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ABSTRACT

360◦ camera has recently become popular since it can capture
the whole 360◦ scene. A large number of related applications
have been springing up. In this paper, We propose a deep
learning based object detector that can be applied directly on
360◦ images. The proposed detector is based on modifica-
tions of the faster RCNN model. Three modification schemes
are proposed here, including (1) distortion data augmentation,
(2) introducing muilti-kernel layers for improving accuracy
for distorted object detection, and (3) adding position infor-
mation into the model for learning spatial information. Ad-
ditionally, we create two datasets, 360GoogleStreetView and
360Videos, and perform experiments on these two datasets to
demonstrate that our object detector provides superior accu-
racy for object detection directly on 360◦ images.

Index Terms— Object detection, 360◦ image, panorama

1. INTRODUCTION

Recently, the amount of 360◦ data increases dramatically.
Since it can capture objects in 360◦, users can feel more im-
mersive to the scene. Some applications based on using 360◦

cameras have become popular, such as augmented reality,
virtual reality, and 360◦ video surveillance.

Using 360◦ images makes our detector capable of detect-
ing object in 360◦ from all angles. However, there are only a
few research on object detection for 360◦ images. For ob-
ject detection on this kind of 360◦ images, the most com-
mon approach is to project the 360◦ view into multiple 2D
tangent images which contain no distortion. After perform-
ing standard object detection on these 2D perspective images,
an additional step is required to fuse the detection results on
these images back to 360◦ image. Obviously, this approach
takes additional computation time and power. The advan-
tage of using the above approach is that there are abundant
impressive object detection methods developed for the per-
spective images, especially the deep learning methods. Some
pre-trained networks, such as AlexNet [1], GoogLeNet [2, 3],
VGG [4], ResNet [5], and DenseNet [6] can directly apply
on the perspective images and provide great results for object
detection. But it will take additional computation on image
warping from a 360◦ image to multiple perspective images.

In this paper, we aim to develop an object detector that
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Fig. 1. After equirectangular projection from a spherical
image to the distorted 360◦ image, directly applying Faster
RCNN [7] on this distorted image cannot accurately detect
the distorted object, marked with yellow bounding box.

can directly apply on 360◦ images without any image pre-
processing and re-projection. However, to accomplish the
method, the image distortion problem should be properly
handled. As we can see from the example in Fig. 1, some
object detection benchmark models, training on traditional
perspective images, are unable to detect these distorted ob-
jects. To overcome the problem of distortion, we propose the
following three methods: (1) distorted data augmentation—
generating a variety of additional distorted data for training;
(2) multi-kernel layer—applying different sizes of kernels on
different regions to eliminate the distortion and (3) position
information— the object position in the 360◦ image corre-
sponds to different distortion in the image. In addition, we
manually collect and label two datasets by ourselves to in-
crease the number of training samples. The two datasets pre-
sented in this work are 360GoogleStreetView and 360Videos
datasets.

In Section 2, we discuss some related works for object
detection on 360◦ images. In Section 3, we describe the pro-
posed methods for improving the object detector. Some ex-
perimental results for the object detection on 360◦ images are
given in Section 4. Finally, we conclude in Section 5.

2. RELATED WORKS

The previous object detection methods can be roughly divided
into two categories: one-stage detection and two-stage de-
tection. One-stage detection checks an input image for only
one time to locate where the object is and classify which
category the object belongs to. This kind of detectors de-
tects faster but is less accurate, such as SSD [8], and YOLO
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Fig. 2. Proposed network architecture.

[9]. The two-stage detectors also called region-based meth-
ods consist of two stages. In the first step, region propos-
als, for the input image are generated. In the second step,
the possible region proposals are fed into the network to pre-
dict the final bounding boxes. Although this kind of methods
takes more time, they provide higher accuracy, such as R-
CNN [10], Fast-RCNN [11], and Faster-RCNN [7]. In addi-
tion, there are many follow-up improvements based on Faster-
RCNN (e.g.,[12, 13, 14, 15, 16]). However, all of the above
methods are trained on the traditional perspective images.

Panocontext [17] predicts 3D bounding boxes of the ob-
jects from input 360◦ images. By Using the information from
object detection, they are able to reconstruct 3D room lay-
out. To extract features directly from 360 images, Su et al.
[18] use knowledge distillation to learn a spherical convo-
lution network that teach a planar CNN to process on 360◦

images directly. Deng et al. [19] use three fisheye cameras
to build a panoramic images dataset and train a region based
CNN on their indoor 360◦ image dataset.

3. PROPOSED APPROACH

Compared to 2D perspective images, obviously 360◦ image is
more complicated for object detection. We decide to adopt the
2-stage object detection framework due to its high accuracy of
object detection for complex scene. Thus, we choose Faster
R-CNN [7] as the baseline method. Fig. 2 is the overview
of our network architecture. The input image is a distorted
360◦ image. After using convolutional layers to exeract fea-
ture maps, Region Proposol Network (RPN) is applied to pre-
dict some proposals with different scales and ratios. We apply
a multi-kernel layer after cropping the feature maps through
the ROI Pooling layer to alleviate the distortion problem. At
the last fully connected layer, we even add the position infor-
mation of the object region into the network. Finally, the last
feature vector will be fed to two fully connected layers, one

is for object classification and the other is for bounding box
regression. The details for these proposed modifications will
be described in the subsequent sections.

3.1. Distorted Data Augmentation

The lack of 360◦ images makes it difficult to train an object
detector. In 360GoogleStreetView, we annotated 2,098 dis-
torted objects which are much less compared to 61,428 nor-
mal objects. Thus, we propose a distorted data augmentation
method to increase the number of distorted training data.

6-cube

Padding car image 

Original 360° image 

Augmented 360° image 

Re-project

car dataset

Fig. 3. We take a 360◦ image as input and then transform it
to 6-cubic image. After imposing the car image to the bottom
of image, we re-project it back to equirectangular image. The
distorted car in the yellow bounding box is generated.

We first project the 360◦ image into 6-cube format. We
can obtain some information that the objects in the bottom of
cubic images have more significant distortion while passing
through the projection. Using this characteristic, we can gen-
erate distorted object through the projection procedure. We
impose the car images, which are cropped from the street
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Fig. 4. Three different sizes of non-rigid kernels (1x1, 3x1,
5x3) are used in our network model after the ROI pooling to
extract feature map from distorted objects.

view images and removed background manually, to the po-
sitions on the six-cube image which generate significant dis-
tortion on the 360◦ image. The position is randomly cho-
sen but it should be located near the bottom of image. The
size of imposed car image is also randomly picked since dif-
ferent size can cause different degree of distortion. Finally,
re-projecting the 6-cubic image back to equirectangular im-
ages through equirectangular projection. The overlaid cars
become distorted after this procedure. The complete proce-
dure is shown in fig. 3.

3.2. Multi-kernel Layer

During the equirectangular projection, every pixel in the spe-
cific altitude will be projected to the fixed height in the image.
However, the number of pixels at each latitude is not the same.
As we observe the spatially-varying distortion phenomenon
on 360◦ images, it may be helpful to use different sizes of fea-
ture extraction on different latitude. Since the objects located
at the high latitude are stretched, the bigger kernel size should
be applied to reduce the distortion. However, if changing all
the square kernel to the non-rigid one, it is possible that the
detection accuracy is reduced for general objects. Moreover,
to cut down the computation, instead of applying to the whole
image we add the multi-kernel layer after the ROI pooling
layer. We apply 3 different sizes (1x1, 3x1, 5x3) of kernels
for computing object feature maps, as illustarted in Fig. 4.
Both 1x1 and 3x1 have 448 filters and 5x3 has 128 filters to
maintain the performance on usual objects and distorted ob-
jects. After the feature extraction, we concatenate all feature
maps for the final detection.

3.3. Position Information

In 360◦ image, the object may be significantly stretched when
it is close to the top or the bottom of the 360◦ image. In
addition to the location, the object size also plays an impor-
tant role. Large objects contain more significant distortion.
With the above observation, position and size of the object

are important information for the detector to detect. There-
fore, The position information is added to the feature vector
to increase the feature knowledge after Region Proposal Net-
work predicts the proposals. The position information is com-
posed of 6 components, including bounding box coordinates
and the width and height of the bounding box. The definition
of position information is as follows:

P i =

(
xi
1

W
,
yi1
H

,
xi
2

W
,
yi2
H

,
wi

W
,
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H

)
(1)

where P i represents position information for anchor box with
index i. x1 and y1 denote the top left corner coordinate. x2

and y2 denote the bottom right corner coordinate. wi and hi

denote the width and height of the anchor box i, respectively.
W and H are the width and hight of the input image, and they
are used to normalize the value.

3.4. Implementation Details

First, our network is initialized with a pre-trained model
ResNet-101 which is pre-trained on VOC2007 and VOC2012
trainval dataset and then finetuned on the 360◦ image dataset.
The model is trained with a learning rate of 0.001 which is
decreased 10 after 50k iterations, a weight decay of 0.0005
and a momentum of 0.9. Each mini-batch has 1 image and
each image has 256 regions of interest (RoIs), with a ratio of
1:3 of foreground to background. We train on a GPU (Nvidia
Titan X) for 130k iterations.

4. EXPERIMENTAL RESULTS

4.1. Datasets

4.1.1. 360GoogleStreetView

We collect 360◦ images from Google Street View, some street
view photos taken by Google. To increase the diversity of
the dataset, we collect images from 6 different cities, includ-
ing San Francisco, Moscow, Petersburg, Praha, Tokyo, and
Taipei. A total of 2,095 images are collected and labeled,
which contain 1,417 distorted people and 681 distorted cars.

4.1.2. 360Videos

The images are captured and annotated by ourselves. The
camera that we use is LG360CAM. We select 3 different cities
to collect the data. The data is originally recorded by video.
After sampling some frames for labeling, the total number
of 360◦ images is 494 in this dataset, which contain 2,257
distorted people and 191 distorted cars.

4.2. Evaluation metrics

Object detection average precision (mAP) is the fundamental
metric to measure the accuracy of object detector. The defini-
tion is the same as that in [20].
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Table 1. Detection results on 360GoogleStreetView testing
set , including distorted object detection results. The results
under different IoU (Intersection over Union) thresholds are
given (0.5/0.7). D-car and D-person represents AP for dis-
torted person and car, respectively. AD represents accuracy
for distorted object.

Method mAP@0.5/0.7 D-car/D-person AD@0.5/0.7

[11] 72.88/56.24 88.06/79.94 87.01/75.87
[21] 69.15/52.28 69.97/79.12 89.69/80.00

Ours(P) 73.46/56.38 88.95/80.53 88.87/76.70
Ours(Mk) 76.78/56.67 89.45/80.41 89.48/80.00
Ours(Ag) 76.13/56.01 90.37/79.96 89.89/77.53
Ours(All) 76.38/56.76 90.60/80.01 90.30/81.03

Average Precision for distorted object (APD) only focuses
on computing average precision for distorted objects. The
definition of distorted object is that the object is located at the
bottom of image or not.

Accuracy for distorted object is used to measure that the
distorted objects are detected or not. The definition of dis-
torted object is the same as that in the AP for distorted object.

4.3. Results and analysis

We perform experiments on the 360GoogleStreetView dataset.
We compare our detector with the state-of-the-art object de-
tectors and the result is reported in Table 1. All the methods,
including Faster RCNN [11] and Deformable CNN [21], are
trained on both 360GoogleStreetView and 360Videos.

Our object detector provides higher AP and accuracy
for distorted object compared to Faster RCNN [11]. 2.54%
higher on AP for distorted car and 3.29% higher on accuracy
of distorted objects. Although deformable convolution can
handle a little change on the object, the large distortion such
as 360◦ distortion is hard for the model to handle. In addi-
tion, the proposed detector significantly outperforms these
state-of-the-art detectors on mAP in both IoU thresholds of
0.5 and 0.7. As can be seen from the figure, AP for distorted
person is just improved a little. The reason is that person is
much smaller than car in these datasets and they only involve
very slight distortion. Thus, if the model does not handle the
distortion issue, it can still provide pretty good performance.

Additionally, we train different models (position, muti-
kernel, augmentation) to evaluate the different methods pro-
posed in this paper. As can be seen in Table 1, all the three
methods can improve the performance on mAP and AP for
distorted cars, compared to Faster RCNN and Deformable
CNN. Our combined model which integrates the three meth-
ods achieves the highest APD and AccuracyD. However, it
obtains the second-best mAP. We think the model may be a

Fig. 5. Some examples of object detection results on the
360GoogleStreetView test set by using the proposed method.

Table 2. Detection results on 360Videos testing set, including
distorted object detection results. D refers to distortion.

Method mAPD@0.5/0.7 APD−car APD−person

[11] 86.05 / 76.25 85.53 / 77.30 86.56 / 75.20
[21] 87.76 / 75.30 89.85 / 76.45 85.67 / 74.15
Ours 91.14 / 76.80 95.23 / 78.75 87.04 / 74.84

little bit overfitted if it considers too much distortion informa-
tion. Some object detection results by using our detector are
depicted in Figure 5.

We also perform experiments on 360Videos dataset.
360Videos testing set has 103 images. The detection re-
sult is reported in Table 2, which contains the comparison
between our detector and some state-of-the-art object detec-
tors. The proposed detector shows great improvement on
detecting distorted objects.

5. CONCLUSIONS

We propose a modified Faster RCNN model for object detec-
tion directly on 360◦ images. The distorted data augmentation
method generates additional distorted objects for training. We
propose to include a multi-kernel layer that incorporates dif-
ferent kernel sizes to alleviate distortion effect. In addition,
we include object position information into the network to ob-
tain better prediction. Furthermore, we created two datasets
for performance evaluation of object detection on 360◦ im-
ages, and demonstrated the proposed object detector provided
superior object detection accuracy compared to the state-of-
the-art object detectors.
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