair
Q,R− are non-NDV pair

(6)

We use the adaptive margin-based loss [35] to define our
objective function. As shown in Wu et al. [35], the standard
contrastive loss for metric learning defines a constant margin
for all pairs of negative samples, which forces them to be
embedded in the same space as the positive samples. On the
other hand, the standard triplet ranking loss is computed over
O(n2) pairs or O(n3) triplets of samples, which is compu-
tationally expensive, and most samples do not contribute to
learning once the network starts to converge.

The adaptive margin-based loss combines the benefits of
the contrastive loss and the triplet ranking loss: it allows
the embedding space to be arbitrarily distorted similar to the
ranking loss, yet it enjoys the computational efficiency of the
contrastive loss. Our loss is defined as

Lmargin(fθ(Q), fθ(R)) = max{0, γ+yQR(DQR−δ)}. (7)

where D is the cosine distance between video Q and R in
our embedding space, γ controls the margin of separation, δ
determines the boundary between NDV pair and non-NDV
pair, and yQR ∈ {−1, 1} is a label indicating the relationship
between Q and R.

How should we select R−? Negative sampling is challeng-
ing for NVDR due to the imbalanced nature of the problem.
The total number of negative samples (dissimilar video pairs)
is far higher than that of positive samples (near duplicate
videos). Moreover, most of the negative samples are easy
examples and thus do not contribute much to learning. Here,
we apply online hard negative mining [36] to sample negatives
in every mini-batch. To do this, we compute the pairwise

distance between every pair of samples in a mini-batch and
select the ones with the smallest distance. This helps our
network converge faster and learn discriminative features.

E. Implementation Details

To form the local feature set of an input video, we uni-
formly sample 500 frames to extract the color and optical
flow features, except for the SVD dataset [5] where we set
M = 100 because it is mainly composed of short video
clips. As for data augmentation, we apply dropout to the
input frames by randomly selecting up to 80% of the input
frames and setting the corresponding frame-level features to
zero. This encourages the network to make predictions based
on different parts of videos. We train our model using the
Adam optimizer with a learning rate of 1 × e−4, and weight
decay of 1 × e−4. The size of mini-batch is set to 256 and
we train our network on one NVIDIA GTX 1080Ti GPU for
20,000 iterations. The network is trained end-to-end except
for the pre-trained RGB/flow feature extractors, which we
freeze their weights throughout training. Based on preliminary
experiments, we fix γ = 2.0 and δ = 1.2 of Equation 7
throughout the experiments.

IV. EXPERIMENTS

We conduct experiments on three public datasets and com-
pare our proposed approach with state-of-the-art methods.

a) VCDB [3]: This dataset has two parts: the “core”
part contains 528 videos and 9,236 copy segment pairs, and
the “distractor” part contains additional 100K videos that do
not contain copied segments and merely serve as background
distractor. All the videos are crawled using 28 query keywords.

b) FIVR-200K [37]: This dataset contains 225,960
videos collected from YouTube. The videos are categorized
into three types: duplicate scene videos (DSV), complementary
scene videos (CSV), and incident scene videos (ISV). We
focus on the DSV subset that includes 7,257 videos.

c) CC WEB VIDEO [11]: This dataset contains 12,790
videos collected from YouTube, Google Video, and Yahoo
Video. It contains 3,481 near-duplicate videos, categorized
into formatting duplicates that contain the same content with
different encoding format, frame rate, bit rate, and frame
resolution, and content duplicates that contain photometric
variations, editing, and pixel modifications.

d) SVD [5]: This dataset is divided into three subsets:
The “query set” contains 1,206 videos. The “labeled set”
contains 34,020 videos (10,211 positive and 26,927 negative
labeled video pairs). The “probable negative unlabeled set”
contains 526,787 negative videos without human annotation.
All videos are collected from Douyin.

We follow the suggested evaluation protocol of each dataset.
For VCDB, we measure the segment-level precision (SP),
recall (SR), and F1 score between SP and SR:

SP =
|correctly retrieved segments|
|all retrieved segments|

, (8)

SR =
|correctly retrieved segments|

|groundtruth copy|
, (9)



TABLE I: Cross-dataset results on VCDB. K is the size of the
enriched feature set used in our method.

Method Trained on Precision Recall F1-score
Hough voting [3] - 0.714 0.448 0.550

Temporal Network [3] - 0.705 0.522 0.596
CNN [21] VCDB - - 0.650

SCNN [21] VCDB - - 0.631
CNN+SCNN [21] VCDB - - 0.645

Compact CNN [23] VCDB - - 0.704
LAMV [38] YFCC100M - - 0.687

Ours (RGB only, K=1) FIVR-200K 0.728 0.691 0.709
Ours (RGB+Flow, K=1) FIVR-200K 0.867 0.610 0.717
Ours (RGB+Flow, K=2) FIVR-200K 0.871 0.631 0.732
Ours (RGB+Flow, K=4) FIVR-200K 0.794 0.685 0.735
Ours (RGB+Flow, K=8) FIVR-200K 0.847 0.674 0.751
Ours (RGB+Flow, K=16) FIVR-200K 0.838 0.660 0.738

F1 =
2 · SP · SR
SP + SR

(10)

For CC WEB VIDEO, FIVR-200K and SVD, we measure
performance by mean average precision (mAP):

AP =
1

n

n∑
i=1

i

ri
, (11)

where n is the number of near-duplicate videos to the query
video and ri is the rank of the i-th retrieved video.

A. Cross-dataset Evaluation

To demonstrate the generalization ability of our method to
different datasets, we conduct cross-dataset evaluation, where
we train a model on one dataset and test it on another.

a) VCDB [3]: We train our model on FIVR-200K and
test it on VCDB. As for the baseline methods, Jiang et al. [3]
introduce two approaches: Temporal Network [8] and Hough
voting [10]; we compare with both approaches. The two
approaches share the same pipeline. First, local SIFT features
are extracted to encode video frames into BoW representation.
The encoded frame signatures of all reference videos are then
indexed in a database. Second, a query video is encoded into
BoW representation to search for frame-level matching results
in the database. Geometric verification is utilized to improve
the matching results. Finally, temporal alignment methods,
such as temporal network and Hough voting, are used to
identify copy segments from frame-level matches.

We also compare with CNN-based approaches: CNN,
Siamese CNN (S-CNN), and fusion of CNN and S-CNN all
use deep features extracted from AlexNet [22] as frame-level
features [21]. LAMV [38] learns a temporal layer to find tem-
poral alignments. Compact CNN [23] takes advantage of CNN
and sparse coding to obtain compact video representation.

Table I shows that our approach achieves competitive results
in comparison with the state-of-the-art methods. Our method
utilizes CNN as our frame-level features and incorporates
an attention module, which helps our model focus on the
most relevant frames and obtain more robust video features.
We also show results with the different numbers of K. Not
surprisingly, using more embedding features generally improve
the performance.

TABLE II: Cross-dataset results on FIVR-200K (mAP). BoW
and LBoW are trained on FIVR-200K, while DML and ours
are trained on VCDB; GV and HC do not require training. K
is the size of the enriched feature set used in our method.

Features Aggregation Method

Hand-crafted

GV BoW LBoW DML HC Ours
HSV 0.167 0.202

N/A

0.163

0.360

-
LBP 0.112 0.158 0.097 -
ACC 0.196 0.240 0.182 -

VLAD 0.294 0.323 0.285 -

CNN (RGB only, K=1) VGG 0.366 0.575 0.710 0.398 0.470 0.462
INC 0.333 0.500 0.608 0.367 0.577

CNN (RGB+Flow, K=1) INC - - - - - 0.596
CNN (RGB+Flow, K=2) INC - - - - - 0.592
CNN (RGB+Flow, K=4) INC - - - - - 0.619
CNN (RGB+Flow, K=8) INC - - - - - 0.627
CNN (RGB+Flow, K=16) INC - - - - - 0.616

b) FIVR-200K [37]: We train our model on VCDB and
test it on FIVR-200K. We compare with five feature aggre-
gation baselines to compute the similarity: Global Vectors
(GV) [11], Bag-of-Words (BoW) [20], Layered Bag-of-Words
(LBoW) [4], Deep Metric Learning (DML) [24] and Hashing
Codes (HC) [6]. GV averages all frame-level features (either
hand-crafted or CNN-based) into a single video representation.
BoW uses visual word to compute the TF-IDF representation.
DML is a supervised method and thus trained on VCDB in
this experiment. HC projects every frame into the Hamming
space and combine them into a video representation.

Table II shows mAP of all the baselines and our method.
It shows that there is an obvious gap between traditional
hand-crafted features and CNN features (both VGG [39] and
Inception-V3 [26]). In addition, we observe further improve-
ment in performance when jointly using RGB and optical flow.

The codebook of BoW and LBoW are trained on FIVR-
200K, which accounts for their superior performance over
other baseline methods. Although our model was trained solely
on VCDB, we can achieve competitive results or outper-
form the BoW baseline. In addition, by increasing the size
of the EFS (K) to 8, our method achieves the best mAP.
Generally, using more embedding features can store more
information which should improve performance. However,
more parameters need to be learned while training the model.
Due to memory constraints, we need to reduce the batch size
for training. As mentioned in Section III-E, we apply hard
negative mining in each batch. Thus, at K=16 we get a lower
mAP due to a smaller batch size of 128.

c) CC WEB VIDEO [11]: Table III summarizes the
mAP of all the baselines and our method. There are two evalu-
ation settings, intra-query and inter-query. The main difference
is that intra-query retrieves videos only from the corresponding
subset of videos crawled using the same keyword. Inter-query,
on the other hand, retrieves videos from the entire dataset,
which is a more challenging setting; it is the same protocol
used in Kordopatis et al. [24]. As shown in Table III, our
method achieves competitive performance in both settings,
outperforming all the baselines in the inter-query setting. This
indicates that our method is robust in a more challenging
scenario with a larger number of candidate videos.



TABLE III: Cross-dataset results (in mAP) on the
CC WEB VIDEO. We report results under two settings:
Intra-query retrieves videos from a subset of videos collected
using the same keyword as the query video; intra-query
retrieves videos from the entire dataset.

Method Trained on Intra-query Inter-query
GV [11] - 0.892 -

BoW [20] - 0.944 -
LBoW [4] - 0.954 0.898

HC [6] - 0.958 -
DML [24] VCDB 0.969 0.934

Ours (RGB only, K=1) VCDB 0.940 0.914
Ours (RGB+Flow, K=8) VCDB 0.964 0.946

TABLE IV: Within-dataset results on FIVR-200k.

Method mAP
GV [11] 0.389

BoW [20] 0.302
LBoW [4] 0.362
DML [24] 0.465

HC [6] 0.468
Ours (RGB+Flow, K=1) 0.527
Ours (RGB+Flow, K=2) 0.532
Ours (RGB+Flow, K=4) 0.550
Ours (RGB+Flow, K=8) 0.583

Ours (RGB+Flow, K=16) 0.602

B. Within-dataset Evaluation

a) FIVR-200K [37]: We split the FIVR-200K dataset
into train and test splits, according to [37], and train/test our
model on them. Following [37], we use ImageNet-pretrained
VGG features [39] for all the baselines; ours use ImageNet-
pretrained Inception-V3 features [26]. Table IV shows that our
approach significantly outperforms the baseline methods by
a large margin, including BoW and LBow. Compared with
the best performing baseline, Hashing Codes [6], our method
yields a significant improvement of 0.13 in mAP.

b) SVD [5]: Following [5], we select 1,000 query videos
and their corresponding labeled videos as a training set. The
remaining 206 query videos are utilized as the test set. During
testing, the corresponding labeled videos of the 206 query
videos and the probable negative unlabeled set are utilized as
the database. As shown in Table V, when only the labeled
set is included in the database, our method achieves the
mAP of 91.4%. As more disctractor videos are added to the
database, our system performance degrades but not drastically.
We also include two top performing baselines reported in [5]
in Table V. Although our method is not directly comparable
to these baselines due to the different sizes of the database,
our method still demonstrates competitive results considering
the amount of unlabeled videos that are already added to the
database.

C. Space and Time Complexity

For a practical video retrieval system, both accuracy and
efficiency are important. We showed that our method achieves
superior performance than baselines in terms of accuracy.

TABLE V: Evaluation results (mAP) on SVD dataset.

Method Database Size mAP
LBoW [4] 532,738 0.556
DML [24] 532,738 0.785

Ours (RGB+Flow, K=8) 5,951 0.914
Ours (RGB+Flow, K=8) 25,945 0.902
Ours (RGB+Flow, K=8) 41,762 0.896
Ours (RGB+Flow, K=8) 61,763 0.890
Ours (RGB+Flow, K=8) 81,764 0.885

Here, we discuss the space and time complexities. The storage
requirement grows linearly with K, the number of embeddings
we use in the final representation. Each embedding vector is
of 4,096 dimension. Thus, we need 4 × K × 4096 bytes for
each video. The time complexity is also proportional to K. In
our retrieval step, we compute pairwise distances between a
query video and all the videos in the database. Thus, the time
complexity is O(nK) for one query video.

D. Visualization

a) Attention: To better understand how the attention
network has learned to assess the importance of features from
different parts of a video, we do a side-by-side comparison of
the keyframes from a query video and the top ranked retrieved
videos.

Fig. 3 highlights the keyframes with high attention scores.
We see that the attention network has successfully selected rep-
resentative keyframes among the query and reference videos
that are visually similar. Additionally, thanks to the shift oper-
ations in the attention network, the video-level representation
can capture multiple representative frames across the video
(not shown in the figure). This is beneficial since the video
copy segment may stretch across multiple shots.

The bottom part of Fig. 3 demonstrates a challenging case of
NDVR on real-world videos. Query B is a famous scene from
the movie Titanic and there are several camcorded versions
existing in the database. Despite that frames in the copied
video undergo severe visual distortion (e.g., the highlighted
keyframes in B1 and B2), the attention network is still able to
capture the transformation between duplicate video pairs.

b) Video Feature Space: Our approach learns an em-
bedding space where near-duplicate videos stay close to each
other. To validate this, we visualize our embedding space by
projecting the learned features into 2-dimensional space using
t-Distributed Stochastic Neighbor Embedding (t-SNE) [40].
Fig. 4 (a) shows the t-SNE 2D projection of VCDB core
dataset using our network trained on FIVR-200K. We can
see that the videos with same label (NDV) form clusters
around each other. Fig. 4 (b) shows a similar visualization
of the embedding space on FIVR-200K trained on VCDB.
To reduce visual clutter, we plot only a subset of duplicate
video labels and also reduce the number of videos belonging
to each label. We observe similar clustering patterns in the
model’s embedding space.



Fig. 3: Visualization of attention output. We show top-3 retrieved videos for each query video; each row shows 10 frames
evenly spaced in time. We highlight frames that received the highest (top 1%) attention scores from each video.

V. CONCLUSION

We presented an attention based deep metric learning ap-
proach for near duplicate video retrieval (NVDR). We showed
that our attention-based two-stream model learns video repre-
sentation that is robust to complex transformation patterns in
real-world NVDR. Moreover, we showed that representing a
video with multiple features, computed from multi-head atten-
tion, allows our network to focus on only the most relevant
segments in long videos, significantly improving performance
on challenging real-world datasets. We evaluated our approach
on four challenging real-world NVDR datasets – VCDB [3],
FIVR-200K [37], CC WEB VIDEO [11], and SDV [5] –
and achieved state-of-the-art results on most of the evaluated
datasets.
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