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Real-Time Single-Stage Vehicle Detector Optimized
by Multi-Stage Image-Based Online

Hard Example Mining
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Abstract—Vehicle detection is a fundamental function required
for advanced driver assistance systems. Extensive research has
shown that good performance can be obtained on public datasets
by various state-of-the-art approaches, especially the deep learning
methods. However, those methods are mostly two-stage approaches
which inevitably require extensive computing resources and are
hard to be deployed on an embedded computing platform with
real-time computing performance. We introduce a single-stage
vehicle detector which can work in real-time on NVIDIA DrivePX2
platform. The main contributions of this paper are threefold. We
propose a detection scheme which includes multi-scale features
and multi-anchor boxes to improve the accuracy of a single-stage
detector. Secondly, a new data augmentation strategy is proposed
to systematically generate a lot of vehicle training images whose
appearances are randomly truncated, so our detector is trained to
detect partially-seen vehicles better. Thirdly, we present a multi-
stage image-based online hard example mining (MSI-OHEM)
framework specifically designed for single-stage detectors. MSI-
OHEM performs fine-tuning on hard examples and the ones with
slightly-insufficient IOU that are considered true positives. Com-
pared to other classical object detectors, the proposed detector
achieves very competitive result in terms of average precision
(AP) and computational speed. For the newly-defined vehicle class
(car+bus) on VOC2007 test, our detector, using MobileNetV2,
GoogLeNet, Inception-v2 and ResNet-50 as basenets, achieves
85.35%/85.62%/86.49%/87.81% AP and runs at 64/58/48/28 FPS
on NVIDIA DrivePX2, respectively.

Index Terms—Deep Learning, vehicle detection, convolutional
neural networks (CNN), bootstrapping, hard negative mining.
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I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) aim at im-
proving safety of ground transportation. Vehicles have been

evolved such that that they are equipped with better perception
for the road condition and better understanding of the driving
environment. The on-road detection of vehicles has been a topic
of great interest to researchers over the past decade [1]. One
expects that on-road vehicles could be detected as accurately
as possible by an advanced driver assistance system (ADAS)
because the function of such a system is to enhance driving
safety especially for the scenarios that the host vehicles and the
preceding vehicles are very close.

Millimeter-wave radar [2] and Lidar [3] could directly esti-
mate depth of the environment to assist a host vehicle for avoid-
ing potential collision. However, the vision-based approach
could detect objects and differentiate vehicles from non-vehicle
objects. Stereo vision could estimate distances to objects with
sufficient texture information and the distance information is
helpful to eliminate false positives in the background. Recently,
there are significant advances in object detection from images,
which provides a very competitive and affordable solution.

The traditional approach of combining a feature extractor and
a classifier has dominated object detection for a long time. A
number of researches applied SVM [4] and Adaboost [5] in
vehicle detection. In [6], SVM classification was used to clas-
sify extracted Haar features. The integration of HOG features
and SVM has shown to detect pedestrians effectively [7] and
was also applied to vehicle detection in [8], [9]. Edge features
were classified for vehicle detection using SVM in [10]. In
[11], vehicles were detected by classifying Legendre moments
and Gabor features, using SVM classification. AdaBoost [12]
is very fast and effective in face detection largely owing to
its integration in a cascade scheme. It was applied to vehicle
detection in [13] based on symmetry features and edge features
[14], respectively. The combination of Haar-like features and
AdaBoost classification has been used to detect rear faces of
vehicles in [15] and [16]. An important observation is that the
feature extraction-classification paradigm is empirically proved
to be quite effective for objects fully visible with expected
viewing angle. For example, rear-view vehicle detector cannot
detect side vehicle.

Robustly detecting partially occluded vehicles or those cap-
tured from arbitrarily viewing angles is a great challenge because
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their appearances vary to a large extent. Early works in this area
were done by detecting a combination of independent vehicle
parts. The general idea is to combine multiple different part-
detecting classifiers and apply the spatial constraint of each part
to eliminate false alarms. In [17], Haar features combined with
AdaBoost classifier were used to detect front body, front wheel,
rear wheel, and rear body with four different classifiers. Thus, a
side vehicle can be successfully detected under varying lighting
conditions, at different vehicle poses, and in the presence of
partial occlusions. In [18], combination of Haar features and
AdaBoost classification was used to detect front body and rear
body of a vehicle at intersections. In [19], Lin et al. combined
speeded-up robust features (SURF) and edge features to detect
vehicles, with vehicle parts identified by keypoint detection. In
[20], vehicles were detected as a combination of parts, using
scale invariant feature transform (SIFT) features and hidden
conditional random field classification. In [21], Chavez-Aragon
et al. proposed to detect fourteen different car parts for vehicle
detection and spatially constrain the detected parts to reduce
false detection.

The deformable parts-based model (DPM) [22], using HOG
features and the latent SVM, has been used for on-road vehi-
cle detection in [23] and [24]. DPM can successfully handle
deformable object detection even when the target is partially
occluded. However, it leads to high computational costs due to
a large number of repeated feature extraction and classification
tasks in a sliding window search framework.

Recently, image classification has been significantly im-
proved by deep ConvNets, such as Alexnet [25], GoogLeNet
[26], VGG16 [27], Inception-v2 [28] and the powerful ResNets
[29]. Using a well pre-trained CNN (in ImageNet classification
[30]) as the basenet for a CNN-based object detector is beneficial
to train an accurate detector. In other words, the better the
basenet, the higher the detection capability of the corresponding
detector.

The success of region-based convolutional neural networks
(RCNNs) [31], which can detect partially-occluded objects with-
out specifically modifying the training algorithm, is significant
because it outperforms DPM to a great extent. Thus, most of
the subsequent approaches were all powered by deep learning.
Although RCNNs are computationally expensive originally,
their computational cost has been drastically reduced by shar-
ing convolutions, inspired by [32], across proposals generated
by Selective Search [33]. This idea brought up Fast R-CNN
[34] which achieves near real-time efficiency using very deep
networks, i.e., VGG16, when ignoring the time spent on region
proposal generation. Proposal generation was the computational
bottleneck for the phase of object detection and its computation
was significantly reduced by region proposal network (RPN)
which was proposed in Faster R-CNN [35]. Although Faster R-
CNN achieves 5 FPS and 7 FPS using ResNet-101 and VGG16
respectively, it is still far from the requirement of real-time
object detection. i.e., 30 FPS. The major reason comes from the
two-stage framework: the first stage generates region proposals
that are expected to contain all objects with a small amount
of negative windows, and the second stage classifies them into
different classes of objects or background.

The single-stage YOLO detector [36] made a break-through
by realizing an end-to-end framework for object detection. It
reframes object detection as a single regression problem as
how CNNs are applied for image classification. The last layer
is simply the probability of an object, the class it belongs to
and its location in the image. This work achieves 45 FPS for
PASCAL VOC 2007 [37] test dataset with mAP 63.4%. Its
sped-up version, Fast YOLO [36], further reaches 155 FPS with
mAP 52.7% on the same dataset. However, poor localization
precision was also reported according to the analysis in their
work. Then, a multi-scale version of the single-stage detector,
SSD [38], demonstrates significant improvements in terms of
mAP by predicting objects from lower to top layers. SSD300
and SSD500 could achieve 72.1% and 75.1% mAP with 46
FPS and 19 FPS, respectively. An important difference between
YOLO and SSD is that the former would only produce 98
bounding boxes by interpreting the last layer while the latter
would generate thousands (SSD300) or even tens of thousands
bounding boxes (SSD500). YOLOv2 proposed in YOLO9000
[39] further boosts the mAP to 78.6% with 40 FPS.

Recently, the increasing needs of running deep neural
networks on embedded system encourage the study on efficient
model design. SqueezeNet [40] reduces parameters and
computation significantly while maintaining Alexnet-level
accuracy. Both ShuffleNet [41] and MobileNetV1 [42] are
designed specifically for mobile or embedded devices with
limited computing power and could achieve significantly higher
ImageNet classification accuracy over Alexnet. Shufflenet
introduces pointwise group convolution and channel shuffle to
greatly reduce computation cost. MobileNetV1 uses depthwise
separable convolutions to build light weight deep neural
networks. MobileNetV2 [43] proposes an inverted residual
structure to further improve the performance.

It is worth mentioning that the performance of the detectors
introduced previously are all assessed on powerful GPU. For
example, SSD300 could achieve 46 FPS on Maxwell Titan X
but its FPS would drastically drop to 11 FPS [44] when it is
deployed on NVIDIA TX2. However, using MobileNetV1 as the
basenet of SSD300, its inference speed would be significantly
increased to 73 FPS (TX2) with slightly inferior mAP (68.0%)
on PASCAL VOC 2007 test dataset [45]. SSDlite [43] is a
variation of SSD by replacing the regular convolutions with
separable convolutions (depthwise followed by 1 × 1 projec-
tion) in SSD prediction layers. SSDLite-MobileNetV2 could
reach 70.9% mAP and 60 FPS (TX2) [45]. Finally, compared
to other basenets, the advantage of using MobileNets is more
significant on smartphone because depthwise separable convo-
lutions are not directly supported in GPU firmware (the cuDNN
library) [46].

Besides using more efficient basenet, specifically-designed
hardware or software package could also directly boost the FPS
of object detection models. For example, NVIDIA TensorRT
[47] is a C++ library that facilitates high performance inference
on NVIDIA GPUs and could deliver up to 3.7x faster inference.
Generally speaking, YOLO and YOLOv2 are easier to be further
sped up by TensorRT because their inference is exactly the same
as a classification CNN.
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In order to better accommodate objects of different sizes,
Faster R-CNN reported that using 9 anchor boxes is most benefi-
cial in terms of mAP boost while the size and aspect ratio for each
prior are manually selected. Recently, the idea of multi-scale
feature map is introduced so that receptive fields match objects
of different scales. As opposed to Overfeat [48] and YOLO
that operate on a single scale feature map, SSD proposed to
detect objects at different sizes from lower to higher layers.
MS-CNN [49] carefully selects feature maps from early layers
to higher ones for generating region proposals from different
scales. Hypernet [50] aggregates hierarchical feature maps using
pooling and deconvolution layers to form hyper feature maps
where RPN generates region proposals from. YOLOv2 adds a
passthrough layer to concatenate high-resolution features with
the low-resolution ones. MFR-CNN [51] further incorporates
multi-scale features and global information to achieve better
performance on traffic object detection.

Hard negative mining was a very popular training technique
for enhancing the object detection accuracy. The basic procedure
is to collect initial training data, freeze this model, run detection
on validation data with Ground-Truth, collect false-positive
results and re-train the model with the false detection results.
Within some iteration cycles, the detection capability could be
quantitatively boosted. Online hard example mining (OHEM)
[52] introduced an online framework for region-based detec-
tors, such as Fast R-CNN, to perform BP for foreground or
background objects with higher loss. OHEM claimed that, in
Fast R-CNN, only training with hard examples without keeping
the original 1/3 fg-bg (foreground-background) ratio would lead
to significant mAP boost. YOLO also suffers from the fg-bg
imbalance because most images contain only a few objects so
they specifically set the parameters for balancing the fg-bg loss.
However, the imbalance makes YOLO sensitive to the weighting
parameters in the loss function.

Non-maximum suppression (NMS) is a post-processing step
used to obtain the final detection results. It sorts all detection
boxes on the basis of their scores and then the detection bounding
box with the maximum score is selected. Finally, all others with
considerable overlaps with the maximum-score bounding box
(using a pre-determined threshold) are suppressed. Soft-NMS
[53] was proposed to decrease the detection scores of these
overlapped detection bounding boxes with a continuous function
of the corresponding overlap size. It is proven effective for
boosting the detection accuracies of two-stage object detectors
such as Faster RCNN.

Most on-road vehicle datasets are captured with limited view-
ing angles or at fixed distances. LISA 2010 dataset [54] is
entirely composed of rear-viewed front vehicles. Urban Traffic
Surveillance (UTS) dataset [55] provides vehicle images cap-
tured by surveillance systems. KITTI dataset [56] is specifically
designed for autonomous driving and all images are collected in
real-driving scenario. Vehicles in this dataset suffer from scale
variation, occlusion and truncation problems. Furthermore, cars
and buses in PASCAL VOC 2007 and 2012 are more diverse and
challenging because their appearances are fully or partially seen
at different distances, aspect ratios, sizes and viewing angles. Car
simulation software, such as Carsim [57], could easily generate a

Fig. 1. Our CNN model.

Fig. 2. Our prediction module.

massive amount of data with auto-generated ground truth (GT).
In this paper, we also investigate the possibility of using Carsim
to generate training/testing data in vehicle detector development.
iROADS [58] is a comprehensive vehicle dataset recorded from
on-road moving vehicles under various weather conditions as
well as challenging lighting conditions, including day light,
night light, tunnel light, rainy day, rainy night, snowy, and sun
strokes. Our detector is tested on all real-driving video sequences
provided by iROADS in order to assess the robustness of the
proposed detector in versatile driving scenarios.

Inspired by the advantages and drawbacks of previous works,
in this paper, we propose a real-time single-stage vehicle de-
tector which could be deployed on NVIDIA DrivePX2 un-
der real-time constraints. The output of our proposed CNN
is two-dimensionally interpreted to detect the vehicles in a
given image. The major contributions of this work include (1)
a multi-scale prediction module which carefully merges fea-
tures from low-level features to high-level semantic information
across different layers, (2) a heavy data augmentation strategy
specifically designed for vehicle detection and (3) a multi-stage
image-based OHEM (MSI-OHEM) strategy which significantly
boosts the AP by fine-tuning the CNN with hard examples
and the ones with slightly-insufficient IOU to be considered
true positives. Comparisons with the state-of-the-art methods
on some benchmark datasets demonstrate the advantages of the
proposed method for vehicle detection.

II. METHODOLOGY

This section describes the details of our proposed detector and
the associated training methodology. The structure of our model
is illustrated in Fig. 1 and is built by stacking a prediction module
to the end of a basenet. We take GoogLeNet for illustration and
the best detection accuracy is reported by using ResNet-50 as
the basenet. As shown in Fig. 2, our prediction module is com-
posed of concatenated multi-scale feature maps subsequently
processed by two convolution layers, each followed by Batch
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Normalization [59] and PReLU [60]. The last layer is the output
to be spatially interpreted as a fixed number of grids responsible
for detecting objects whose centers of the object windows are lo-
cated inside. The last step to produce the final detection bounding
boxes of a detector is usually done by applying non-maximum
suppression (NMS) to select the ones with the maximum con-
fidence score. We applied Soft-NMS [53] to our model. The
whole detector is trained with the proposed data augmentation
strategy using standard BP until the network is converged. Then,
the proposed Multi-Stage Image-based OHEM (MSI-OHEM) is
applied to fine-tune the whole network for further boosting the
detection accuracy.

In the following, we describe the details of the proposed
detection model and the associated training strategies.

A. Efficient Basenet

Most object detectors apply CNNs pretrained in ImageNet
classification for the subsequent detector training. Generally
speaking, using a better basenet is beneficial for the subse-
quent detection task. However, detector using very deep net-
works, such as ResNet-101 or ResNet-152, would be difficult
to meet the real-time requirement. Therefore, in this work, we
chose MobileNetV2, GoogLeNet, Inception-v2 and ResNet-50
as the basenet because they provide good compromised solutions
based on the considerations of computation speed and detection
accuracy.

The input image of a CNN-based detector is normally big-
ger than 224 × 224. Our detector uses a 448 × 448 image
as our input. However, instead of training higher resolution
images from scratch, we simply fine-tune the pretrained CNN
with the new resolution images. Such a strategy improves the
top-5 accuracy for using MobileNetV2/GoogLeNet/Inception-
v2/ResNet-50 as basenet from 0.901/0.891/0.920/0.916 to
0.910/0.911/0.929/0.939.

B. Data Augmentation

Data augmentation is usually employed for training a clas-
sifier or a detector. Different from the traditional strategy, our
design tries to enhance the detection capability even when the
vehicles are heavily occluded. Therefore, we resize the training
images with 0.1 to 0.9 of the original sizes if the area of the
vehicle instance is above a predetermined threshold and the
images are horizontally flipped with probability 0.5. In addition,
we introduce a random truncation strategy to truncate a vehicle
with probability 0.5 by a new window such that the vehicle
contains at least 25% of its appearance visible. In the subsequent
recall analysis of our data augmentation strategy, it is quantita-
tively proven useful in detecting occluded vehicles. Although
only a few vehicles in the training dataset are partially visible,
the ones that are entirely visible were chosen to be randomly
resized, rotated, horizontally-flipped, recolored, cropped or put
in the boundary to make them truncated to a random extent
for training the vehicle detector. Our detector is therefore very
robust in learning the vehicle appearance under large variations,
even with large partial occlusions. Finally, in order to improve
the capability in detecting vehicles with fuzzy appearance, we

Fig. 3. Examples of our data augmentation strategy: the top-left image is the
original training image and the others are all augmented ones.

randomly blur the training images with either mean filter, median
filter or, Gaussian blur. Some examples of the augmented images
are shown in Fig. 3.

C. Multi-Scale Feature Maps and Bounding Box Priors

Objects can appear in an image within a large range of scales.
A single receptive field cannot accommodate large scale vari-
ations for object sizes. In the GoogLeNet/Inception-v2 version
of our model, i.e., our prediction module is stacked on top of
GoogLeNet/Inception-v2, we approach the idea of multi-scale
features by concatenating feature maps from inception_4a, in-
ception_4d and inception_5b. Then, the concatenated feature
maps are subsequently processed by our prediction module
which is composed of two convolution layers, each followed
by Batch Normalization and PReLU.

Faster R-CNN and SSD predict bounding boxes using hand-
picked priors. Since there is no anchor box strategy in YOLO,
its main detection errors as described in their work [36] could be
attributed to localization error. However, instead of hand-picked
priors, we perform k-means algorithm to explore better priors.
In the experiment of testing on PASCAL VOC dataset, we found
that using 3 priors (59 × 46, 198 × 124, and 414 × 245) reached
the best performance. The final AP achieved by using different
numbers of priors will be discussed in the subsequent model
analysis section.

D. Non-Maximal Suppression

Non-maximum suppression (NMS) is commonly used for
eliminating overlapping results to obtain the final detection
results. Soft-NMS has been proven effective in two-stage de-
tectors. Our detector has also benefitted from the linear version
of Soft-NMS. The performance gain would be shown in the
ablation study.

E. Multi-Stage Image-Based Online Hard Example Mining

Hard negative mining is a classical training strategy in train-
ing an object detector. OHEM introduced a framework for
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Fig. 4. The framework of OHEM applied to a single-stage detector.

Fig. 5. Our MSI-OHEM in training the proposed single-stage detector.

region-based detectors, such as Fast R-CNN, to perform BP for
foreground or background objects with higher loss. However,
this framework could only be applied for region-based detectors.

We propose Multi-Stage Image-based OHEM (MSI-OHEM)
to fine-tune a converged CNN trained by standard BP. A naïve
way to implement OHEM for training single-stage detectors is
shown in Fig. 4. In a given mini-batch of N images, the multi-task
loss in every training image is sorted. Then, some training images
with lower loss values are nullified to do BP. The cost of such
BP is nearly the same as before and no additional mechanism is
applied. This is similar to the idea of region-based OHEM but
the AP boost is marginal in our case because such a framework
would only perform BP by selecting the images with higher
loss values in a single mini-batch. In fact, after our detector is
trained using standard BP, global hard examples are sparsely
distributed in training images. Therefore, the training images
associated with higher loss values in each mini-batch might not
be quantitatively hard enough.

As shown in Fig. 5, our MSI-OHEM is designed to fine-tune
a converged CNN with two additional stages, each of which is
designed to boost the AP from a different perspective. In the
first stage, inference is stopped until the number of hard images

associated with loss higher than a predetermined threshold is
reached. Typically, it is the number of a mini-batch. An alter-
native way is to infer every training image and pick the N top
losses. However, it is quite time consuming because we have to
perform inference for every training image before performing a
single BP. Nevertheless, the loss function is the same as the
standard training. What we have done so far is to pick the
ones with higher loss and accumulate them until the number of
mini-batch is reached. Now, our detector is supposed to have
learned how to eliminate those false positives in non-object
grids and improve the class score, the objectness score and the
bounding box precision of the object grids at the same time.

Sometimes, some detected objects in a training image are
considered false negatives because of slightly-insufficient IOU.
The total loss of the entire image might be low because the
objectness of the non-object grids is low. A key observation that
inspired us is that by just lowering the required IOU (0.5 from
PASCAL) for 0.01, the AP would increase at most 1%. There-
fore, for the 2nd stage of MSI-OHEM, the optimization goal is
towards picking the training images with higher location loss in
the predetermined range (as will be described in the subsequent
loss function section) with sufficient objectness for the object
grid(s), and low objectness for non-object grids. After training
with these images, our detector would learn to better detect the
vehicles which were originally detected as false negatives. This
is because, in standard BP, these important training images are
mostly eliminated due to their less noticeable gradient to guide
the optimization. As can be seen in the following experiment, it
can boost the AP for object detection.

F. Loss Functions of Training and Fine-tuning

Our training includes one stage of regular CNN training and
two stages for fine-tuning. The regular training stage applies
object loss and non-object loss as eq. (1) and eq. (2), given
below. The first stage of the fine-tuning adopts the same loss
functions, but the whole CNN is fine-tuned using the proposed
MSI-OHEM. The second stage of the fine-tuning fine-tunes the
network with a different loss function designed for IOU boosting
in conjunction with our MSI-OHEM strategy.

At the beginning of training, the class scores, the objectness
scores and the bounding boxes are learned altogether. For an
object whose center of object window located inside grid ij, the
loss function is defined by

k∑

n=1

⎛

⎝
∑

p∈{w,h}
αp(Ḡ

p
ij(n)− Ĝp

ij)
2

+
∑

q∈{x,y}
αq(G

q
ij(n)− Ĝq

ij)
2

+ αobject(G
o
ij(n)− 1)2

⎞

⎠+ (Gc
ij − 1)2, (1)

where Gc
ij is the class score of grid ij. Go

ij(n), Gx
ij(n), G

y
ij(n)

are the objectness score and the coordinate of the n-th predicted
output. Ḡw

ij(n) and Ḡh
ij(n) are the relative width and height with
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reference to the n-th bounding box prior,W (n) and H(n),which
were pre-estimated by k-means clustering on the validation data.
They are related to the predicted width, Gw

ij(n), and height,
Gh

ij(n), of the n-th bounding box by Ḡw
ij(n) = Gw

ij(n)/W (n)

and Ḡh
ij(n) = Gh

ij(n)/H(n), respectively. Ĝx
ij , Ĝy

ij , Ĝw
ij and

Ĝh
ij represent the location and size GT of the object bounding

box located at grid ij.
For a non-object grid, i.e., no object whose center of object

window locates inside grid ij, its loss function is given by

k∑

n=1

αnon − object(G
o
ij(n))

2 + (Gc
ij)

2. (2)

There are 2 terms for the non-object grids. The first one is
the objectness score corresponding to each predicted output
and the second is the class score of this grid. Although we
only focus on detecting one type of object, i.e., vehicle, in this
work, we still keep the class score typically used for multi-class
object detectors. This is because using both the class score and
objectness score would slightly boost the AP compared to that
using only the objectness score. In this work, we explored the
optimal hyperparamters in the validation dataset and they are
αx = αy = 1, αw = 1.2, αh = 1.6, αobject = 1, and αnon-object

= 0.65. The analysis of these hyperparameters and their impact
on the testing results will be discussed in the subsequent model
analysis section.

The loss function designed for the second stage of the fine-
tuning is to fine-tune the whole CNN by the training images
with slightly-insufficient IOU but with strong objectness for
object grids and low objectness for non-object grids. Therefore,
the so-called hard examples turn out to be the images with
the aforementioned conditions but with higher location loss
(slightly-lower IOU) in a given range. This loss function is
designed to fine-tune the whole network in an attempt to increase
the IOU of each detected object whose objectness score is high
but its IOU is below 0.5 (PASCAL) and 0.7 (KITTI car), which
are the thresholds for determining if an object is successfully
detected with a precise bounding box. We define a new loss
function which only fine-tunes the detected objects whose IOU
is slightly lower than the required value to be considered true
positive (TP). For an object grid with IOU higher than β (0.4
for PASCAL VOC, and 0.6 for KITTI car) and objectness score
higher than γ (0.6), its loss function is defined by:

k∑

n=1

⎛

⎝
∑

p∈{w,h}
α′

p(Ḡ
p
ij(n)− Ĝp

ij)
2

+
∑

q∈{x,y}
α′

q(G
q
ij(n)− Ĝq

ij)
2

⎞

⎠ . (3)

Since this is a fine-tuning procedure, the learning rate is as low
as that at the end of regular training. Besides, the parameters,
α′

p and α′
q are set to 1/100 of their original values in training

by using eq. (1).

III. EXPERIMENTAL RESULTS

We evaluate the proposed detector on PASCAL VOC 2007
dataset, KITTI detection benchmark, (self-collected) Carsim-
generated dataset and iROADS dataset, and the latter two are
used for testing only. The training in all of our experiments
follows the same setting. Each grid in the 14 × 14 feature maps
contains 3 objects with 3 corresponding objectness scores and
1 class score. Additionally, there are 12 values describing the
object windows for the three objects as shown in Fig. 2. The
starting learning rate is 10−3 for 2 k iterations. Then, we con-
tinue the training with 10−2, 10−3, and 10−4 for 16k iterations,
respectively. In both stages of the fine-tuning, the learning rate
is 10−4. The weight decay and momentum are set to 0.0005 and
0.9, respectively, in the regular training and fine-tuning.

The total numbers of layers in our models using
MobileNetV2/GoogLeNet/Inception-v2/ResNet-50 as the
basenet are 56 (54+2), 24 (22+2), 36 (34+2) and 52 (50+2),
which occupy 1113, 629, 707 and 1375 MiB (Mebibyte) in
GPU during runtime in Caffe [61] framework, respectively.

Our model applying MobileNetV2/GoogLeNet/Inception-v2
(33/30/25FPS on GP106 and 51/48/39 FPS on Titan X) as the
basenet achieves 85.35%/85.62%/86.49% AP with real-time
computing performance on DrivePX2. The best result in terms
of AP is the ResNet-50 version (87.81% AP with 13 FPS on
GP106 and 21 FPS on Titan X). When NVIDIA TensorRT is
used for speeding up our model, MobileNetV2, GoogLeNet,
Inception-v2 and ResNet-50 versions could run at 64/58/48/28
FPS, respectively.

A. PASCAL VOC2007

In VOC 2007 trainval and VOC2012 trainval, there are totally
16551 training images. In VOC2007 test, there are 4952 images.
However, our work only focuses on the vehicle class which is the
superclass of car-class and bus-class. If we tried to select training
images of car (1161+721) or bus (421+186), the AP might not
be promising because the appearance of bus is essentially similar
to the one of car. Some training or testing photos contain both
of them. If both classes are trained separately, the other would
be treated negative data and this is harmful to learn the essence
of vehicle appearance. Therefore, we defined a new class called
vehicle which is composed of car & bus classes for both training
(1420) and test images (825).

In Table I, we compare our detectors to other famous detectors
in terms of training data and FPS (assessed on Maxwell Titan X).
As can be seen from the table, our vehicle detector, MobileNetV2
version, is faster than the others except Fast YOLO. Table II
summarizes the Average Precision (AP) for vehicle detection by
applying different detectors on PASCAL VOC 2007 test dataset,
and the results show that our model achieves state-of-the-art
AP in this experiment. Although other detectors are designed
for multi-class detection, our work could be easily extended
to detect more classes of objects by including additional fea-
ture maps with the number the same as the total number of
classes in the last layer. In our experiment, the processing time
would only increase less than 1 millisecond (from 1-class to
20-class) on average for an image, so such a comparison is
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TABLE I
DETECTION FRAMEWORK ON PASCAL VOC 2007

(BASENETS ARE INDICATED IN BRACKETS)

TABLE II
PASCAL VOC DETECTION RESULTS

(BASENETS ARE INDICATED IN BRACKETS)

fair. Fig. 6 depicts the comparison of all detectors in terms of
AP and FPS.

Fig. 7 demonstrates some example detection results by using
our detector on PASCAL VOC 2007 test. The top-left image
shows the easiest scenarios because only an entirely-seen vehicle
is inside. To detect a vehicle partially seen as in the top-right
image in Fig. 7 is challenging because the detector needs to
be very robust to localize a vehicle from randomly truncated
window of a vehicle body. Using bounding box priors is helpful
in this kind of scenario because our detector would learn to
better accommodate vehicles with wider variations in size. In
the bottom-left image, we can see that the detection capability
of small objects is enhanced. It is achieved by shrinking the
training images containing vehicles and applying multi-scale
feature to produce larger responses from those small vehicles.
The bottom-right image demonstrates the detection results of
truncated or occluded vehicles. Therefore, it is obvious that the
proposed data augmentation strategy successfully boosts our

Fig. 6. AP and FPS on VOC07 test dataset.

Fig. 7. Four typical scenarios of vehicle(s) expected to be detected. From top-
left, top-right, bottom-left to bottom-right: one vehicle fully-seen, one vehicle
partially-seen, small and fuzzy vehicles & occluded/truncated vehicles.

detector accuracy, which will be analyzed in the subsequent ab-
lation study and recall analysis sections. In our implementation,
we generate 9500 training images by using the proposed data
augmentation strategy for the training.

B. KITTI Val Set Evaluation

In this section, we evaluate the proposed vehicle detector on
the challenging KITTI object detection benchmark dedicated to
autonomous driving. This dataset is composed of 7481 training
images and 7518 testing images. Since GT annotations for the
testing set are not released, we use train/validation (3712/3769
images) splits, as indicated by [62, 63], from the training set to
validate our method.
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TABLE III
VEHICLE DETECTION RESULTS ON KITTI VAL SET

Fig. 8. KITTI detection result comparison: Left column: detection results
of this work (ResNet-50); Right column: detection result of Faster R-CNN
(VGG-16).

In Table III, the accuracy for each model with the setting that
leads to the best result in PASCAL VOC is shown. Although the
accuracies of the MobileNetV2 version of our model are similar
to those of Faster R-CNN, it could run nearly 7 times faster.
Our Inception-v2 and ResNet-50 versions outperform Faster R-
CNN (VGG-16) for all levels and are still 5.6/3 times faster.
It is worth mentioning that typical single-stage methods, such
as YOLO, fail at achieving very accurate results. The detection
results of this work against Faster R-CNN (VGG-16) are shown
in Fig. 8. Our detector works better when vehicles are truncated
or partially-occluded. Finally, we generate 8000 training images
by using the proposed augmentation technique to achieve the
best results.

C. CarSim-Generated Data Evaluation

CarSim-generated driving data is not realistic enough to re-
place real-world driving data for training but it could be used to
test a vehicle detector given vehicles viewed at any designated
viewing angles without any manual labeling.

In order to assess whether or not our model trained by
VOC07+12 trainval would be capable of detecting on-road
vehicles, we use CarSim to generate on-road vehicles with
auto-generated GT. As shown in Fig. 9, there are totally 12
vehicles of different types, including sedan, truck, SUV, etc.
In scenario-1, each vehicle maneuvers with the same pre-set
trajectory and the length of each video is the same (1052 frames).
Totally, there are 12624 frames containing different types of
vehicles in various road environments.

For scenario-2 to -5, vehicle-1, -6 and -8 in Fig. 9 are selected
for conducting the following experiments. Each setting, in terms
of a fixed distance and tilt angle pairs, ranging from (4.4 m, 0°),
(8 m, 0°), (5 m, 25°), (8 m, 20°), creates 360-degree view of
the selected vehicle for 241 frames. We compare YOLO, Faster

Fig. 9. 12 vehicle types in Carsim from top to bottom and left to right.

TABLE IV
AP COMPARISON OF YOLO, FASTER R-CNN AND OUR WORK IN 5 SCENARIOS

Fig. 10. Carsim detection result comparison; Left column: detection results
of this work (ResNet-50); Right column: detection result of YOLO; 1st row:
scenario-1 (vehicle-3); 2nd row: scenario-4 (vehicle-1).

R-CNN (VGG-16) with our work (GoogLeNet) on all of the
CarSim-generated data.

As can be seen in Table IV, YOLO underperforms others
significantly in scenario-1. This is because the vehicles are
relatively small in the maneuvering. Furthermore, YOLO suffers
from false positives in the sense that there are sometimes two
bounding boxes for a single vehicle, as shown in the right column
of Fig. 10. The main reason comes from the poor size estimation
of the bounding boxes so even NMS could not eliminate one of
them. Our work consistently outperforms YOLO in all scenarios,
and it is more accurate than Faster R-CNN (VGG-16). In addi-
tion, our detector (GoogLeNet version) is nearly 7 times faster
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TABLE V
AP COMPARISON OF YOLO, FASTER R-CNN AND OUR WORK

IN 7 SCENARIOS IN IROADS DATASET

Fig. 11. iROADS selected detection results. Left column, detection results of
this work (ResNet-50); Right column: detection result of Faster R-CNN (VGG-
16); 1st row: Daylight; 2nd row: RainyDay.

than Faster R-CNN. The demonstration videos which show the
detection results in Table IV are provided in the supplementary
material.

D. iROADS Dataset Evaluation

iROADS dataset is composed of 4656 image frames in 7 cat-
egories including daylight, night, rainy day, rainy night, snowy,
sun strokes, and tunnel. In this experiment, we train each detector
with VOC 07+12 trainval (car+bus) and KITTI-train (from the
aforementioned KITTI train/val split) datasets. The proposed
detectors outperform YOLO and Faster R-CNN (VGG-16) in
almost every scenario, as shown in Table V. Fig. 11 depicts some
examples of detection results by using the proposed detector
(ResNet-50) and Faster R-CNN.

IV. MODEL ANALYSIS

In order to quantitatively improve our detector, we have
carried out several controlled experiments to examine how each

component affects the detection accuracy. For all of the follow-
ing experiments, the dataset is PASCAL VOC with the same
training iteration and learning rate.

A. Ablation Study

We made some improvements based on the original version
of our work to achieve the final result in PASCAL VOC. A
summary of the ablation study could be found in Table VI.

B. The Impact of Hyperparameters

In our pursuit of better quantitative results in PASCAL VOC
dataset, the impact of different values of hyperparamters is also
analyzed. In Table VII, the hyperparameters that lead us to the
highest detection accuracy on VOC07 val dataset are used to
verify if they could also work well on the unseen VOC07 test
dataset. Finally, these hyperparameters are used to train our
model using both training and validation datasets and the highest
average precision is thus obtained, which is common practice in
other works, such as Faster R-CNN. It is worth mentioning that
these hyperparameters are not carefully chosen for a particular
dataset. Our model in other experiments (datasets) of this work
has also achieved results better than other detectors using the
same hyperparameters.

C. Basenet Comparison

ResNet family is highly possible to boost the detection capa-
bility of a detector because ResNet-101 and ResNet-152 have
achieved very high top-1 and top-5 accuracies. Using them as the
basenet is beneficial to boost the detection accuracy. However,
in consideration of the possibility to deploy our detector on an
embedded system, only ResNet-18, ResNet-32 and ResNet-50
are considered in our experiments. VGG-16 is also involved in
the basenet analysis but we found it is more efficient to remove
its fully-connected layers in conducting the same analysis so the
FPS is much faster than its original version.

To fairly analyze the performance of basenets, we simply add
two more convolution layers on top of each of them. The input
image size is 448× 448 and the output grid setting is 7× 7, as the
basic version of our work in the ablation study. In addition, each
basenet is fine-tuned with 448 × 448 ImageNet data. Overall,
ResNet-50 leads to the highest AP in our initial evaluation, as
shown in Table VIII. However, since real-time computation (on
an embedded platform such as DrivePX2) is the other important
consideration to ADAS and autonomous vehicle, MobileNetV2,
GoogLeNet or Inception-v2 is also a good choice due to its high
computational efficiency.

D. Recall Analysis of the Proposed Data
Augmentation Strategy

At the beginning, our detector encountered difficulties in
detecting small vehicles and the vehicles that occupy most areas
in the images. As previously-mentioned, our detector would be
trained with randomly-resized and -blurred vehicles so as to
better accommodate vehicles with extreme sizes and learn their
appearance when they are not clearly-seen or look blurry. In
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TABLE VI
DESIGN DECISIONS THAT LEAD TO BETTER PERFORMANCE IN TERMS OF AP FOR THIS WORK USING GOOGLENET AS BASENET

TABLE VII
VEHICLE DETECTION RESULTS OF OUR MODEL (GOOGLENET) USING

DIFFERENT HYPERPARAMETER SETTINGS ON VALIDATION AND/OR

TESTING DATASETS

TABLE VIII
AP ON VOC07 TEST WITH TRAINING DATA VOC 07+12

TRAINVAL OF OUR INITIAL MODEL

order to quantitatively assess the capability of our detector with
and without using the proposed data augmentation strategy, we
conducted the following analysis. The vehicle objects in VOC07
test data can be categorized into the following categories: (1) one
vehicle entirely seen, (2) one vehicle partially seen, (3) small
and/or fuzzy vehicles, and (4) others.

TABLE IX
RECALL COMPARISON OF OUR MODEL BEFORE AND AFTER

USING OUR TRAINING STRATEGIES

Fig. 12. Detection results of partially-seen vehicle (left) and fuzzy vehicle
(right) after applying data augmentation strategy.

As can be seen in Table IX, the recall rate of the testing result
in VOC07 test after applying the proposed data augmentation
strategy to VOC07+12 trainval is significantly improved. In the
left image of Fig. 12, due to the augmented strategy that truncates
the entirely-seen vehicle in the training images, our detector has
learned the essence of a vehicle body even though it is partially
visible in the image.

For the case of small and/or fuzzy vehicles, due to the
randomly-resized training images, the size of detectable vehicle
becomes smaller even though multi-scale feature module is not
applied yet. For the right image of Fig. 12, the vehicle inside
cannot be detected originally because its appearance is fuzzy or
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Fig. 13. Detection results of extremely-small vehicles after the multi-scale
feature model is applied.

Fig. 14. Detection results before and after using bounding box priors. Left
image: without priors. Right image: with priors.

not visually-prominent. However, it could be successfully de-
tected after applying our data augmentation strategy, including
random blurring and resizing. This is the reason why the recall
rate is increased.

E. The Benefit of Multi-Scale Feature and Bounding Box Prior

A simple approach to directly enhance the capability of a
model in detecting small vehicles is to enlarge the input image
size at the cost of more computational resource. In order not
to compromise between detection performance and FPS, mix-
ing feature maps from different layers enable small objects to
produce large responses. Although the AP boost (0.6) by using
multi-scale features in Table VI seems marginal, it could bring
more potential for detecting objects with large scale variations.
For the images in Fig. 13, our original model fails to detect both
vehicles. After the multi-scale feature module is used, both of
them can be detected by our detector. However, only the vehicle
in the right image is considered TP because the corresponding
IOU passed the required threshold, i.e., 0.5. As to the slightly-
IOU-insufficient vehicle in the left image, it becomes TP after
the subsequent fine-tuning stage because of its strong objectness
score higher than the required 0.6. It is worth mentioning that
the confidence shown in Fig. 13 is the product of class score and
objectness score.

To better detect objects with a wider range of scales and aspect
ratios, we introduce bounding box priors. In the left image of
Fig. 14, both vehicles are detected without using priors. It is
obvious that insufficient IOU is observed. After bounding box
priors are applied, the IOUs of both vehicles are significantly
boosted. As to the right vehicle in the right image, its IOU is on
the verge of becoming TP and is highly possible to be further
promoted in the subsequent fine-tuning stage (MSI-OHEM)
proposed in this work. To find an appropriate number of priors,
we have also analyzed the final AP in our model using different

TABLE X
AP ON VOC07 VAL WITH TRAINING DATA VOC 07+12 TRAIN OF OUR

MODEL (GOOGLENET) USING DIFFERENT NUMBERS OF PRIORS

Fig. 15. AP corresponding to different IOU thresholds of our model
(GoogLeNet) in VOC07 test.

numbers of priors. The prior analysis is done by using k-means
algorithm on VOC07 val with training data VOC07+12 train. In
Table X, we reached the best results in our GoogLeNet version
when 3 priors are applied.

F. IOU Fine-Tuning Analysis

Insufficient IOU is a main reason to miss a detection. As can
be seen in Fig. 15, there is approximately 5% difference in AP
between 0.4 IOU and 0.5 IOU in the GoogLeNet version of our
model. After our MSI-OHEM is applied to fine-tune the correct
detection results with IOU>0.4 in VOC07+12 trainval, the AP
in VOC07 test is boosted for nearly 1.1%.

G. Multi-Class or Single-Class Training

Although our vehicle detector is proved to achieve very com-
petitive results and it could be extended to a multi-class detector
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TABLE XI
MULTI-CLASS AND SINGLE CLASS DETECTION RESULTS

OF FASTER R-CNN AND OUR INITIAL MODEL

with unnoticeable additional computation cost, one may ask
what if other general detectors are trained using only single-class
data. That is to say, will the AP of a specific class for a multi-class
detector outperform its counterpart in its single-class version?
We explore this question by training: (1) a 20-class version of
our initial model (GoogLeNet), (2) a single-class version Faster
R-CNN (VGG-16), and (3) a single-class version YOLO. These
experiments were done in VOC07+12 trainval and VOC07
test while every hyper parameter follows the original setting.
However, the training in CNN is non-deterministic in the sense
that the resulted AP would be slightly different every time.
Therefore, we simply perform training for five times in (1), (2),
and (3), respectively.

In Table XI, the vehicle-class detection results in the 1st, the
3rd, and the 5th row are obtained by averaging the AP of car and
bus from the 20-class result. The APs in the 2nd, 4th, and 6th
rows are the results of single-class training for the car, bus and
vehicle classes, respectively.

In the first experiment, as can be seen in the 1st and 2nd
rows, there is no significant difference between the 20-class
version and single-class version of our initial model in the AP
of car and bus classes. Also, the vehicle class detection result
of our (single-class) model is almost the same as those for
car and bus classes in the 20-class training. As to the second
experiment, the resulted AP of car and bus in a single-class
Faster R-CNN is quantitatively close to the ones obtained by
its original 20-class version. For the YOLO case, its single-class
version underperforms its 20-class version in car, bus and vehicle
class, respectively.

The above experiments indicate that the detection perfor-
mance of a class in a multi-class detector is on average slightly
better than that in the corresponding single-class detector.

V. CONCLUSION

In this work, a real-time single-stage vehicle detector is
presented and it achieved very competitive results in PASCAL
VOC, KITTI, iROADS and our Carsim datasets. By introducing
the idea of multi-scale feature maps, bounding box priors in the

prediction module, the data augmentation strategy, and the MSI-
OHEM training framework, we have significantly improved the
accuracy of the proposed real-time vehicle detector.

The accuracy improvement is largely due to the proposed
multi-stage fine-tuning framework which fine-tunes our detec-
tor with hard examples and the ones with slightly-insufficient
IOU to be considered as true positives. Our models using
MobileNetV2, GoogLeNet, Inception-v2 and ResNet-50 could
achieve 51/48/39/21 FPS on Titan X and 33/30/25/13 FPS on
GP106 (DrivePX2), respectively. With the help of NVIDIA
TensorRT package, which only supports single-stage detector,
our detector could be sped up to 64 FPS (MobileNetV2), 58 FPS
(GoogLeNet), 48FPS (Inception-v2) and 28 FPS (ResNet-50) on
DrivePX2, which fulfills the real-time performance for ADAS
or autonomous vehicle.

In the future, we will try to apply powerful 3D engine, such
as Unity3D, to generate more realistic vehicle training data to
further improve our detector.
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