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GAN-Based Day-to-Night Image Style Transfer for
Nighttime Vehicle Detection

Che-Tsung Lin , Sheng-Wei Huang, Yen-Yi Wu , and Shang-Hong Lai , Member, IEEE

Abstract— Data augmentation plays a crucial role in training
a CNN-based detector. Most previous approaches were based on
using a combination of general image-processing operations and
could only produce limited plausible image variations. Recently,
GAN (Generative Adversarial Network) based methods have
shown compelling visual results. However, they are prone to
fail at preserving image-objects and maintaining translation
consistency when faced with large and complex domain shifts,
such as day-to-night. In this paper, we propose AugGAN, a GAN-
based data augmenter which could transform on-road driving
images to a desired domain while image-objects would be well-
preserved. The contribution of this work is three-fold: (1) we
design a structure-aware unpaired image-to-image translation
network which learns the latent data transformation across
different domains while artifacts in the transformed images are
greatly reduced; (2) we quantitatively prove that the domain
adaptation capability of a vehicle detector is not limited by
its training data; (3) our object-preserving network provides
significant performance gain in the difficult day-to-night case in
terms of vehicle detection. AugGAN could generate more visually
plausible images compared to competing methods on different
on-road image translation tasks across domains. In addition,
we quantitatively evaluate different methods by training Faster
R-CNN and YOLO with datasets generated from the transformed
results and demonstrate significant improvement on the object
detection accuracies by using the proposed AugGAN model.

Index Terms— Vehicle detection, generative adversarial net-
work, image-to-image translation, semantic segmentation,
domain adaptation.

I. INTRODUCTION

THE major cause of traffic accidents is mainly due to
improper following distance and distracted driving. The

most critical function in the advanced driver assistance systems
(ADAS) and autonomous vehicles is vehicle detection. One
expects that vehicles around host driver could be detected as
accurately as possible by an ADAS all day, including day and
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night. However, vehicle’s appearance at daytime is quite differ-
ent from its counterpart at nighttime. Even in the era of deep
learning, a daytime vehicle detector could not function well
at nighttime if only standard monocular camera is adopted.

A number of vehicle detection methods were proposed
under a Hypothesis Generation (HG) + Hypothesis Verifica-
tion (HV) framework [1], [2]. The former is to generate region
proposals and the latter applies a pair of feature extractor
and classifier to eliminate false positives. Detecting vehicles
partially occluded or seen by arbitrary viewing angle is a
great challenge because its appearance varies to a great extent.
Early works in this area were done by detecting a combination
of independent vehicle parts. The Deformable Part Model
(DPM) [3], using HOG features and latent SVM, can suc-
cessfully handle deformable object detection even when the
target is partially occluded and it has been used for daytime
on-road vehicle detection in [4]–[7].

The vast majority of vision-based vehicle detection works
were designed to detect vehicles at daytime. However, detect-
ing vehicle at nighttime is difficult in that vehicle’s body could
not be fully seen consistently even without being occluded.
When a vehicle drives in a scenario that street/highway lights
are absent, whether or not the body of an un-occluded vehicle
could be entirely seen is related to several issues, such as what
color its body is, how far it is and most importantly, if its body
is lit up by the head-light of the host vehicle or other vehicles.
As some features of vehicles, such as headlights and taillights,
are more visible at nighttime, some studies [8], [9] proposed
nighttime DPM models which are specifically-optimized for
nighttime scenario.

Recent advances of object detection are driven by the
success of two-stage detectors popularized by region-based
convolutional neural network (R-CNN) [10]. The YOLO
detector [11] made a break-through by realizing an end-to-
end one-stage framework for object detection. Without specific
preset rules, a CNN-based detector could easily detect a vehi-
cle seen at arbitrary viewing angles. Indeed, the generalization
capability of CNN-based detectors is way better than tradi-
tional machine learning approaches. However, performance
still drops significantly when the detector is presented with
data from a new deployment domain where the model did
not see during training. In ADAS or autonomous vehicle,
one of the most complex domain shift is between day and
night because the object appearances such as vehicles at
daytime are very different from their counterparts at nighttime.
As indicated by [12] in pedestrian detection, training on
daytime and testing on night-time gives significantly worse
results than training and testing on the same time-of-day.
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However, most datasets containing vehicles are captured at
daytime. Most importantly, nighttime vehicle datasets in real-
driving scenario are scarce in public domain.

A naive thought to overcome this problem is to apply tradi-
tional data augmentation techniques, which are usually related
to image-processing operations, to enhance the generalization
capability of an object detector when deployed in a new
domain different from the source one. For example, one may
expect that applying those techniques on the daytime training
data would help train a vehicle detector to function well at
nighttime. However, such kind of transformation could only
provide limited plausible data variations. Nowadays, an end-
to-end deep learning solution is proven effective qualitatively
and quantitatively in many kinds of image translation tasks.

Recently, generative adversarial networks (GANs) [13],
which consist of two networks (i.e., a generator and a discrim-
inator) competing against each other, have emerged as a pow-
erful framework for learning generative models of random data
distributions. While GANs are expected to generate images in
the conditional setting, using a GAN to directly generate object
detection training data with automatically-generated bounding
boxes in an expected scenario from random noise still sounds
like a fantasy. Instead, learning to translate a labeled image to
another style is more feasible.

Inspired by the advantages and drawbacks of previous
works, in this paper, we propose AugGAN, a structure-aware
unpaired image-to-image translation network, which allows
us to directly benefit object detection by translating existing
labeled data from its original domain to other ones. We partic-
ularly stress on day-to-night image translation not only for the
importance of night-time detection, but also for the fact that
it is one of the most difficult cross-domain transformations.
However, our method is also capable of handling various
domain pairs.

In the quantitative analysis, our network is trained on
synthetic datasets (i.e., SYNTHIA [14], GTA dataset [15]).
Compared to other competing methods, the domain translation
results of our network significantly enhance the capability
of the object detector for applications on both synthetic
(i.e., SYNTHIA, GTA) and real-world (i.e., KITTI [16],
ITRI-Day [17], ITRI-Night [17]) data. Finally, AugGAN is
general in that it could deal with synthetic-to-synthetic (e.g.
GTA-day to SYNTHIA, GTA-sunset, GTA-rain, and SYN-
THIA), synthetic-to-real (e.g. SYNTHIA-day to ITRI-Night),
real-to-real (e.g. Cityscape [18] to ITRI-Night), and even real-
to-synthetic (e.g. Cityscape to SYNTHIA) transformations.

The preliminary study of this work including the ear-
lier versions of AugGAN (AugGAN-1 and AugGAN-2)
were published in [17]. This paper provides an extended
and refined AugGAN model (AugGAN-3 denoted as Aug-
GAN throughout this paper) capable of achieving better
qualitative and quantitative results in our experiments on
different cross-domain translation with various datasets. It is
evident from the detailed nighttime detector training com-
parison between real and generated nighttime images, and a
thorough subjective evaluation in assessing the transformed
results done by other competing methods and our model
variations.

II. RELATED WORK

With the advent of R-CNN, a sequence of two-stage
detectors including Fast R-CNN [19], Faster R-CNN [20],
R-FCN [21], MS-CNN [22], etc., continuously achieve higher
accuracy. YOLO regards object detection as a single regres-
sion problem as how CNNs are applied for image clas-
sification. Then, a multi-scale version of the one-stage
detector, SSD [23], demonstrates significant improvements.
YOLOv2 proposed in YOLO9000 [24] further boosts the mAP
while the FPS is still very high. These detectors keep pushing
the limits of object detection in general object detection
datasets such as PASCAL VOC [25] and MSCOCO [26].

Recently, Pix2Pix [27] made a breakthrough in direct paired
image-to-image translation. i.e., the generator learns to trans-
late a given image to the expected output, such as labels
to street scenes, labels to Façade, a B/W image to its color
counterpart. However, to obtain paired labeled image pairs in
distinct scenarios like day and night is very difficult in practice.
More recently, unpaired image-to-image translation methods,
such as CycleGAN [28], DiscoGAN [29] and DualGAN [30]
have made the training of GAN possible without paired data by
introducing the cycle-consistency constraint. CoGAN [31] is
a model capable of working on unpaired images by using two
weight-sharing generators to generate images of two domains
with one random noise. Based on CoGAN, UNIT [32] further
introduced the latent space assumption by encouraging two
encoders to map images from two domains into the same latent
space, which largely increases the translation consistency.

Most on-road vehicle datasets are captured at daytime.
LISA 2010 dataset [33] is composed of three video sequences
of vehicles. Urban Traffic Surveillance (UTS) dataset [34]
provides vehicle images captured by surveillance system.
Compcars [35] dataset consists of a large amount of labeled
cars with bounding boxes, viewpoints as well as five attributes.
The Cars [35] dataset contains more than 100 classes of
cars. PASCAL VOC [25] also provides annotated cars and
buses in more diverse and challenging scenarios in the sense
that their appearances are fully or partially seen at different
distances, aspect ratios, sizes and viewing angles. However,
vehicles in these datasets are rarely captured from the front-
view or in real-driving scenario. KITTI dataset is specifically
designed for autonomous driving, having every image col-
lected in practical driving scenario but every image is captured
at daytime only. ITRI dataset [17] including ITRI-Day and
ITRI-Night provides real-driving images captured at daytime
and nighttime under similar driving scenarios. SYNTHIA
dataset [14] is collected from synthetic driving scenarios
including morning, dusk, evening and night, with four stereo
cameras (i.e., font, back, left, right). GTA dataset [15] offers
more realistic synthetic images in day, snow, rain, sunset, and
night conditions.

III. PROPOSED FRAMEWORK

For images in source domain to be properly translated to the
target one while image-objects are well-preserved, we assume
that the encoded information is required to contain (1) mutual

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on January 16,2023 at 07:17:18 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: GAN-BASED DAY-TO-NIGHT IMAGE STYLE TRANSFER FOR NIGHTTIME VEHICLE DETECTION 953

Fig. 1. Overall structure of the proposed image-to-image translation network: X, Y: image domain X and Y; Z: feature domain; X̄ , Ȳ : translated results;
X̂ pred , Ŷpred : predicted segmentation masks; X̂rec , Ŷrec : predicted segmentation masks for reconstructed images given Ȳ and X̄ ; Dotted & solid lines between
blocks implicate soft-sharing and hard-sharing, respectively.

style information between source and target domains, and (2)
structural information of the given input image.

Let X and Y denote the two image domains, X̂ and Ŷ
represent the corresponding segmentation masks, and Z is the
encoded feature space. Our network, as depicted in Fig. 1,
consists of two encoders Ex : X → Z and Ey : Y → Z, two
image-translation generators, Gx : Z → Ȳ and Gy : Z → X̄,
two parsing nets, Px : Z → X̂pred, and Py : Z → Ŷpred, and
two discriminators Dx and Dy for the two image domains,
respectively.

Our network learns the image translation and the seg-
mentation subtasks in both forward and backward cycles,
simultaneously. Take the forward cycle for example, the latent
vector of an input x ∈ X is extracted by Ex . Then, the encoded
vector is processed to produce the translated output ȳ via Gx

and the segmentation result x̂ pred via Px . For the translated
output ȳ, its latent vector is encoded by Ey to yield the
reconstructed image xrec via Gy and the segmentation result
x̂rec via Py .

However, as will be discussed in the model analysis section,
although the final structure depicted in Fig. 1 leads to the
best results quantitatively and qualitatively, our basic model-
AugGAN-1, which only introduced the segmentation subtask
to the image translation phase in the forward cycle, already
outperforms other competing models. Detailed architecture of
our proposed complete network is given in Table I. We take
SYNTHIA case in describing the size of the feature maps in
each layer. The input image size is re-sized to 5-times smaller
in GAN learning throughout this work.

A. Structure-Aware Encoding and Segmentation Subtask

Our model actively guides the encoder networks to extract
structure-aware features by regularizing them via segmentation

subtask so that the extracted feature vector contains not only
the mutual style information between X and Y domains, but
also the intricate low-level semantic features of the input
image that are valuable in the preservation of image-objects
during the translation. We experimentally found that using
both cross-entropy loss and L1 loss leads to better results and
the segmentation loss in the image translation phase of the
forward cycle could be formulated as:

Lseg−x(Px , Ex , X, X̂)

= λseg−L1Ex,x̂∼pdata(x,x̂)
[�L1(Px (Ex(x)), x̂)]

+λseg−cross−entropyEx,x̂∼pdata(x,x̂)
[�mce(Px (Ex(x)), x̂)], (1)

where �L1(Px(Ex (x)), x̂) denotes the L1 loss between a
C-class H × W predicted segmentation probability map
X̂ pred = Px (Ex(x)) and the target segmentation map
X̂ represented using a 1-hot encoding in the form of

1
H×W×C

∑H×W
i=1

∑C
c=1 |x̂ pred,c(i)− x̂c(i)|. For the multi-class

cross-entropy loss, �mce(Px(Ex (x)), x̂), it could be formulated
as − 1

H×W

∑H×W
i=1

∑C
c=1 x̂c(i)log(x̂ pred,c(i)).

For the backward cycle, the segmentation loss in the image
translation phase is:

Lseg−y(Py, Ey, Y, Ŷ )

= λseg−L1Ey,ŷ∼pdata(y,ŷ)
[�L1(Py(Ey(y)), ŷ)]

+λseg−cross−entropyEy,ŷ∼pdata(y,ŷ)
[�mce(Py(Ey(y)), ŷ))].

(2)

Similarly, for the reconstruction phases of both cycles,
the two segmentation losses could be formulated as
Lseg−y(Py, Ey, Ȳ , X̂) and Lseg−x(Px , Ex , X̄ , Ŷ ), respectively.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on January 16,2023 at 07:17:18 UTC from IEEE Xplore.  Restrictions apply. 



954 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2021

TABLE I

NETWORK ARCHITECTURE OF ENCODERS, GENERATORS, PARSING NETS,
AND DISCRIMINATORS IN OUR IMAGE-TO-IMAGE TRANSLATION

MODEL: THE RESBLK IS A COMBINATION OF CONVOLUTION,
BATCH NORMALIZATION, ELU, CONVOLUTION, AND BATCH

NORMALIZATION LAYERS WITH SKIP CONNECTION.
EVERY CONVOLUTION AND DECONVOLUTION LAYER

IS FOLLOWED BY BATCH NORMALIZATION LAYER

EXCEPT THE FIRST LAYER OF EACH GENERATOR
AND THE LAST LAYER OF EACH GENERATOR,

PARSING NET AND DISCRIMINATOR.
HARD, SOFT, AND NSEG DENOTE

HARD-SHARED, SOFT-SHARED,
AND TASK-SPECIFIC NUMBER

OF SEGMENTATION

CLASSES,
RESPECTIVELY

B. Adversarial Learning

We apply adversarial losses to the mapping functions. For
the mapping function Ex : X → Z, Gx : Z → Y and its
discriminator Dx , we express the objective as:

LG AN1 (Ex , Gx , Dx , X, Y ) = Ey∼pdata(y)[log Dx (y)]
+Ex∼pdata(x)[log(1 − Dx (Gx(Ex(x))))], (3)

where Ex and Gx try to generate transformed images
Gx(Ex (x)) that look similar to images from domain Y , while
Dx aims to distinguish between translated samples Gx (Ex(x))
and real samples y in terms of style. The same mapping
function could be applied to the reconstruction phase of the

backward cycle and the only difference is Ex : X̄ → Z,
Gx : Z → Y with the objective LG AN1 (Ex , Gx , Dx , X̄ , Y ).

Similarly, for the image translation phase of the backward
cycle, the mapping function Ey : Y → Z, Gy : Z → X and its
discriminator Dy are related in the following adversial loss:

LG AN2 (Ey, Gy, Dy, Y, X) = Ex∼pdata(x)[log Dy(x)]
+Ey∼pdata(y)[log(1 − Dy(Gy(Ey(y))))]. (4)

and the reconstruction phase of the forward cycle is modeled
as LG AN2 (Ey, Gy, Dy, Ȳ , X).

C. Weight-Sharing for Multi-Task Network

Sharing weights between the generators and the parsing
networks allows the generator to fully take advantage of the
structure-aware feature vector. We hard-share the encoders
and the residual blocks of the generator-parsing net pairs and
soft-share the deconvolution layers in the net pairs. The soft
weight-sharing is done by calculating the weight difference
which is modeled as a cosine similarity loss targeting zero.
The mathematical expression for the soft weight-sharing loss
function is given by

Lωx (ωGx , ωPx ) = − log(ωGx · ωPx /�ωGx �2�ωPx �2), (5)

Lωy (ωG y , ωPy ) = − log(ωG y · ωPy /�ωG y �2�ωPy �2). (6)

where ωG and ωP denote the weight vectors formed by the
deconvolution layers of the generator and parsing networks,
respectively.

As will be quantitatively and visually analyzed in the model
analysis section, in this work, we also experimented on other
weight-sharing strategies, such as hard-sharing the encoders
only, and hard-sharing both the encoders and decoders.
However, both strategies could only provide inferior results.
The best result is achieved by simultaneously applying hard
weight-sharing and soft weight-sharing, as mentioned above.

D. Cycle Consistency

The cycle consistency loss has been proven quite effective
in preventing network from generating random images in
the target domain. We also enforce the cycle-consistency
constraint in the proposed framework to further regularize the
ill-posed unsupervised image-to-image translation problem.
The loss function is given by

Lcyc1(Ex , Gx , Ey, Gy, X)

= Ex∼pdata(x)[�Gy(Ey(Gx(Ex(x)))) − x�1], (7)

Lcyc2(Ex , Gx , Ey, Gy, Y )

= Ey∼pdata(y)[�Gx(Ex (Gy(Ey(y)))) − y�1]. (8)

E. Network Learning

We jointly solve the learning problems for the image
translation subtask:{Ex, Gx , Dx } and {Ey, Gy, Dy}, the image
parsing subtask: {Ex , Px } and {Ey, Py}, to be cycle-consistent.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on January 16,2023 at 07:17:18 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: GAN-BASED DAY-TO-NIGHT IMAGE STYLE TRANSFER FOR NIGHTTIME VEHICLE DETECTION 955

The full objective function is given as follows:

L f ull(Ex , Gx , Ey, Gy, Px , Py, Dx , Dy)

= LG AN1 (Ex , Gx , Dx , X, Y )

+LG AN2 (Ey, Gy, Dy, Y, X)

+LG AN1 (Ex , Gx , Dx , X̄ , Y )

+LG AN2 (Ey, Gy, Dy, Ȳ , X)

+λcyc ∗ (Lcyc1(Ex , Gx , Ey, Gy, X)

+Lcyc2(Ex , Gx , Ey, Gy, Y ))

+λseg ∗ (Lseg−x(Ex , Px , X, X̂) + Lseg−y(Ey, Py, Y, Ŷ )

+Lseg−x(Ex , Px , X̄ , X̂) + Lseg−y(Ey, Py, Ȳ , Ŷ ))

+λω ∗ (Lωx (ωGx , ωPx ) + Lωy (ωG y , ωPy )), (9)

and we aim to solve:

min
Ex ,Gx ,Ey ,
G y,Px ,Py

max
Dx ,Dy

L f ull (Ex , Gx , Ey, Gy, Px , Py, Dx , Dy). (10)

IV. EXPERIMENTAL RESULTS

We conducted the training of our network and competing
methods on the aforementioned two synthetic datasets for
the quantitative analysis, taking advantage of the labeled
segmentation masks. In SYNTHIA, only images in stereo-left
are adopted and the day-to-night GAN training is performed
with the (13072) spring and (13208) night images in sequences
other than sequence-1. The data used for detector training and
testing would come from the (4756) spring images transformed
by GANs and (3740) night images in sequence-1. In the
experiments utilizing GTA dataset, all the (40237) daytime
and (10277) nighttime images in training sets are involved in
GAN training and the (31010) daytime images in validation
set would be transformed by GANs to train the detectors to
be assessed by (10277) nighttime validation images.

Real-world daytime datasets such as KITTI (7481 images)
and our ITRI-Day (25104 images) datasets are used for
nighttime detector training after they are transformed by GANs
learning from SYNTHIA and GTA, respectively, so there is no
train/val split. ITRI-Night (9366 images) is used for nighttime
detector evaluation.

We applied both one-stage YOLO [11] and two-stage Faster
R-CNN (VGG 16-based) [20] detectors in assessing how well
the day-to-night transformation is done by each GAN model in
terms of vehicle detection. Aside from revising both detectors
to perform single-class vehicle detection, all hyper-parameters
were the same as training on PASCAL VOC challenge. The
IOU threshold for objects to be considered true-positives is 0.5,
where we follow the standard for common object detection
datasets. In the transformation of segmentation annotation
to its detection counterpart, we exclude the bounding boxes
whose heights are lower than 40 pixels or occluded for more
than 75 percent in the subsequent AP estimation.

The inference time of running our model on a NVIDIA
Tesla P100 GPU is 0.639s, 0.367s, and 0.293s for a 1280 ×
760 (SYNTHIA) image, a 1242 × 375 (KITTI) image, and
a 960 × 540 (GTA & ITRI) image, respectively. It is worth

TABLE II

DETECTION ACCURACY COMPARISON (AP) - DETECTORS TRAINED WITH
SD2N: SYNTHIA-SEQ-1-SPRING DAY-TO-NIGHT-TRANSFORMED BY

GANS (TRAINED WITH SYNTHIA SPRING & NIGHT SEQUENCES

OTHER THAN SEQ-1), AND TESTED WITH SN: SYNTHIA-
SEQ-1-NIGHT SEQUENCE EXCLUDED IN GAN TRAINING

TABLE III

DETECTION ACCURACY COMPARISON (AP) - DETECTORS TRAINED WITH

GTA-VAL-D2N: GTA-VAL-DAY DAY-TO-NIGHT-TRANSFORMED BY
GANS (TRAINED WITH GTA-TRAIN), AND TESTED WITH

GTA-VAL-N: GTA-VAL NIGHT SEQUENCES

mentioning that the original image resolution of GTA and ITRI
datasets is 1920×1080 but the GPU memory is not sufficient.

The demonstration video which summarizes all
the subsequent experiments could be accessed from
https://youtu.be/CtCwXmhvQMU.

A. Synthetic Datasets

We first assess the effectiveness of training nighttime
detectors using day-to-night transformed images in synthetic
datasets. As shown in Table II and Table III, AugGAN
outperforms competing methods in both SYNTHIA and GTA
datasets. Visually, the transformation results of AugGAN
is clearly better in terms of image-object preservation and
preventing the appearance of artifacts as shown in Fig. 2 and
Fig. 3.

B. KITTI and ITRI-Night Datasets

The labeled images in KITTI dataset were collected in
versatile driving scenarios and have been widely used in
assessing the performance of an on-road object detector
used for ADAS or autonomous driving although there is
no nighttime version of it. However, since nighttime real-
driving dataset is scarce in public domain, we use the self-
collected ITRI-Night as the nighttime testing dataset. Besides,
all KITTI training data is transformed by using different
GANs which have learned the day-to-night transformation
from SYNTHIA or GTA.

As the experimental results indicate, real-world data trans-
formed by AugGAN quantitatively and visually provides better
results even though AugGAN was trained with synthetic
dataset, as shown in Table IV, Fig. 4 and Fig. 5.

C. ITRI Daytime and Nighttime Datasets

We collected a real-driving daytime dataset, ITRI-Day, cap-
tured mostly in the similar scenario as our nighttime dataset,
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Fig. 2. SYNTHIA day-to-night transformation results - GANs trained with
SYNTHIA: 1st row: SYNTHIA daytime testing images; 2nd row: results of
CycleGAN; 3rd row: results of UNIT; 4th row: results of AugGAN.

TABLE IV

DETECTION ACCURACY COMPARISON (AP) - DETECTORS TRAINED
WITH TRANSFORMED IMAGES PRODUCED BY GANS(TRAINED WITH

GTA OR SYNTHIA DATASET), AND TESTED WITH REAL

NIGHTTIME IMAGES: KITTI-D2N-S: KITTI DAY-TO-NIGHT

TRAINING DATA TRANSFORMED BY GANS LEARNING
FROM SYNTHIA; KITTI-D2N-G: KITTI DAY-TO-

NIGHT TRAINING DATA TRANSFORMED BY

GANS LEARNING FROM GTA; ITRIN:
ITRI-NIGHT DATASET

ITRI-Night. In Table V, the experiments demonstrate similar
results as in other datasets.

The training images transformed by AugGAN are quantita-
tively better than the ones transformed by others because the
object appearance in the images produced by using AugGAN
is clearer, sharper and more real. Detector training data trans-
formed by different GANs learning from SYNTHIA and GAN
could be seen in Fig. 6 and Fig. 7, respectively.

D. Night-to-Day Transformation

While using AugGAN could bypass the tedious and difficult
labeling for the nighttime images by performing day-to-night

Fig. 3. GTA day-to-night transformation results - GANs trained with GTA:
1st row: GTA daytime testing images; 2nd row: results of CycleGAN; 3rd
row: results of UNIT; 4th row: results of AugGAN.

Fig. 4. KITTI day-to-night transformation results - GANs trained with
SYNTHIA: 1st row: KITTI images; 2nd row: results of CycleGAN; 3rd row:
results of UNIT; 4th row: results of AugGAN.

transformation on the daytime labeled images, it is also
potentially-beneficial to make the most of the available
(labeled) nighttime images by transforming them to daytime
ones. An alternative application to alleviate the difficulties
in nighttime image labeling is to label on their night-to-day
counterparts.

In SYNTHIA dataset, the nighttime images are not really
dark so the transformation could be easily done by AugGAN.
Different from day-to-night transformation, in some scenarios
in GTA-night and ITRI-Night datasets where no ambient light
is present, performing night-to-day transformation becomes
not meaningful because some of the information related to
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Fig. 5. KITTI dataset day-to-night transformation results - GANs trained
with GTA dataset: 1st row: input images from KITTI dataset; 2nd row: results
of CycleGAN; 3rd row: results of UNIT; 4th row: results of AugGAN.

TABLE V

DETECTION ACCURACY COMPARISON (AP) - DETECTORS TRAINED WITH

TRANSFORMED IMAGES PRODUCED BY GANS(TRAINED WITH

SYNTHIA OR GTA DATASET): ITRID-D2N-S/ITRID-D2N-G:
ITRI-DAY DAY-TO-NIGHT TRAINING DATA GENERATED
BY GANS TRAINED WITH SYNTHIA/GTA DATASETS;

ITRIN: ITRI-NIGHT DATASET

image structure has been totally lost. However, apart from
those extreme cases, some nighttime images are still worthy of
being transformed, as can be seen in Fig. 8. Most importantly,
AugGAN still consistently outperforms other models in terms
of better object preservation.

E. Transformations Other Than Daytime and Nighttime

AugGAN is capable of learning transformation across
unpaired domain pairs while either domain could be
real or synthetic although segmentation supervision is the pre-
requisite of using AugGAN. However, the minimum require-
ment is the segmentation annotation in the source domain and
we denote this version as AugGAN-1 as will be discussed
later in the model analysis section. This version increases
the flexibility of learning cross-domain adaptation in terms
of object detection. As shown in Fig. 9, our model could
learn image-to-image translation from synthetic-to-synthetic
(e.g. GTA-day to SYNTHIA, GTA-sunset, GTA-rain, and
SYNTHIA), synthetic-to-real (e.g. SYNTHIA-day to ITRI-
Night), real-to-real (e.g. Cityscape to ITRI-Night), and even
real-to-synthetic (e.g. Cityscape to SYNTHIA). It is worth
mentioning that all the quantitative results in the above sec-
tions are achieved by AugGAN-3 which needs the segmenta-
tion supervision from both domains.

Fig. 6. ITRI-Day dataset day-to-night transformation results - GANs trained
with SYNTHIA: 1st row: input images from ITRI-Day dataset; 2nd row:
results of CycleGAN; 3rd row: results of UNIT; 4th row: results of AugGAN.

F. On-Road Nighttime Vehicle Detection Result Analysis

Since a vehicle detector is expected to function in real-
driving scenario, we demonstrate some detection results of
training a vehicle detector (single-class Faster R-CNN) using
three different kinds of training data (KITTI-D2N-S trans-
formed by CycleGAN, UNIT, and AugGAN, respectively).
As can be seen in Fig. 10, nighttime vehicle detector trained
by using KITTI day-to-night-transformed images generated by
CycleGAN and UNIT would normally provide poor results
when vehicles look dark since both models would fail in
preserving the object contour. The same detector trained by
using the same images transformed by AugGAN could achieve
quantitatively-better detection results because in the trans-
formed images, there are fewer artifacts which are harmful
for the detector to learn the essence of vehicle appearance.

G. Training Detectors With Generated Night Images v.s Real
Night Images

To compare a detector trained with generated nighttime
images and real ones, we train YOLO detector with images
(i.e., 2k, 4k, 4.5k, etc.) randomly sampled from ITRI-Night-
1 dataset which was captured under the same scenarios as
ITRI-Night and contains 9k images, as in Table VI. How-
ever, the training in CNN is non-deterministic in the sense
that the resulted AP would be slightly different every time.
Therefore, we simply perform each training for five times
and report the averaged results. Quantitative results show that
the AP of YOLO vehicle detector trained with (ITRI-Day)
day-to-night transformed images by CycleGAN (learning from
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Fig. 7. ITRI-Day dataset day-to-night transformation results - GANs trained
with GTA dataset: 1st row: input images from ITRI-Day dataset; 2nd row:
results of CycleGAN; 3rd row: results of UNIT; 4th row: results of AugGAN.

SYNTHIA) is between the AP achieved by using 4k and 4.5k
real nighttime images. AugGAN (learning from SYNTHIA)
performs similarly to that with 9k real night images. Fur-
thermore, in order to know if the superiority of AugGAN
remains when fewer day-to-night images are given to train
a nighttime vehicle detector, we further randomly sample 9k
images from the day-to-night images generated by AugGAN
and CycleGAN, respectively, and also report the averaged AP.
In this experiment, AugGAN & CycleGAN reach the AP close
to the ones done by using 4k & 2K real nighttime images.
Roughly speaking, AugGAN is about two times better than
CycleGAN in terms of the numbers of real nighttime images
required to achieve the same AP. One could conclude that
using day-to-night transformed images could make the most
of the common daytime training data in training a night-time
vehicle detector and AugGAN outperforms CycleGAN with
respect to day-to-night domain adaptation.

V. MODEL ANALYSIS AND SUBJECTIVE EVALUATION

In the attempt to explore a better architecture in achieving
visually-better and quantitatively-beneficial results, we per-
formed some analysis targeting (1) the weight-sharing strategy
and (2) the loss function. These experiments were all done
on SYNTHIA dataset and gradually lead us to the best
results in other datasets. Moreover, in order to holistically
evaluate the visual quality of our results with other competing
models, we conducted a semantic segmentation analysis and
a subjective evaluation on the same dataset.

Fig. 8. Night-to-day transformation results: left column: SYNTHIA night and
its night-to-day transformation results using UNIT (learning from SYNTHIA)
and AugGAN (learning from SYNTHIA), respectively; center column: GTA
night and its night-to-day transformation results using UNIT (learning from
GTA) and AugGAN (learning from GTA), respectively; right column: ITRI-
Night and its night-to-day transformation results using UNIT (learning from
GTA) and AugGAN (learning from GTA), respectively.

TABLE VI

AVERAGE PRECISION COMPARISON FOR NIGHT-TIME VEHICLE

DETECTORS (YOLO) TRAINED WITH REAL NIGHTTIME IMAGES

AND DAY-TO-NIGHT TRANSFORMED IMAGE GENERATED BY
GANS LEARNING FROM SYNTHIA: ITRIN:

ITRI-NIGHT DATASET; ITRIN1: ITRI-NIGHT-1

A. Weight-Sharing Strategy Comparison

Our network design is based on the assumption that
extracted semantic segmentation features of individual layers,
through proper weight-sharing, can serve as auxiliary regular-
ization for image-to-image translation. Thus finding the proper
weight-sharing policy came to be the most important factor in
our design. Weight-sharing mechanism in neural networks can
be roughly categorized into soft weight-sharing [36] and hard
weight-sharing. The former was originally proposed for regu-
larization and could be applied to network compression [37].
The latter is the most commonly used approach to multi-task
learning in neural networks and goes back to [38]. Recently,
UNIT [31] has successfully applied hard weight-sharing in
their model for generating images with similar high-level
semantics.
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Fig. 9. More image-translation results: 1st row: GTA-day to SYNTHIA;
2nd row: GTA-day to GTA-sunset; 3rd row: GTA-day to GTA-rain; 4th row:
SYNTHIA-day to ITRI-Night; 5th row: Cityscape to SYNTHIA; 6th row:
Cityscape to ITRI-Night.

In our initial experiments, hard weight-sharing is applied
on the encoders of our multi-tasking network, but both tasks
failed. Then, we tried to apply hard weight-sharing on both
encoders and decoders but the results showed that both net-
works could not be optimized at the same time. As shown
in Table VII and Fig. 11, the strategy leading us to the
best results is two-folded: (1) hard-sharing encoders and the
residual blocks of the generator-parsing net pairs, (2) soft-
sharing deconvolution layers in the same net pairs. This setting
is decided based on extensive experiments, and during the
process we realized that both policies are integral to the
optimization of our network.

B. Loss Function Analysis

In our initial model, AugGAN-1, the parsing network was
solely utilized and jointly optimized in the (day-to-night)
image translation phase of the forward cycle. i.e., only the
segmentation annotation in the source domain is required.

Fig. 10. Faster R-CNN detection result comparison: 1st row: ITRI-Night
detection results using detector trained by KITTI-D2N-S (transformed by
CycleGAN) training data; 2nd row: ITRI-Night detection results using detector
trained by KITTI-D2N-S (transformed by UNIT) training data; 3rd row: ITRI-
Night detection results using detector trained by KITTI-D2N-S (transformed
by AugGAN) training data.

TABLE VII

FASTER R-CNN DETECTION ACCURACY COMPARISON OF AUGGAN
TRAINED WITH SD2N AND TESTED WITH SN USING DIFFERENT

WEIGHT-SHARING STRATEGIES: λw DENOTES THE COSINE

SIMILARITY LOSS MULTIPLIER WHEN DECONVOLUTION

LAYERS ARE SOFT-SHARED, AND THE BEST RESULT
IS YIELDED WHEN λw = 0.02

Therefore, only equation 1 among segmentation losses is used
and the SYNTHIA-day to ITRI-Night and Cityscape to ITRI-
Night cases in Fig. 9 were done by this version.

Since segmentation annotation is available in both day and
night scenarios in SYNTHIA and GTA, the segmentation
subtask is also possible to be applied to the image translation
phase (i.e., night-to-day) of the backward cycle. i.e., both
equation 1 and 2 are involved. We denote this version as
AugGAN-2, which is proposed with AugGAN-1 in our previ-
ous work [17].

Then, we noticed that the image structure is well-preserved
in the image translation and the image reconstruction phases
in both cycles so segmentation subtask could be further
applied to the reconstruction phases. In other words, four
segmentation losses introduced in section-III.A are all involved
during training. Also, the discriminators could be applied on
the reconstructed images to tell apart the difference between
reconstructed day/night images and the real day/night ones.
i.e., two additional adversarial loss LG AN1 (Ex , Gx , Dx , X̄ , Y )
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Fig. 11. Style transfer and segmentation results for different weight-sharing
strategies: 1st row: input images; 2nd row: results of hard weight-sharing in
encoders only; 3rd row: results of hard weight-sharing in both the encoders
and decoders; 4th row: results of hard weight-sharing in encoders & the
residual blocks of the generator-parsing net pairs and soft weight-sharing in
the deconvolution layers (λw = 0.02) in the same net pairs.

and LG AN2 (Ey, Gy, Dy, Ȳ , X) in equation 9 are involved in
training. This version is denoted as AugGAN-3.

As can be seen in Table VIII, it is quite obvious that
AugGAN-1, which only adds segmentation subtask to guide
image translation (with the proposed weight-sharing strat-
egy) in forward cycle, already leads to results better than
CycleGAN and UNIT. AugGAN-2 brings further accuracy
improvement by introducing segmentation in regularizing the
image translation phases in both cycles. Finally, the best
quantitative result is achieved by AugGAN-3 which performs
segmentation subtask to regularize image translation and
reconstruction phases in both cycles and applies adversarial
loss to the translated and the reconstructed images. As can
be seen in Fig. 12, it is visually obvious that AugGAN-2 is
better than AugGAN-1 and AugGAN-3 is the best because
the transformed image is clearer, sharper and looks more real.
It is worth mentioning that all the quantitative analysis in the
experimental section is done by using AugGAN-3. Finally,
the impacts of the semantic segmentation subtasks and the
discriminators in the reconstruction phases are also analyzed.
Without the former, the detection accuracy is 39.1 & 72.4 in
YOLO and Faster R-CNN, respectively. Without the latter,
only 39.3 & 72.9 are achieved. In short, both losses are critical
to the optimization of our network and using both of them
would lead us to better results.

C. Semantic Segmentation Analysis across Domains

Our model has been proven effective in boosting the night-
time vehicle detection accuracy. In order to quantitatively
evaluate the quality of the entire transformed image, we also
adopt FCN8s (VGG16-based) [39] to report FCN score as
Pix2Pix and CycleGAN did. The intuition is that if the day-
to-night transformed images are realistic, then FCN8s could be
trained by them to achieve better segmentation results on real
nighttime images. This analysis is done in SYNTHIA dataset.

Fig. 12. SYNTHIA and ITRI-Day transformed results using AugGAN
variations learning from SYNTHIA: left column: SYNTHIA input image
and the transformed results using AugGAN-1, AugGAN-2, and AugGAN-3,
respectively; right column: ITRI-Day input image and the transformed results
using AugGAN-1, AugGAN-2, and AugGAN-3 learning from STNTHIA,
respectively.

TABLE VIII

DETECTION ACCURACY COMPARISON (AP) ON SN USING DETECTORS
TRAINED WITH SD2N GENERATED BY DIFFERENT GANS INCLUDING

AUGGAN VARIATIONS AND OTHERS)

As shown in Table IX, AugGAN outperforms CycleGAN and
UNIT in terms of per-class accuracy, mIoU and fwIoU. In our
experiments, the images are all re-sized to 600 × 600 and the
FCN8s are trained for 100k iterations using SGD with learning
rate 1e-10 and momentum 0.9.

D. Subjective Evaluation

In order to know if visually-better day-to-night transforma-
tion results are positively-related to higher night-time detection
accuracy, we conducted a subjective evaluation to provide
a visual rating for our method and other competing ones.
With 47 random non-expert observers involved, the questions
are designed to demonstrate two factors directly related to
the subsequent detection performance. The first one is the
level of object preservation. The second one is the style-
transfer quality. The former question is designed to know if
objects are successfully preserved. Otherwise, the capability of
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TABLE IX

FCN-SCORES FROM FCN8S TRAINED WITH SD2N: SYNTHIA-SEQ-1-
SPRING DAY-TO-NIGHT-TRANSFORMED BY GANS (TRAINED WITH

SYNTHIA SPRING & NIGHT SEQUENCES OTHER THAN SEQ-1),
AND TESTED WITH SN: SYNTHIA-SEQ-1-NIGHT SEQUENCE

EXCLUDED IN GAN TRAINING

TABLE X

DEGREE OF OBJECT PRESERVATION AND STYLE-TRANSFER QUALITY

AFTER DAY-TO-NIGHT TRANSFORMATION IN SYNTHIA, KITTI AND

ITRI-DAY DATASETS USING GANS LEARNING FROM SYNTHIA

cross-domain adaptation of the corresponding GAN model is
therefore questionable. The latter one is for making sure that
the daytime image is style-transferred to nighttime-looking
without noticeable artifacts because it is theoretically possible
that objects are well-preserved but the images are not trans-
formed towards the expected nighttime style.

In both the SYNTHIA case and the GTA one, day-to-
night transformed result video clips from CycleGAN, UNIT,
AugGAN are displayed with the original daytime one at the
same time. The observer is expected to score each video
clip on a scale ranging from one to five (very low, relatively
low, medium, relatively high, and very high) according to the
aforementioned two factors.

As to the KITTI case, images instead of video clips are
provided because KITTI images are sampled from real driving
video. In our experimental design, five of them are randomly
selected and each one is processed by CycleGAN, UNIT and
AugGAN, respectively. Besides, there are two versions of
each GAN model. Each KITTI image is processed by one
of the GAN models learning day-to-night transformation from
SYNTHIA and GTA datasets, separately.

For the ITRI-Day dataset, it is again processed by each
GAN model learning from two synthetic datasets. Similarly,
every processed image as well as their daytime counterpart is
shown to the observers.

In each assessment, we calculate the mean opinion score
(MOS) for each comparison. As shown in Table X, Our
AugGAN consistently outperforms UNIT and CycleGAN in
that the objects are preserved in the transformation because the

TABLE XI

DEGREE OF OBJECT PRESERVATION AND STYLE-TRANSFER QUALITY
AFTER DAY-TO-NIGHT TRANSFORMATION IN GTA, KITTI AND

ITRI-DAY DATASETS USING GANS LEARNING FROM GTA

parsing network would guide the (image-translation) generator
not to alter the image structure. UNIT could provide visually
better results than CycleGAN because it tries to preserve high-
level semantic in the transformation. However, they sometimes
fail to keep the fine texture of large objects and thus trailed the
AP in the subsequent vehicle detector analysis with AugGAN.

GTA dataset is way more realistic than SYNTHIA. This
explains why in the detector training, transforming datasets
using GANs learning from GTA could achieve better detector
training results in both one-stage and two-stage detectors.
As can be seen in Table XI, most observers still favor
transformation results made by AugGAN although the night
scene of GTA is darker than the one of SYNTHIA so they
sometimes encounter difficulties in telling if the transformation
is good in the detail of object appearance.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed AugGAN, an unpaired image-to-
image translation network for realizing domain adaptation in
vehicle detection. Our method quantitatively surpasses com-
peting methods for achieving higher nighttime vehicle detec-
tion accuracy because of better image-object preservation.
Therefore, most daytime vehicle datasets in public domain
become valuable in nighttime vehicle detector development.
AugGAN is general in that it could also deal with synthetic-to-
synthetic, synthetic-to-real, real-to-real, and real-to-synthetic
transformations across different domains ranging from day,
night, sunset, rain, etc. Currently, the major limitation of Aug-
GAN is its uni-modality. In the future, we will try to explicitly
encode random noise vector to our structure-aware latent
vector in order to gain multi-modality in performing unpaired
image-to-image translation, such as day-to-night, while image-
objects are still well-preserved. This way, a nighttime vehicle
detector could learn to better detect vehicles under different
degrees of ambient light in the same domain.
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