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a b s t r a c t 

Fingerprint image enhancement is one of the fundamental modules in an automated fingerprint recog- 

nition system (AFRS). While the performance of AFRS advances with sophisticated fingerprint matching 

algorithms, poor fingerprint image quality remains a major issue to achieve accurate fingerprint recogni- 

tion. In this paper, we present a multi-task convolutional neural network (CNN) based method to recover 

fingerprint ridge structures from corrupted fingerprint images. By learning from the noises and corrup- 

tions caused by various undesirable conditions of finger and sensor, the proposed CNN model consists of 

two streams that reconstruct the fingerprint image and orientation field simultaneously. The enhanced 

fingerprint is further refined using the orientation field information. Moreover, we create a deliberately 

corrupted fingerprint image dataset associated with ground truth images to facilitate the supervised 

learning of the proposed CNN model. Experimental results show significant improvement on both image 

quality and fingerprint matching accuracy after applying the proposed fingerprint image enhancement 

technique to several well-known fingerprint datasets. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fingerprint has been one of the most commonly used biomet-

ic traits in both security and forensic applications. Despite the

act that fingerprint offers high distinctiveness, the recognition ac-

uracy of an automated fingerprint recognition system (AFRS) de-

ends on several other factors, such as fingerprint image quality

nd the fingerprint matching algorithm. 

A typical AFRS consists of five fundamental modules, including

mage acquisition, image enhancement, feature extraction, finger-

rint matching and classification. During fingerprint image acqui-

ition, the sensor type, condition of finger and contact between

ensor and finger may affect the quality of the acquired finger-

rint image. The purpose of image enhancement is to eliminate

oises and corruptions caused by imperfect circumstances and to

nhance fingerprint ridge structures through some image process-

ng techniques. Fig. 1 depicts examples of fingerprint enhancement

esults for fingerprint images of good and poor quality by using the

roposed method. Fingerprint image enhancement often includes

ontrast enhancement, image filtering and some other image pro-

essing techniques. 
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ersity, No. 101, Sec. 2, KuangFu Rd., Hsinchu 300, Taiwan. 
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The CNN model has become a popular deep learning tool for

olving image classification problems due to its capability to ex-

ract most appropriate features and perform classification simulta-

eously with sufficient training data. However, we aim at recon-

tructing the fingerprint image from its corrupted version in this

ork. The denoising auto-encoder [1] is an example of using arti-

cial neural network, or specifically deep belief network, for noise

emoval. Some existing applications of CNNs for solving similar

asks are image super-resolution [2,3] and inpainting [4] . 

In this paper we propose a novel CNN model for low-quality

ngerprint image enhancement coined as the orientation field-

orrected fingerprint image enhancement network (OFFIENet). 

FFIENet is a multi-task learning CNN model that recovers the fin-

erprint ridge structures assisted by the ridge orientation informa-

ion. It reconstructs the fingerprint image and the orientation field

imultaneously while utilizing the orientation information to fur-

her enhance the ridge structures. Although some works on end-

o-end minutiae extraction using CNNs already existed in the lit-

rature [5,6] , the proposed method only performs fingerprint im-

ge enhancement so that both minutiae-based and image-based

atching methods can benefit from the enhanced images. Besides,

ngerprint images with well-defined ridge structures provide more

nformation, except minutiae, to be harvested. 

Since CNN is a supervised learning approach, we need to pro-

ide both the input (corrupted fingerprint) and the expected out-

ut (clean fingerprint or ground truth) during the training of the

https://doi.org/10.1016/j.patcog.2020.107203
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107203&domain=pdf
mailto:lai@cs.nthu.edu.tw
https://doi.org/10.13039/501100004663
https://doi.org/10.1016/j.patcog.2020.107203
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Fig. 1. Examples of (a) a good quality and (c) a poor quality fingerprint image. (b) 

and (d) are the corresponding enhancement results using the proposed CNN-based 

fingerprint ridge structure enhancement method. 
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CNN model so that it can learn the transformation between the

images. One of the challenges in this work is the lack of exist-

ing public dataset with such pairs of fingerprint images. Therefore,

we generate our own training dataset by using the Synthetic Fin-

gerprint Generator (SFinGe) software [7] to generate ground-truth

fingerprint images and apply various fingerprint corruption algo-

rithms to simulate noises and corruptions that would appear in

real fingerprint images. 

The previous paper presented in [8] is most relevant to the

method proposed in this paper, so we would like to discuss the

major differences between our work and theirs. First, we use a

deeper network model and most importantly, we introduce ori-

entation field-correction into the proposed CNN model to im-

prove the image quality of fingerprint reconstruction. In addi-

tion, the work in [8] directly used the corrupted fingerprints

generated by SFinGe while we create our own training dataset

that contains a wide variety of fingerprint corruptions. Lastly, we

use image patches instead of the entire fingerprint images for

training. 

The main contributions of this paper are summarized as fol-

lows. 

1. We propose the OFFIENet which include the reconstruction of

fingerprint orientation field and fingerprint ridge structure si-

multaneously to enhance low-quality fingerprint images. 

2. We create a fingerprint image dataset by synthetically gener-

ating corrupted fingerprints associated with the correspond-

ing ground truths for the training of fingerprint enhancement

CNN. 

2. Related works 

2.1. Fingerprint image enhancement techniques 

Gabor filtering and its variants are one of the most popular

filtering approaches utilized for fingerprint image enhancement.

Hong et al. [9] pioneered this idea by taking advantage of the

frequency-selective and direction-selective properties of Gabor fil-

ters to amplify and correct the local ridge patterns. The log-Gabor

filters have also been proven [10] to outperform traditional Gabor

filters. In addition, curved Gabor [11] , orthogonal curved-line Ga-

bor [12] and circular Gabor [13] were claimed to adapt better to

the unique curved structures in fingerprints. 

Contextual filtering in the Fourier domain [14] is another way

of enhancing the ridge structures. Chikkerur et al. [15] used short-

time Fourier analysis to compute the frequency image, orienta-

tion image and region-of-interest, which are used to construct the

contextual filter bank. Fingerprint noises can be removed more

effectively while preserving the ridge lines by processing in the

Fourier domain. Furthermore, the combination of spatial domain

and Fourier domain filtering is adopted [16–18] as an improvement

to single domain filtering. 
Fingerprint image filtering in the wavelet domain was demon-

trated [19] by performing textural and directional filtering on the

pproximation image of wavelet decomposition. It has been shown

20] that the combination of Gabor filtering and wavelet decom-

osition produces more visually appealing outcome compared to

ere Gabor filtering. Wang et al. [21] applied adaptive singular

alue decomposition on wavelet coefficients to improve the con-

rast of images. 

An adaptive filtering approach [22,23] was proposed to dynam-

cally select the filter size based upon the local ridge frequency.

un and Cho [24] presented an adaptive preprocessing algorithm

hat categorizes fingerprint images into oily, dry and normal im-

ge. Moreover, Sutthiwichaiporn et al. [25] developed the adap-

ive boosted spectral filtering algorithm that iteratively assesses

he quality of image blocks and performs spectral filtering on unfil-

ered blocks. The advantage of these adaptive methods is that the

lters are manipulated to address certain fingerprint structures de-

ending on the criteria. 

To specifically address the scars in fingerprint images, Khan

t al. [26] proposed a spatial domain scar removal strategy. In their

ethod, scars are detected using Gaussian derivative filters and

lled by tracing the orientation of nearby ridges. 

In the literature reviewed above, fingerprint ridge enhancement

lters are constructed based on the characteristics of ridge struc-

ures and theoretical deduction of the filter response. Cao et al.

27] incorporated dictionary learning into the filter design process

or fingerprint image enhancement. First, two sets of ridge pat-

ern dictionaries (coarse-level and fine-level) are learned from the

raining data. Then, the parameters of the Gabor filter are tuned

ccording to the matched pattern so that each block can be opti-

ally filtered according to its local orientation and frequency. 

Some neural network-based fingerprint image enhancement

ethods were also proposed such as cellular neural networks [28] ,

onvolutional neural networks (CNN) [29] and generative adver-

arial networks (GAN) [30] . In [28] , the authors proposed to ap-

ly some pre-defined Gabor-type filters for denoising and enhance-

ent of fingerprint images, but the experimental results were very

imited. Note that Li et al. [29] also proposed a multi-task learn-

ng approach which is closely related to this work. In their work,

hey proposed the FingerNet model that contains the enhance-

ent branch and the orientation branch. The enhancement branch

s designed to remove structured noise and enhance fingerprint

tructure. The orientation branch performs the task of guiding en-

ancement through a multi-task learning strategy. However, the

nhancement ground truth in [29] is generated by gradient-based

ngerprint enhancement method, which is difficult to ensure the

uality of the ground truth. In addition, the orientation branch and

nhancement branch in their network architecture are in parallel,

hich means the corresponding deconvolution networks are inde-

endent. But in fact, the enhanced fingerprint image and the ori-

ntation map are highly related. We would like to draw the differ-

nces between this work and theirs for the following points. First,

e produce ground truth and noisy fingerprint pairs for the model

raining by using image synthesis method. Secondly, in our model,

he orientation field predicted is then fed into the enhancement

ranch to directly regularize the enhancement. In addition, instead

f using the quantized orientation angles in [29] , we use the sine

nd cosine of angles to represent the fingerprint orientation for

etter data contiguity. 

More recently, Joishi et al. [30] proposed a Generative Adver-

arial Network model to enhance the ridge structure quality for

atent fingerprint images. The enhancement network in the GAN

odel is an auto-encoder architecture. They also generated a syn-

hetic dataset to synthesize a number of pairs of latent fingerprint

mages and the corresponding ground-truth fingerprint images for

raining the GAN model. 
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.2. CNNs for other fingerprint recognition applications 

CNNs have been used in various aspects of fingerprint recogni-

ion. Jiang et al. [5] used CNNs to perform direct minutiae extrac-

ion on gray-scale fingerprint images. The core of the framework

ncludes a JudgeNet that determines if an image patch contains a

inutia and a LocateNet that locates the position of the minutia in

he patch. A similar work [6] then surfaced but used fully convo-

utional network for latent fingerprint minutiae extraction instead.

nother notable work on CNN-based minutiae extraction is Finger-

et [31] . Besides minutiae, detection of singular points (core and

elta) using CNNs was also proposed [32] . 

Other applications of CNNs in fingerprint recognition include

ngerprint classification [33] , fingerprint segmentation [34] and la-

ent orientation field estimation [35] . 

. Proposed CNN model for fingerprint image enhancement 

.1. Single-task network 

Fig. 2 (a) depicts the proposed single-task network for finger-

rint image enhancement. The network consists of 13 convolu-

ional layers, each followed by a rectifier linear unit (ReLU). The

rst 12 layers are called the BaseNet and will be used as the base

etwork for extension later. The filter size of the first convolu-

ional layer is 11 × 11 and is reduced by 2 after every three layers.

he number of feature maps is 64 for all layers. The 13th layer is

alled the reconstruction layer which output the enhanced finger-

rint image. 

Like CNNs used for super-resolution [2,3] and image completion

4] , one consideration of designing the proposed network is that

he image size should be preserved. Therefore, padding is required

o ensure that the size of the feature maps remains the same

hroughout the network. Another common practice of preserving

he image size is to use unpooling layers or deconvolutional lay-

rs to reverse the size reduction effect caused by pooling layers or

trided convolutional layers, for example the encoder-decoder ar-

hitecture employed in [4] . However, we deliberately avoid using

ooling layers in the proposed network as they lead to spatial in-

ormation loss, especially for fine local structures like fingerprint

idges. 

For gray-scale image reconstruction, the L 2 norm squared func-

ion is used to measure the reconstruction loss of the network for

ptimization, and it is given by 

 recon = ‖ Y − Y ′ ‖ 

2 , (1)
2 

Fig. 2. The proposed CNN architecture for (a) single-task and (
here Y and Y ′ represent the ground truth image and the recon-

tructed image, respectively. 

Alternatively, the network can be tweaked to output a binary

mage. In this case, we modify the reconstruction layer to output

wo score maps of the same size. Instead of using the L 2 loss for

inary image reconstruction as suggested in [8] , we use the cross-

ntropy loss given by 

 recon-bin = −Y 0 log (Y ′ 0 ) − Y 1 log (Y ′ 1 ) , (2)

here Y 0 and Y 1 are the ground truth labels of 0’s (black pixels)

nd 1’s (white pixels), and Y ′ 
0 

and Y ′ 
1 

are the predicted probabilities

or the corresponding binary values. 

.2. OFFIENet: multi-task network with orientation field correction 

Fingerprints have unique ridge structures that flow in certain

irections, known as the ridge orientation. In this work, we exploit

he orientation feature of fingerprint to assist in the reconstruc-

ion of low-quality fingerprint images. Since ridge orientation is

erely abstract feature of fingerprint, it is easier to recover from

orrupted images, hence it can be used to refine the reconstruc-

ion. Fig. 2 (b) shows the proposed OFFIENet to reconstruct the fin-

erprint image and orientation field simultaneously. First, the input

mage runs through two independent BaseNets to reconstruct the

lean fingerprint and orientation field. Then the reconstructed im-

ges from the two BaseNets are concatenated and fed into another

ve convolutional layers as shown in the figure to obtain the final

utput. 

Weight-Sharing . Since the input image is the same, the ex-

racted lower level features should be similar regardless of the re-

onstruction target. Thus, the two BaseNets may share some of the

lter weights even though they are trained to perform different

ask to reduce the number of parameters and the complexity while

raining the network. In this paper, we choose to apply weight-

haring between the first six layers of the two branches in Fig. 2 (b).

Orientation Field Representation . The direct way of represent-

ng the orientation field is by angles in the range of [0 ◦, 180 ◦).

owever since the orientations angle is periodic and circular, lin-

ar loss functions such as the L 2 loss in (1) cannot accurately mea-

ure the distance between them. For instance a 0 ◦-oriented ridge is

nly 1 ◦ different from a 179 ◦-oriented ridge but direct subtraction

f the orientation values results in a distance of 179 ◦. Such an issue

s reflected as high gradient at the edge of 0 ◦-to-179 ◦ transition in

he orientation map as highlighted in Fig. 3 (b). 

To overcome the above orientation discontinuity problem, we

se the sine and cosine of twice the orientation angles to ob-

ain a smoothed orientation field as shown in Fig. 3 (c) and (d). In
b) multi-task (OFFIENet) fingerprint image enhancement. 
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this case, the orientation field is supervised by two trigonometric

function maps and hence the corresponding reconstruction layer is

modified to output two images. 

Joint Training . The proposed multi-task network is supervised

at three different stages. Summing up the three losses with loss

weights gives the total loss of the network: 

L total = λ1 L recon + λ2 L orient + λ3 L final , (3)

where L recon , L orient and L final are the squared L 2 loss functions as-

sociated with the initial image reconstruction, orientation field re-

construction and refined image reconstruction, respectively, as de-

scribed in (1) . 

During training, the gradients derived from L total are back-

propagated through the entire network. In addition, the task-

specific losses ( L recon , L orient and L final ) are used to update the

weights in the corresponding stream to preserve the independence

among individual tasks. The initial image reconstruction stream

and orientation field stream are first trained for 40K iterations sep-

arately before performing end-to-end training of the entire multi-

task network. 

4. Generation of corrupted fingerprint images 

In this section, we discuss the noise models used to syntheti-

cally corrupt clean fingerprints in order to simulate noises and cor-

ruptions that appear in real fingerprints. They can be categorized

into the following: 

1. Sensor noise (SN): Poorly maintained sensing device may inflict

noise to the resulting scanned image in the process of analog-

to-digital conversion and data transmission. This type of noise

can be approximated by the Perlin noise [36] . It is a coherent

noise that affects only certain regions of the fingerprint and is

created by using the procedure described in [36] . There is a

parameter called the base noise probability p L in sensor noise

generation used to control the level of the noise. 

2. Scars/Wrinkles (Sc): Scars or wrinkles are concave patterns on

fingers. They cause broken ridges in the fingerprint image when

scanned due to uneven contact between finger and sensor. The

procedure of creating these broken ridges on fingerprints is

given as follows: 

(a) Define scars or wrinkles as elliptical occlusions. A set of ran-

dom parameters { x 0 , y 0 , E w 

, E l } is first generated for the el-

lipse, where ( x 0 , y 0 ) is the center of the ellipse which can

be any point in the fingerprint area and E w 

and E l are the

width and length of the ellipse, respectively. 

(b) Draw a closed elliptical mask using the parameters obtained

from the previous step based on the equation: 

E(x, y ) = 

⎧ ⎨ 

⎩ 

x = x 0 + 

E w 

2 

cos θ, 

y = y 0 + 

E l 
2 

sin θ . 

(4)

(c) Remove the ridges enclosed by the mask. 

3. Wetness (W): When the moist on the finger makes contact

with the sensor, the wet regions will have darker pixels on the

scanned image regardless whether they are ridges or valleys.

Although these wet regions may appear randomly on any part

of the finger surface, they usually come in patches. Therefore,

we use the Perlin noise distribution as the base function to

simulate the appearance of finger wetness. Pixels with proba-

bility (as defined in Eq. (4) of Cappelli et al. [36] ) higher than a

threshold τw 

are changed to value 0 to represent wetness. 

4. Dryness (D): When the finger is too dry, it does not have full

contact with the sensor, resulting in thinner ridges. This can be

simulated by performing dilation on the fingerprint image so

that the darker pixels (ridges) are reduced. 
5. Over-pressurization (OP): As opposed to dryness, the ridges

thicken when excessive pressure is applied onto the sensor.

Thus, the effect can be simulated by performing erosion so that

the ridges are expanded. 

6. Valley noise (VN): This is the background noise which is also

caused by the transmission of data from sensing device. It ap-

pears as isolated black pixels in the valleys. For this, we follow

the exact same algorithm for sensor noise explained above ex-

cept that black noise blobs are added instead of white ones. 

. Experimental results 

.1. Preparing for CNN training 

In this section, we discuss the details of preparing training data

or the proposed CNN. First of all, 300 distinct clean fingerprints

rom five fingerprint classes (whorl, left loop, right loop, arch and

ented arch) are randomly created using SFinGe [7] demo version.

he ridge frequency is also randomized to ensure the variability of

he training data. These clean fingerprints are used as the ground

ruths of the reconstruction. After that, 12 different corrupted fin-

erprint samples, such as the examples shown in Fig. 4 , are gener-

ted from each clean fingerprint based on the combinations of dif-

erent corruption methods described in Section 4 . The base noise

robability p L for sensor noise is taken randomly from 0.04 to 0.15

o create fingerprints from high to low quality. The threshold that

ontrols the wet fingerprint coverage area τw 

ranges from 0.3 to

.4. A 3 × 3 Gaussian filter with parameters μ = 0 and σ 2 = 3 is

pplied to all corrupted fingerprints for image smoothing. Since the

ncorrupted fingerprints have strong ridge lines, a simple gradient-

ased method [37] is sufficient to extract orientation field informa-

ion as labels. 

We extract image patches of 91 × 91 from the 3600 training

ngerprints with step size of 80 as the input for CNN training.

atches containing no fingerprint area are discarded. There are to-

ally 73,658 patches. The loss weights for joint training are set to

1 = 1 , λ2 = 0 . 8 and λ3 = 1 . 

.2. Datasets and experiment settings 

In this paper, we use the portion of FVC datasets created by

ptical sensors and SFinGe to evaluate the proposed method as

ur corruption methods specifically address noises that would ap-

ear in these images. Each of the FVC2002 [38] and FVC2004

39] datasets consists of 100 subjects with eight samples per sub-

ect, whereas FVC2006 [40] datasets are made out of 140 subjects

ith 12 samples each. In addition to the public datasets, we cre-

te 60 synthetic fingerprints with ground truth labels according to

he procedures discussed in Sections 4 and 5.1 . These fingerprints

re different from the ones used for CNN training and are used

o evaluate the performance of the proposed fingerprint image en-

ancement technique. 

For fingerprint matching, the minutiae are extracted from fin-

erprint images by using the MINDTCT extractor provided by

IST biometric image software (NBIS) [41] after the enhance-

ent method is applied. As there may be unrecoverable and low-

uality regions in the fingerprints after the enhancement, we per-

orm minutiae pruning to eliminate unreliable minutiae. For each

6 × 16 non-overlapping block on the image, we observe the dis-

ribution of the pixel intensities quantized into 16 bins. A block is

arked as unrecoverable and the minutiae within the block are re-

oved if (i) there are at least two bins with more than 40 counts

n the distribution; and (ii) the two bins that have the highest

ounts are at least 10 bins apart. Note that the minutiae prun-

ng process is not applicable to binary images. Finally, the minutia

ylinder code (MCC) [42,43] is adopted for fingerprint matching. 
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Fig. 3. Comparison between (b) the orientation map ( θ ) and the trigonometric function maps of twice the orientation angles, (c) sin 2 θ and (d) cos 2 θ , of the same finger- 

print, i.e. (a). All values are scaled to the range of [0,255] for better gray-scale visualization. The red line in (b) indicate the transition between 0 ◦ and 179 ◦ . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Examples of corrupted fingerprints originated from fingerprint in Fig. 3 (a) with combinations of different corruption method including (b) SN with p L = 0 . 04 , (c) SN 

with p L = 0 . 15 , (d) SN + Sc, (e) SN + W, (f) SN + D, (g) SN + OP and (h) SN + VN, 
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Note that the proposed fingerprint image enhancement method

s used as a pre-processing step in a fingerprint recognition sys-

em. The system that uses MINDTCT for minutiae extraction and

CC for fingerprint matching has been widely used as baseline fin-

erprint recognition. They are selected in our evaluation because

hey provide reasonably accurate performance and the associated

mplementation code is available in public for our experiments. In

ddition, we also employ the state-of-the-art VeriFinger [44] fin-

erprint recognition system in conjunction with the proposed fin-

erprint enhancement method in our experiments. Note that our

ngerprint enhancement method can be used in conjunction with

ny other fingerprint recognition systems. 
We perform the experiments by using several different options

f applying the enhancement methods discussed in this paper.

hey are 

1. No enhancement: minutiae are extracted directly from the raw

fingerprint images without any enhancement 

2. Gabor filtering: traditional Gabor filtering [9] is applied as fin-

gerprint image enhancement 

3. BaseNet: CNN-based fingerprint enhancement based on net-

work in Fig. 2 (a) 

4. BaseNet-bin: CNN-based fingerprint enhancement based on 

network in Fig. 2 (a) with binary outputs 
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Table 1 

Average PSNR (in dB) of the fingerprint images enhanced by the proposed method. 

Method 

Corruption methods 

SN only SN + Sc SN + W SN + D SN + OP SN + VN All 

No enhancement 8.32 8.07 9.66 7.38 8.08 8.59 8.33 

Gabor filtering 7.04 7.12 6.99 7.14 6.24 6.87 6.91 

BaseNet 19.26 18.93 17.95 16.74 10.55 16.17 16.86 

BaseNet-bin 20.38 19.61 18.21 15.74 9.87 17.25 17.11 

OFFIENet-ang 20.20 19.63 19.21 16.92 10.83 16.94 17.56 

OFFIENet-tri 21.33 21.67 20.87 17.25 10.96 19.01 18.71 

OFFIENet-tri-shared 22.06 21.28 20.45 17.24 11.63 18.91 18.86 

Table 2 

Average TMRR/FMRR (in %) of the fingerprint images enhanced by different methods. 

Method 

Corruption methods 

SN only SN + Sc SN + W SN + D SN + OP SN + VN All 

No enhancement 0.4/0.2 0.2/0.6 12.2/14.6 0.0/0.3 0.0/2.0 0.9/0.3 2.0/0.8 

Gabor filtering 65.2/36.0 62.5/34.6 65.4/48.8 53.8/42.5 5.4/450.5 54.0/53.5 52.0/109.5 

BaseNet 78.6/17.2 78.5/21.6 73.9/21.1 79.5/16.0 3.0/27.4 63.5/31.0 64.1/21.2 

BaseNet-bin 83.6/17.6 85.8/16.3 75.2/34.8 79.6/21.9 16.5/231.1 76.7/21.8 70.2/56.9 

OFFIENet-ang 83.6/17.0 78.6/16.2 74.1/22.0 79.0/15.6 5.4/29.9 70.2/21.8 66.2/20.0 

OFFIENet-tri 85.1/14.0 88.1/13.7 79.4/20.4 83.2/15.6 11.0/44.6 77.6/18.1 71.4/20.7 

OFFIENet-tri-shared 84.9/14.5 86.4/12.9 79.6/20.1 81.7/15.8 11.4/42.4 77.1/18.1 70.9/20.4 
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5. OFFIENet-ang: CNN-based fingerprint enhancement based on

network in Fig. 2 (b) and use angles as the orientation field la-

bels 

6. OFFIENet-tri: CNN-based fingerprint enhancement based on

network in Fig. 2 (b) and use sin 2 θ and cos 2 θ as the orienta-

tion field labels 

7. OFFIENet-tri-shared: OFFIENet-tri with weight sharing 

5.3. Fingerprint image enhancement results 

In image restoration, it is common to use the peak signal-to-

noise ratio (PSNR) to measure how close the restored image is to

the clean image. We perform the same analysis on the enhanced

fingerprint image to quantitatively evaluate how well the finger-

prints are reconstructed from their corrupted versions. However,

in the context of fingerprint enhancement, the ability to preserve

features for fingerprint matching is crucial and it does not nec-

essarily concur with high PSNR between the reconstructed image

and the clean image. Therefore, we also compute the minutiae re-

covery rates of the enhanced fingerprints to compare the minutiae

extracted from the enhanced image (recovered minutiae) and the

original image (true minutiae). Here, we define true minutiae re-

covery rate (TMRR) as 

TMRR = 

number of correctly recovered minutiae 

number of true minutiae 
(5)

and false minutiae recovery rate (FMRR) as 

FMRR = 

number of falsely recovered minutiae 

number of true minutiae 
(6)

Tables 1 and 2 compares the average PSNR and minutiae re-

covery rates of the methods under evaluation. OFFIENet-tri-shared

yields the best PSNR among the methods. However as discussed

above, higher PSNR does not guarantee higher fingerprint recog-

nition rate. The minutiae recovery rates measure how much valu-

able information is extracted from the enhanced fingerprints and

is more relevant to minutiae-based fingerprint matching such as

MCC. OFFIENet-tri has the highest TMRR compared to other meth-

ods, which leads to the prediction that it also has the highest

recognition rate later on. Fig. 5 depicts some enhanced fingerprint

images imposed with the extracted minutiae for different enhance-

ment methods. From the zoomed-in region in Fig. 6 , we can clearly
ee that results of Gabor filtering and BaseNet contain falsely de-

ected minutiae while OFFIENet-tri has the outcome almost identi-

al to the ground truth. 

We see that Gabor filtering gives even lower PSNR than us-

ng the raw images but it is able to recover more minutiae. This

s because Gabor filtering results in gray background as shown in

ig. 5 which differs from the original white background, thus in-

reasing the mean-squared error in PSNR computation. This is one

ase where PSNR can be misleading in the context of fingerprint

mage enhancement. 

Furthermore, both Tables 1 and 2 agree that fingerprints with

N alone are easier to recover than the others as they consist of

nly one type of noise. On the other hand, SN+OP is the most

ifficult case. This is because thickened ridges may merge with

djacent ridges and to a certain extent, the ridge structures be-

ome unrecoverable. An example of the reconstruction of an over-

ressured fingerprint is shown in the first row of Fig. 5 . 

Apart from the synthetic data, we also perform analysis on the

VC datasets with real fingerprints. Since no ground truth image

s available, PSNR, TMRR and FMRR cannot be computed. Based on

he visual results in Fig. 7 , we can see that OFFIENet-tri produces

he most desirable outputs. Comparing the results of BaseNet and

FFIENet-tri, some minutiae exist in the former but not in the

atter. These minutiae are spurious minutiae caused by scars or

oist on the fingers and should be removed for robust fingerprint

atching. In another case, more valuable minutiae are extractable

f the contrast between the ridges and valleys is able to be recov-

red as shown in Fig. 8 . 

Fig. 9 depicts some of the fingerprints that the proposed

ethod failed to reconstruct. These fingerprints contain severe and

arge defective areas which are difficult to recover even with hu-

an eyes. Although the well-known powerful GAN [45] may be

ble to make up the missing fingerprint regions, the recovered

idge patterns and minutiae might not represent the original fin-

erprint. 

.4. Fingerprint recognition accuracy 

Since the objective of this work is to improve the performance

f AFRS, evaluating the fingerprint recognition accuracy by using

he proposed method is very crucial. In Table 3 , we compare the
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Fig. 5. Comparison between the results of using different enhancement methods on the synthetic testing dataset created using algorithms described in Section 4 . The 

minutiae extracted are marked with red circles . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Comparison between the zoomed-in view of the minutiae extracted from different enhanced synthetic fingerprints. 

Table 3 

EER (in %) of the proposed two-stage CNN-based fingerprint image enhancement schemes in conjunction with MCC or VeriFinger matching method compared with other 

existing methods. The values in the first three rows are directly taken from the respective papers. 

Method FVC2002 DB1 FVC2002 DB2 FVC2002 DB4 FVC2004 DB1 FVC2004 DB2 FVC2004 DB4 FVC2006 DB2 FVC2006 DB4 

MCC [43] 1.00 0.49 - - - - 0.12 - 

Yang et al. [17] - - - 3.12 2.50 4.19 - - 

Sutthiwichaiporn et al. [25] 2.07 0.88 1.53 5.65 5.46 2.59 0.25 1.94 

VeriFinger [44] 0.25 0.31 0.35 1.80 0.82 1.06 0.02 8.76 

No enhancement + MCC 0.67 0.75 4.57 6.57 8.56 9.52 1.43 9.02 

Gabor filtering + MCC 0.71 0.47 2.86 3.97 5.54 5.71 1.35 5.13 

BaseNet + MCC 0.57 0.14 1.29 3.43 4.43 1.57 1.04 1.43 

BaseNet-bin + MCC 0.71 0.14 1.04 3.88 4.57 1.43 1.82 2.01 

OFFIENet-ang + MCC 0.59 0.29 0.86 3.27 4.20 1.60 1.04 1.43 

OFFIENet-tri + MCC 0.43 0.14 0.43 2.93 3.43 1.14 0.12 1.09 

OFFIENet-tri-shared + MCC 0.47 0.17 0.50 2.85 4.18 1.14 0.12 1.16 

OFFIENet-tri + VeriFinger 0.18 0.14 0.25 1.83 3.66 0.32 0.83 0.61 
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Fig. 7. Comparison between the results of using different enhancement methods on FVC datasets. The minutiae extracted are marked with red circles. Yellow boxes highlight 

the effect of orientation field correction on removing spurious minutiae. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 8. Comparison between the zoomed-in view of the minutiae extracted from different enhanced real fingerprints. 
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equal-error rates (EER) of different methods and settings. The com-

bination of using OFFIENet-tri for pre-processing and then applying

Verifinger [44] for fingerprint classification outperforms the other

methods in most datasets. From the detection error trade-off (DET)

curves in Fig. 10 , it is evident that OFFIENet-tri yields the best DET.

Therefore, ridge orientation information does contribute to bet-

ter reconstruction of the fingerprint structures. Besides, the degra-

dation in OFFIENet-tri-shared when compared to OFFIENet-tri is

marginal, thus showing that weight sharing is able to reduce the

number of parameters without compromising much performance.

To be specific, the number of parameters is reduced from 6.2M to

4.2M through weight sharing. 

The proposed fingerprint enhancement method combined with

VeriFinger does not provide the best accuracy for the experiment

on FVC2004DB2 and FVC2006DB2 due to the unique background

noise and large areas of dark regions that exist in the datasets as

depicted in Fig. 11 . This kind of background noises and dark re-

gions were not modeled in the synthesis of our training data. In-

clusion of such background noise and fingerprint corruption in the

training data should improve the performance. 

Our results show that gray-scale reconstruction performs bet-

ter than binary reconstruction by comparing BaseNet and BaseNet-

bin. In the case where a fingerprint region fails to be recovered,
aseNet may output different intensity of gray pixels between

lack and white while BaseNet-bin forces the pixels to be either

lack or white. Such hard classification of BaseNet-bin results in

nrealistic reconstructed fingerprint and many spurious minutiae. 

In order to compare with the results of Schuch’s work [8] , we

ompute the area under DET curves (AUC) for OFFIENet-tri on

atasets {FVC20 02DB1, FVC20 02DB2, FVC20 04DB1, FVC20 04DB2,

VC2006DB2}. We deduce the AUCs after enhancement from the

aseline AUCs and the relative AUCs reported in [8] to be {0.1040,

.1368, 0.38, 0.3174, 0.0680} as opposed to our AUCs {0.0019,

.3544e-5, 0.0 064, 0.0 097, 4.5537e-5}, in respective order. There-

ore, we prove that the proposed OFFIENet-tri outperforms the re-

erred work with significantly lower AUC of DET curves. The rea-

on might be that the proposed CNN is much deeper than theirs.

 deeper network with larger receptive field allows a pixel to be

econstructed based on wider surrounding region, and thus it is

ore accurate. 

.5. The effect of number of epochs and training samples 

We also investigate the effect of using different number of

raining epochs and sizes of training dataset on the fingerprint

ecognition performance. We train the proposed CNN with full
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Fig. 9. Examples of low-quality fingerprints whose ridge lines cannot be fully re- 

covered by the proposed method. 
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Fig. 10. DET curves of the proposed methods when tested on (a) FVC2002DB1 and 

(b) FVC2004DB1. 
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ataset as described in Section 5.1 as well as partial dataset (7/8,

/4 and 1/2 of the full dataset) for 10 epochs. From Fig. 12 , we

an see that the performance converges at six to nine epochs. Af-

er convergence, the EER slightly increases. As the training data is

ynthetically created, it does not completely imitate the samples

n testing data. Therefore, “over-training” the CNN might cause the

esulting model to overly fit to the training data and lose its adapt-

bility to real fingerprints. Furthermore, the performance is main-

ained when the training dataset is reduced to 7/8 of its full size,

nd starts to deteriorate when a quarter or more of the training

ataset is discarded. 
Fig. 11. Examples of low-quality fingerprints in FVC2004DB2. The proposed fingerprint e

Table 4 

Latent-to-Sensor fingerprint matching results 

by using different fingerprint pre-processing 

Dabouei et al. are taken directly from [47] , but

pletely the same as that used in our setting. 

Method Gallery 

Dabouei et al. [47] DB1 (Lumidig

VeriFinger DB1 (Lumidig

OFFIENET-tri + VeriFinger DB1 (Lumidig

Dabouei et al. [47] DB2 (Secugen

VeriFinger DB2 (Secugen

OFFIENET-tri + VeriFinger DB2 (Secugen
.6. Enhancement on latent fingerprints 

Besides fingerprints obtained from optical sensors, we also ap-

ly the proposed method on latent fingerprints. We used the IIIT-

OLF database [46] for this experiment. We performed the fin-

erprint matching for the latent fingerprints by using VeriFinger
nhancement method failed to recover the fingerprints well for accurate matching. 

(Rank-50 accuracy) on MOLF database 

and matching methods. The results for 

 their experiment setting was not com- 

Probe Accuracy (%) 

m) DB4 (Latent) 70.89 

m) DB4 (Latent) 83.96 

m) DB4 (Latent) 89.89 

) DB4 (Latent) 66.11 

) DB4 (Latent) 76.67 

) DB4 (Latent) 84.10 
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Fig. 12. Performance of the proposed CNN-based fingerprint image enhancement method on FVC2004DB2 with different number of training epochs and training samples. 

Fig. 13. Enhancement results of some (a) good quality and (b) low quality latent fingerprints. 
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matching method [44] with and without applying the proposed

OFFIENET enhancement method. We selected the first two finger-

print images for each person in DB1/DB2 dataset as the gallery,

and randomly selected 10 images for each person from DB4, the

latent image dataset, as the probe set. The matching accuracy is

calculated as the percentage of the probe images with the corre-

sponding ground truth within the top rank-50 matching results.

Table 4 shows that the proposed fingerprint enhancement method

in conjunction with VeriFinger matching considerably improves the

matching accuracy for latent fingerprint images. Fig. 13 depicts

some latent fingerprint enhancement results. Even though the ex-

act noise patterns that exist in latent fingerprints were not sim-

ulated in our training data, the proposed enhancement CNN is

still able to recover some parts of the fingerprint area, while it

fails in other extremely low contrast and noisy images. This prob-

lem can be alleviated by adding more varieties, especially latent

fingerprint-like samples, into the training data. 

6. Conclusion 

In this paper, we presented a multi-task CNN model specifically

designed for fingerprint image enhancement, coined as OFFIENet.

It embeds the orientation field information into the network for

better reconstruction of the fingerprint image. We also created our

own synthetic training data for the supervised learning of CNNs.

Experimental results showed that the proposed method outper-

forms existing methods in a number of FVC fingerprint datasets.
e have proven that the proposed CNN is beneficial to the extrac-

ion of fingerprint minutiae, thus improving the overall fingerprint

ecognition EERs. The proposed scheme has demonstrated the fea-

ibility and superiority of using the proposed OFFIENet model for

ngerprint image enhancement on rolled and plain fingerprints.

he future research direction is to extend this work for application

o latent fingerprint images by simulating the noises and corrup-

ions that would appear in such extremely low-quality fingerprints

or the model training. 

eferences 

[1] P. Vincent , H. Larochelle , Y. Bengio , P.-A. Manzagol , Extracting and composing

robust features with denoising autoencoders, in: International Conference on
Machine Learning, ACM, 2008, pp. 1096–1103 . 

[2] C. Dong , C.C. Loy , K. He , X. Tang , Image super-resolution using deep convolu-

tional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2016) 295–307 . 
[3] J. Kim , J.K. Lee , K.M. Lee , Accurate image super-resolution using very deep

convolutional networks, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2016 . 

[4] D. Pathak , P. Krähenbühl , J. Donahue , T. Darrell , A. Efros , Context encoders:
Feature learning by inpainting, in: IEEE Conference on Computer Vision and

Pattern Recognition, 2016 . 
[5] L. Jiang , T. Zhao , C. Bai , A. Yong , M. Wu , A direct fingerprint minutiae extrac-

tion approach based on convolutional neural networks, in: International Joint

Conference on Neural Networks, IEEE, 2016, pp. 571–578 . 
[6] Y. Tang , F. Gao , J. Feng , Latent fingerprint minutia extraction using fully convo-

lutional network, in: International Joint Conference on Biometrics, IEEE, 2017 . 
[7] D. Maltoni , Generation of synthetic fingerprint image databases, in: Automatic

Fingerprint Recognition Systems, Springer, 2004, pp. 361–384 . 

http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005a
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005a
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005a
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0005a
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0006


W.J. Wong and S.-H. Lai / Pattern Recognition 101 (2020) 107203 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

[  

 

[  

 

 

[  

[  

 

 

[  

 

[  

[  

 

 

 

[  

 

 

[  

 

 

[  

 

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

[

[  

 

[  

 

 

 

[8] P. Schuch , S. Schulz , C. Busch , De-convolutional auto-encoder for enhancement
of fingerprint samples, in: International Conference on Image Processing The-

ory Tools and Applications, IEEE, 2016, pp. 1–7 . 
[9] L. Hong , Y. Wan , A. Jain , Fingerprint image enhancement: algorithm and per-

formance evaluation, IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998)
777–789 . 

[10] W. Wang , J. Li , F. Huang , H. Feng , Design and implementation of Log-Gabor
filter in fingerprint image enhancement, Pattern Recognit. Lett. 29 (3) (2008)

301–308 . 

[11] C. Gottschlich , Curved-region-based ridge frequency estimation and curved Ga-
bor filters for fingerprint image enhancement, IEEE Trans. Image Process. 21

(4) (2012) 2220–2227 . 
[12] Y. Mei , B. Zhao , Y. Zhou , S. Chen , Orthogonal curved-line Gabor filter for fast

fingerprint enhancement, Electron. Lett. 50 (3) (2014) 175–177 . 
[13] E. Zhu , J. Yin , G. Zhang , Fingerprint enhancement using circular Gabor filter, in:

International Conference on Image Analysis and Recognition, Springer, 2004,

pp. 750–758 . 
[14] B. Sherlock , D. Monro , K. Millard , Fingerprint enhancement by directional

fourier filtering, IEE Proc.-Vis. Image Signal Process. 141 (2) (1994) 87–94 . 
[15] S. Chikkerur , A.N. Cartwright , V. Govindaraju , Fingerprint enhancement using

STFT analysis, Pattern Recognit. 40 (1) (2007) 198–211 . 
[16] M. Ghafoor , I.A. Taj , W. Ahmad , N.M. Jafri , Efficient 2-fold contextual filter-

ing approach for fingerprint enhancement, IET Image Process. 8 (7) (2014)

417–425 . 
[17] J. Yang , N. Xiong , A.V. Vasilakos , Two-stage enhancement scheme for low-qual-

ity fingerprint images by learning from the images, IEEE Trans. Hum.-Mach.
Syst. 43 (2) (2013) 235–248 . 

[18] M. Zahedi , O.R. Ghadi , Combining Gabor filter and FFT for fingerprint enhance-
ment based on a regional adaption method and automatic segmentation, Sig-

nal Image Video Process. 9 (2) (2015) 267–275 . 

[19] C.-T. Hsieh , E. Lai , Y.-C. Wang , An effective algorithm for fingerprint image
enhancement based on wavelet transform, Pattern Recognit. 36 (2) (2003)

303–312 . 
20] M.-l. Wen , Y. Liang , Q. Pan , H.-c. Zhang , A Gabor filter based fingerprint

enhancement algorithm in wavelet domain, in: IEEE International Sympo-
sium on Communications and Information Technology, vol. 2, IEEE, 2005,

pp. 1468–1471 . 

[21] J.-W. Wang , N.T. Le , C.-C. Wang , J.-S. Lee , Enhanced ridge structure for improv-
ing fingerprint image quality based on a wavelet domain, IEEE Signal Process.

Lett. 22 (4) (2015) 390–394 . 
22] J.S. Bartunek , M. Nilsson , J. Nordberg , I. Claesson , Adaptive fingerprint binariza-

tion by frequency domain analysis, in: Asilomar Conference on Signals, Sys-
tems and Computers, IEEE, 2006, pp. 598–602 . 

23] J.S. Bartunek , M. Nilsson , B. Sallberg , I. Claesson , Adaptive fingerprint image

enhancement with emphasis on preprocessing of data, IEEE Trans. Image Pro-
cess. 22 (2) (2013) 644–656 . 

[24] E.-K. Yun , S.-B. Cho , Adaptive fingerprint image enhancement with fingerprint
image quality analysis, Image Vis. Comput. 24 (1) (2006) 101–110 . 

25] P. Sutthiwichaiporn , V. Areekul , Adaptive boosted spectral filtering for progres-
sive fingerprint enhancement, Pattern Recognit. 46 (9) (2013) 2465–2486 . 

26] M.A. Khan , T.M. Khan , D. Bailey , Y. Kong , A spatial domain scar removal strat-
egy for fingerprint image enhancement, Pattern Recognit. 60 (2016) 258–274 . 

[27] K. Cao , E. Liu , A.K. Jain , Segmentation and enhancement of latent fingerprints:

a coarse to fine ridgestructure dictionary, IEEE Trans. Pattern Anal. Mach.Intell.
36 (9) (2014) 1847–1859 . 
28] E. Saatci , V. Tavsanoglu , Fingerprint image enhancement using CNN Gabor-type
filters, in: IEEE International Workshop on Cellular Neural Networks and Their

Applications, IEEE, 2002, pp. 377–382 . 
29] J. Li , J. Feng , C.-C.J. Kuo , Deep convolutional neural network for latent finger-

print enhancement, Signal Process. 60 (2018) 52–63 . 
30] I. Joshi , A. Anand , M. Vatsa , R. Singh , S.D. Roy , P. Kalra , Latent fingerprint en-

hancement using generative adversarial networks, in: IEEE Winter Conference
on Applications of Computer Vision (WACV), IEEE, 2019, pp. 895–903 . 

[31] Y. Tang , F. Gao , J. Feng , Y. Liu , FingerNet: an unified deep network for finger-

print minutiae extraction, in: IEEE International Joint Conference on Biomet-
rics, 2017 . 

32] H.H. Le , N.H. Nguyen , T.T. Nguyen , Automatic detection of singular points in
fingerprint images using convolution neural networks, in: Asian Conference on

Intelligent Information and Database Systems, 2017 . 
[33] R. Wang, C. Han, Y. Wu, T. Guo, Fingerprint classification based on depth neural

network, arXiv: 1409.5188 , (2014). 

34] B. Stojanovi ́c , O. Marques , A. Neškovi ́c , S. Puzovi ́c , Fingerprint ROI segmenta-
tion based on deep learning, in: Telecommunications Forum (TELFOR), 2016

24th, IEEE, 2016, pp. 1–4 . 
[35] K. Cao , A.K. Jain , Latent orientation field estimation via convolutional neural

network, in: International Conference on Biometrics, IEEE, 2015, pp. 349–356 . 
36] R. Cappelli , D. Maio , D. Maltoni , An improved noise model for the generation of

synthetic fingerprints, in: Control, Automation, Robotics and Vision Conference,

2004. ICARCV 2004 8th, vol. 2, IEEE, 2004, pp. 1250–1255 . 
[37] A.M. Bazen , S.H. Gerez , Systematic methods for the computation of the direc-

tional fields and singular points of fingerprints, IEEE Trans. Pattern Anal. Mach.
Intell. 24 (7) (2002) 905–919 . 

38] D. Maio , D. Maltoni , R. Cappelli , J.L. Wayman , A.K. Jain , Fvc2002: second finger-
print verification competition, in: International Conference on Pattern Recog-

nition, vol. 3, IEEE, 2002, pp. 811–814 . 

39] D. Maio , D. Maltoni , R. Cappelli , J.L. Wayman , A.K. Jain , Fvc2004: third fin-
gerprint verification competition, in: Biometric Authentication, Springer, 2004,

pp. 1–7 . 
40] J. Fierrez , J. Ortega-Garcia , D.T. Toledano , J. Gonzalez-Rodriguez , Biosec base-

line corpus: a multimodal biometric database, Pattern Recognit. 40 (4) (2007)
1389–1392 . 

[41] C.I. Watson , M.D. Garris , E. Tabassi , C.L. Wilson , R.M. Mccabe , S. Janet , K. Ko ,

User’s guide to NIST biometric image software (NBIS), 2007 . 
42] R. Cappelli , M. Ferrara , D. Maltoni , Minutia cylinder-code: a new representation

and matching technique for fingerprint recognition, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (12) (2010) 2128–2141 . 

43] M. Ferrara , D. Maltoni , R. Cappelli , Noninvertible minutia cylinder-code repre-
sentation, IEEE Trans. Inf. ForensicsSecur. 7 (6) (2012) 1727–1737 . 

44] Neurotechnology, Verifinger SDK, ( http://www.neurotechnology.com/verifinger. 

html ). 
45] I. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair ,

A. Courville , Y. Bengio , Generative adversarial nets, in: Advances in Neural In-
formation Processing Systems, 2014, pp. 2672–2680 . 

46] A. Sankaran , M. Vatsa , R. Singh , Multisensor optical and latent fingerprint
database, IEEE Access 3 (2015) 653–665 . 

[47] A. Dabouei , S. Soleymani , H. Kazemi , S.M. Iranmanesh , J. Dawson ,
N.M. Nasrabadi , ID preserving generative adversarial network for partial

latent fingerprint reconstruction, in: IEEE 9th International Conference on

Biometrics Theory, Applications and Systems, IEEE, 2018 . 

http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0031
http://arxiv.org/abs/1409.5188
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0041
http://www.neurotechnology.com/verifinger.html
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30010-8/sbref0044

	Multi-task CNN for restoring corrupted fingerprint images1
	1 Introduction
	2 Related works
	2.1 Fingerprint image enhancement techniques
	2.2 CNNs for other fingerprint recognition applications

	3 Proposed CNN model for fingerprint image enhancement
	3.1 Single-task network
	3.2 OFFIENet: multi-task network with orientation field correction

	4 Generation of corrupted fingerprint images
	5 Experimental results
	5.1 Preparing for CNN training
	5.2 Datasets and experiment settings
	5.3 Fingerprint image enhancement results
	5.4 Fingerprint recognition accuracy
	5.5 The effect of number of epochs and training samples
	5.6 Enhancement on latent fingerprints

	6 Conclusion
	References


