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Abstract. In this paper, we propose a deep learning based approach
that exploits multi-person pose estimation from an image sequence to
predict individual actions as well as the collective activity for a group
scene. We first apply multi-person pose estimation to extract pose infor-
mation from the image sequence. Then we propose a novel representa-
tion called pose motion history (PMH), that aggregates spatio-temporal
dynamics of multi-person human joints in the whole scene into a sin-
gle stack of feature maps. Then, individual pose motion history stacks
(Indi-PMH) are cropped from the whole scene stack and sent into a CNN
model to obtain individual action predictions. Based on these individ-
ual predictions, we construct a collective map that encodes both the
positions and actions of all individuals in the group scene into a feature
map stack. The final group activity prediction is determined by fusing
results of two classification CNNs. One takes the whole scene pose motion
history stack as input, and the other takes the collective map stack as
input. We evaluate the proposed approach on a challenging Volleyball
dataset, and it provides very competitive performance compared to the
state-of-the-art methods.

Keywords: Activity recognition · Action recognition · Human pose
estimation · Deep learning

1 Introduction

In a scene consisting of a group of people, the collective activity can be seen as
integration of actions for all individuals. To recognize individual human action,
human pose, which is the configuration of all the main joints, is an important
cue [19]. In fact, human actions, especially sport actions, are directly related
to the spatio-temporal dynamics of human body parts or joints. For instance,
the process of a volleyball player performing “setting” comprises representative
evolution of his or her joints, which is different from the one of another player
simply standing in a same place.

Previous works on this problem are basically appearance based [1,2,10,16,28].
Given a sequence of images, these appearance based approaches first used ground-
truth tracking information or human detection plus human identity association
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to localize the bounding box of each individual in the group, then used CNNs to
extract visual features from the corresponding region of each individual in each
frame of the sequence, and constructed the rest of their RNN-based models upon
these visual features. With recent impressive achievement of bottom-up multi-
person pose estimation [5,25], we believe that it is sufficient now to use 2D human
pose from pose estimation as the input for DNNs to learn the dynamics of both
individual actions and collective activities in a group scene.

Fig. 1. Overview of the proposed system. H denotes joint heat maps. Boxes denotes
bounding boxes given by annotation, or converted from pose estimation results. Pred i
denotes the individual action prediction scores classified from Indi-PMH. Pred g and
Pred c denote the collective activity prediction scores classified from PMH and col-
lective map respectively.

In recent years, 2D pose information has been exploited in video-based action
or activity recognition tasks to focus on human body parts or joints in the input
sequence images. Some previous works proposed to use human joints as guidance
to aggregate or attend to partial appearance or motion features from the whole
RGB images or optical flow [4,6,12]. Lately, some works started to utilize joint
confidence maps as input. For example, [24] proposed to apply spatial rank pool-
ing on joint confidence maps and use body guided sampling on estimated human
pose to obtain two kinds of complementary description images. The recognition
task is then performed on these two descriptions. [9] proposed to use color cod-
ing to aggregate joint confidence maps from different time steps into a single
stack of feature maps which is called PoTion. The activity of the whole scene is
classified from PoTion.

In this paper we propose a novel approach utilizing multi-person pose infor-
mation and fusion of individual actions through two novel representations, pose
motion history and collective map, to recognize the action of each individual and
the group activity. We use intensity retaining mechanism instead of color coding
to perform temporal aggregation. The aggregated pose motion history feature
map takes less memory than PoTion [9] and thus the recognition task can be
done more efficiently. Also, the collective map that encodes both positions and
actions of all individuals enhances the group activity recognition.
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In this work, we adopt OpenPose [5] to retrieve the positions where people are
in the sequence frames, and extract multi-person pose features without the need
of cumbersome combination of human detection plus single-person pose estima-
tion. Moreover, with the aid of the two novel representations that represents the
spatio-temporal dynamics of multi-person human joints, and the integration of
individual actions as well as individual positions in sequences, it is unnecessary
to use RNN or its variants to learn the mapping from the input to individual
action or group activity prediction. Instead, we use a simple CNN model, such
as Resnet-18, for the classification tasks, while still achieving very competitive
performance.

In summary, the contributions of this work are three-fold. Firstly, we propose
two novel representations, pose motion history and collective map, for represent-
ing individual actions and the group activity of a multi-person scene. To the best
of our knowledge, we are the first one to utilize multi-person pose estimation to
classify both individual actions and collective activities at the same time. Sec-
ondly, we design a simple CNN model without the help of human tracking on
these two novel representations for the classification task. Finally, we evaluate the
proposed system on the Volleyball dataset, and achieve competitive performance
even we just use simple CNNs without human identity association compared to
the previous RNN-based works.

2 Related Works

Fig. 2. Some examples of applying OpenPose [5] on sequences of Volleyball dataset.

Action Recognition in Videos. Action recognition plays an essential role in
various domain such as surveillance, robotics, health care, video searching, and
human-computer interaction [36]. With recent revival of deep learning, given
video sequences, many works successfully exploit the power of DNNs to learn
spatio-temporal evolution of human actions, and report impressive results on
several popular benchmarks [13,29,35]. Since deep learning based approaches
outperform previous hand-crafted feature based methods, we only review deep
learning based ones here. [29] used two-stream CNNs which consist of one spatial
stream learning appearance features and one temporal stream learning motion
features to recognize actions in video sequences. Several works proposed further
enhancement based on this kind of multi-stream architectures [13,35,37]. [18]
introduced an 3D CNN which extended traditional 2D CNNs to a 3D one to
convolve spatio-temporal information. From then on, 3D CNNs have been used
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and improved in many works [14,32,33]. RNNs are also popular for action recog-
nition in videos since they naturally extract temporal features from sequence
input [11,26,34].

2D Pose-Based Action Recognition from Video. Since the target of action
recognition is mainly human, pose is a natural input cue for classifying human
actions in videos. Many works have proposed to use pose information in videos
to learn spatial and temporal evolution of human actions [4,6,9,12,17,24]. Some
used joint positions to further aggregate or pool appearance or motion features
[4,6,12]. Some directly used estimated pose or joint confidence maps as the
input for their models [9,17,24]. Our method is most similar to PoTion [9] in
which color coding is applied on joint confidence maps to aggregate human joints
information from different sequence images into single compact stack of feature
maps. We use intensity retaining mechanism instead of color coding to construct
our proposed pose motion history feature map stacks which consume less memory
and thus results in higher learning efficiency. Our method is different from all the
works above, since all these methods only deal with single person, double people
settings, or predict only the activity of the whole sequence, while we not only
predict the group activity, but also the action of each individual in the input
sequence.

Group Activity Recognition from Video. Group activity recognition has
attracted a lot of work in past years. Many former methods used hand-crafted
features as input to structured models [7,8,20–23]. While with recent revival of
deep learning, more and more papers started to take advantage of the superior
classification performance of Deep Neural Networks [1,2,15,16,27,28,30,31,38].
In [1,16], hierarchical models consisting of two LSTMs are used, one for rep-
resenting individual action dynamics of each person in a video sequence, and
the other for aggregating these individual action dynamics. [1] combined human
detection module into their hierarchical model through reusing appearance fea-
tures for detection and recognition. [2,15,27] combined graph structures with
DNNs to model the actions of individuals, their interactions, and the group
activities. [27,28,30,38] utilized attention mechanisms to focus on more relevant
individuals or temporal segments in video sequences.

3 Proposed System

Our goal is to recognize the individual action of each individual from a video
by utilizing their pose information, and also recognize the collective activity of
the whole group based on both collective pose information and also individual
predictions. To achieve this goal, we propose a two-stream framework for group
activity classification based on the pose motion history and collective map.

The overview of our framework is given in Fig. 1. For a given input sequence,
first we apply a multi-person pose estimation algorithm, OpenPose [5], to
estimate the joint positions of each individual and also the confidence maps
(heatmaps) of these joints for each frame. OpenPose [5] would produce a joint
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heatmap stack of 18 channels where each channel is the heatmap corresponding
to a certain joint. The value of each pixel in a heatmap indicating the prob-
ability a joint locating there. We depict some pose estimation results on the
Volleyball dataset in Fig. 2. Second, to construct the whole scene pose motion
history stack of each frame, we first multiply a intensity retaining weight w to
the joint heatmap stack of the first sequence frame, and sum it to the second
sequence frame. Then the pose motion history stack of the second sequence frame
is multiplied by the same retaining weight w and summed to the joint heatmap
stack of the third sequence frame. We repeat this process until we derive the
pose motion history stack of the last sequence frame. This very pose motion
history stack P is the input for the following two streams: individual stream and
collective stream.

For the individual stream, we first obtain the bounding box of each individual
by simply finding the minimal rectangle containing all joints of the individual
based on the joint positions output by OpenPose [5]. Second, these individual
bounding boxes are used to crop their corresponding individual pose motion
history stacks pb, b = 1 . . . B, which are then input into our individual PMH
CNN to classify individual actions. We then construct a collective map stack M
of I channels where each channel representing one individual action, and for each
individual, we fill its individual softmax scores for all actions to its bounding
box area in the corresponding action channel. This collective map stack thus
encodes individual positions and their actions in a simple feature map stack. See
the subsequent sections for more details.

For the collective stream, we first simply input the pose motion history stack
P into our collective PMH CNN to obtain initial collective activity predictions.
Second we input the collective map stack M into another collective map CNN to
obtain auxiliary collective activity predictions. Next these two parts of collective
activity predictions are fused by a fusion FC layer, where the fused result is the
final collective activity predictions.

Fig. 3. Some examples of PMH maps computed from Volleyball dataset using retaining
weight value w = 0.95.

3.1 Pose Motion History

Pose motion history(PMH) can be seen as an idea extended from MHI (Motion
History Image) [3]. [3] proposed to form the temporal history of pixel points
into a motion history image. In this image, more recently moving pixels are
brighter. We observe that human actions are naturally highly related to the
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spatial-temporal dynamics of human joints. To form pose motion history, given
an input multi-person sequence of T frames, we consider human joints in the
sequence as the interest points. To represent their motion history from the past
to the current frame, we apply the recursive overlaying mechanism on frame 2
to frame T as given by the following equation:

Pt = Pt−1 ∗ w + Ht, (1)

where Ht is the whole scene 18-channel joint heatmap stack of frame t generated
by OpenPose [5], w is the intensity retaining weight, and Pt denotes the 18-
channel pose motion history stack of frame t. In this paper, the intensity retaining
weight w is a fixed chosen value in [0, 1] so that joint positions in latter frames
would be more obvious than those in the earlier frames; however it could also
be learned through training. Effect of different w values would be discussed in
Sect. ?. We clip pixel values in Pt larger than 255 to 255. See Fig. 3 for pose
motion history examples. We use OpenPose [5] to retrieve whole scene joint
heatmap stacks and joint positions of the input sequence. For a frame image,
OpenPose [5] would generate an 18-channel stack of whole scene joint heatmaps.
The value of each pixel of a joint heatmap indicating the probability or the
confidence that a joint locates at that position. The joint positions output by
OpenPose [5] are grouped by individuals. We use the grouped joint positions in
the individual stream to crop individual pose motion history stacks (Indi-PMH).

Given the grouped joint positions output by OpenPose [5], we calculate the
bounding box of each individual through finding the minimal rectangle able to
contain all joints of a person. We enlarge bounding boxes of the last frame with
a scale s to crop the corresponding individual pose motion history stack for each
individual from PT . We crop from PT since it contains all the joint motion history
of the whole sequence from the first to the last frame. We enlarge the bounding
boxes before cropping so that the cropped individual pose motion history stacks
could contain more complete joint motion dynamics. We input these cropped
individual pose motion history stacks (Indi-PMH) into a Resnet-18 to classify
their individual actions.

3.2 Collective Map

The collective map stack of an input sequence could be computed through sum-
ming all the collective map stacks of each of its frames, but in this paper we
simply use the one of the last sequence frame instead. We illustrate the con-
struction of a collective map of a single frame in Fig. 4. We denote the number
of individuals in an input sequence frame by N . To construct the collective map
stack MH,W,AI

of the sequence frame we first fill the stack with all zeros, where
AI denotes the number of individual action classes, H,W the height and the
width of the frame. For each individual prediction Rn, n ∈ [1, N ] of this frame,
which is a vector with AI elements, we first apply softmax on it to restrict all
the values of its elements in the range [0, 1], so that each element represents
the probability of a individual action class. Next we fill each softmax score to
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Fig. 4. An illustration for constructing the collective map of a sequence frame. In
the leftmost picture, there are 11 players in the scene, denoted as A to K. First we
construct a zero-filled stack. The matrix in the middle picture shows the softmax scores
of individual action classes of each player. We fill each softmax score of each player to
the area of his/her bounding box of the corresponding individual action channel in the
collective map stack. The rightmost picture shows the result collective map stack.

the bounding box area of each individual to the corresponding individual action
channel of MH,W,AI

. The constructed collective map thus encodes both the posi-
tions and the actions of all the individuals.

We use two CNNs to obtain the collective activity prediction of the input
sequence. The first CNN takes PMH of the last frame PT as input, and the second
CNN takes previously constructed collective map stack MH,W,AI

as input. For
both collective CNNs, we use Resnet-18 for the classification network. The final
collective activity prediction is fused from the output of these two CNNs by an
FC layer. We do not need hierarchical RNNs or similar recurrent networks here
modeling the integration among individuals for collective activity recognition
task like those in [16].

3.3 Training and Loss Function

We use Resnet-18 for each CNN for its learning efficiency. Separate softmax lay-
ers are applied on the outputs of individual PMH CNN, collective map CNN,
collective PMH CNN, and collective fusion FC layer to obtain the predictions
pI,n, pC1 , pC2 , and pC3 , respectively, where n is in [1, N ]. For each CNN, we com-
pute the loss between predictions and targets using the cross entropy, optimized
by an Adam optimizer during training. The loss for a training sample of the indi-
vidual part (individual PMH CNN) and the group part (collective map CNN,
collective PMH CNN, and collective fusion FC layer) is defined, respectively, as
follows:

LI = −
AI∑

i=1

p̂I
i logp

I
i , LC = −

AC∑

c=1

p̂C
c logp

C
c , (2)

where p̂I
∗ and p̂C

∗ denote the one-hot-encoded ground truth probabilities for
individual action classes and group activity classes, respectively, and pI

∗ and pC
∗
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denote the softmax scores of the corresponding classes. Here, AI and AC are the
total numbers of individual action classes and group activity classes, respectively.

4 Experimental Evaluation

We evaluate our approach on the challenging Volleyball dataset collected in
[16], as it is the only relatively large-scale dataset with individual action, group
activity labels, and individual locations of multi-person scenes. This dataset
contains totally 4830 sequences trimmed from volleyball match videos, where
3493 for training plus validation, and 1337 for testing. Each sequence consists
of 41 frames, and only the center frame is annotated with the ground truth
bounding box of each player in the scene, the individual action of each player,
and the group activity of the scene. We follow [16] to obtain the ground truth
bounding boxes of people for those unannotated frames. There are totally 9
classes of individual actions, and 8 classes of group activities in this dataset.

4.1 Implementation Details

In previous works [1,16] on the same Volleyball dataset, each sequence is trimmed
to a temporal window of length T = 10, corresponding to 4 and 5 frames before
the annotated frame, and 5 and 4 after the annotated frames respectively. We
find out that there are quite a large amount of sequences contain obviously dif-
ferent camera views when trimmed by these configurations. We manually find all
sequences with different camera views among the temporal window correspond-
ing to 9 frames before the annotated frames, and 5 frames after the annotated
frames and remove these sequences from training. During training, if temporal
sampling is applied, we trim a temporal window of length T = 10 from the range
of 9 frames before the annotated frame, and 5 frames after it for each sequence.
Otherwise we use the same temporal window as in the testing stage by fixing
the temporal window corresponding to 9 frames before the annotated frame plus
the annotated frame itself for each sequence. We use Resnet-18 for all CNNs in
our proposed approach for its efficiency, and Adam optimizer for optimizing the
model parameters.

We try two training strategies: sequence-by-sequence like in typical RNN
training procedure, and batch-by-batch like in typical CNN training procedure.
With sequence-by-sequence training strategy, choosing different data preprocess-
ing related hyper parameters is more convenient, such as trying different values
of enlarging scale s for constructing Indi-PMH, and retaining weight w for con-
structing PMH. With batch-by-batch training strategy, we can accelerate the
training process of our all-CNN based approach. We first store PMH and Indi-
PMH to disk, and then train the individual and collective CNNs separately by
random sampling large batches of the corresponding PMH/Indi-PMH data. For
the sequence-by-sequence training strategy, due to GPU memory constraint, we
random retrieve one sequence at once and accumulate parameter gradients of
several forwards before per backward. We first use batch-by-batch strategy to
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train our individual PMH CNN and collective PMH CNN. Next, our collective
map CNN is trained by loading and freezing the pretrained weights of the indi-
vidual PMH CNN. Finally, the collective fusion FC layer is trained by loading
and freezing the pretrained weights of these three CNNs. Sequence-by-sequence
strategy is used to train both the collective map CNN and the collective fusion
FC layer. With pretraining and freezing, the time spent for each epoch when
training collective map CNN and the final collective fusion FC layer could thus
be greatly reduced.

4.2 Pose Estimation Quality

Since we do not have ground truth pose annotation of Volleyball dataset, we
evaluate the quality of pose estimation generated by OpenPose [5] by calculating
the recall rate of ground truth individual bounding boxes given by the annotation
of Volleyball dataset. The estimated bounding boxes are converted from the
grouped joint positions output by OpenPose [5]. As joints are center points of
human body parts, we increase each side of a converted bounding box by 5 pixels.
In Table 1, we report the recall rates on the Volleyball dataset with different IoU
threshold values: 0.5, 0.4, 0.3. We find the gap between different IoU threshold
values is resulted from cases where OpenPose [5] cannot generate very complete
pose estimation for some individuals with occlusion, or sometimes generating
mixed pose for occluded people. Some examples are shown in Fig. 5. For the
rest of our experiments, we set the IoU threshold value to 0.3 when finding the
matched bounding box for each of the ground truth ones, to make use of those
imperfect but still partially informative pose.

Table 1. Recall rates of ground truth bounding boxes given by the annotation of
Volleyball dataset with different IoU threshold values.

Threshold Recall (train) Recall (test)

0.5 84.7 86.4

0.4 91.4 92.7

0.3 94.8 95.8

Fig. 5. Examples for bounding boxes converted from incomplete or mixed pose of
individuals with occlusion generated by OpenPose [5]. The red boxes are ground truth
bounding boxes, and the yellow ones are converted from the pose estimation results.
(Color figure online)
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LSTM vs. CNN for Individual Part. We try an LSTM architecture taking
pose features extracted by a CNN (Resnet-18) from individual joint heatmaps
cropped from the whole scene version. Since we do not know human identities
association across sequence frames, we try two matching mechanisms: bound-
ing box IoU based and long term pose feature similarity based. In the first
mechanism, human identities across sequence frames are associated through
matching pairs with highest bounding box IoUs between adjacent frames. In
the second mechanism, identities are associated through matching instances in
different frames with highest long-term pose feature similarities. We compare the
LSTM based architecture with these two matching mechanisms to a CNN based
architecture taking Indi-PMH as input, which does not need to know human
identities association. For an input sequence, we can simply use the bounding
boxes converted from pose estimation result of the last frame, enlarged with
certain scale (to contain more history information), to crop Indi-PMH from the
whole scene version. In this way, the matching stage can be totally removed
and thus reduce the execution time. We compare the testing individual action
accuracy and recall rate of these methods in Table 2. We use Resnet-18 as the
CNN model. We can see that using CNN for the individual part not only results
in better accuracy, but also better recall rate since it can avoid potential human
identity miss associated by the matching mechanisms. Using a CNN architec-
ture with our proposed PMH representation on the individual action recognition
task saves us from the need of any matching mechanisms, which would help in
a real-time sequence-to-sequence scenario as it takes less time for the inference.

Table 2. The performance of using LSTM based and CNN based architectures. We
report the testing individual action accuracy, and testing recall rate in the second
and third columns, respectively. “ID Assoc.” at the fourth column stands for human
identity association needed or not when forming representation for each individual
across frames.

Method Individual Acc. Recall ID Assoc.

LSTM-matching-1 67.9 85.9 Yes

LSTM-matching-2 72.3 95.4 Yes

Resnet-18 w/Indi-PMH 74.3 95.4 No

4.3 PMH vs. PoTion

The biggest difference between our PMH representation and PoTion [9] is the
temporal aggregation mechanisms. In PoTion [9], temporal relationship between
joint heat maps of different sequence frames is represented through color cod-
ing with at least 2 color channels, while in our proposed PMH it is represented
through intensity retaining with only 1 channel needed. Since both PoTion [9]
and our proposed PMH can be simply classified by CNNs, the number of param-
eters of the classification networks would be nearly the same. However our only-
1-channel needed PMH would be naturally more efficient than PoTion [9], which
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takes at least 2 channels. Because the authors [9] did not release their code, we
evaluate with our PoTion implementation with 3 color channels here. In Table 3,
we report testing individual action and collective activity accuracy resulted from
using PoTion and our proposed PMH on Volleyball dataset. We can see that
although PMH only uses one color channel, our intensity retaining mechanism
is still as effective as the color coding mechanism in PoTion [9].

Table 3. Accuracies of using PoTion and our PMH for individual action and group
activity classification on Volleyball dataset. C denotes the number of color channels.

Representation C Individual Acc. Collective Acc.

PoTion [9] 3 75.8 80.5

(Indi-)PMH 1 75.3 81.0

4.4 Collective Stream

The performance of our proposed collective PMH CNN, collective map CNN, and
their fusion is reported at the bottom of Table 4. We use w = 0.95 and s = 1.75
in this experiment. We first pretrain the individual PMH CNN with learning
rate 1e − 4. Then we train the collective PMH CNN from the scratch, and the
collective map CNN using pretrained individual PMH CNN for generating indi-
vidual action predictions (only the last frame of each sequence), with learning
rates 1e − 3 and 1e − 4, respectively. The collective fusion FC layer is finally
trained using these pretrained CNNs with their parameters frozen with learning
rate set to 1e − 2. The individual and collective PMH CNNs are trained with
batch-by-batch strategy, while the collective map CNN and collective fusion FC
layer trained with sequence-by-sequence strategy. When training all these mod-
ules, random horizontal flipping is applied. Since in Volleyball dataset ground
truth player positions and their individual action labels are provided, we conduct
feasibility assessment of collective map representation first to see whether it is
really discriminative for group activity recognition (using learning rate 1e − 2).
The results show that collective maps built from ground truth information gen-
erate high testing accuracy, thus proving its effectiveness. Also, fusing both col-
lective CNNs results in about 3% higher accuracy than the best of the two,
suggesting that PMH and collective map representations are both effective and
complementary.

We compare the performance of our system with the state-of-the-art methods
on Volleyball dataset in Table 4. Our approaches denoted with “EST” use rep-
resentations constructed from pose estimation only; ours with “GT” use repre-
sentations constructed from ground truth human positions and individual action
labels, noting that they directly access the ground truth individual action labels,
so they should not be compared to other previous methods but just for reference.
All our models are trained with training settings described in Sect. 4.4. From
Table 4, it is evident that our fusion approach provides the best result among all
the state-of-the-art methods without using the ground truth information [1,27].
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Table 4. Comparison of group activity accuracy by using the proposed system with the
state-of-the-art methods on the Volleyball dataset. Accuracy results generated by [1,27]
without using ground truth information are denoted by MRF and PRO, respectively.

Method Collective Acc.

HDTM [16] (GT) 81.9

SSU-temporal [1] (MRF/GT) 87.1/89.9

SRNN [2] (GT) 83.5

RCRG [15] (GT) 89.5

stagNet [27] (PRO/GT) 85.7/87.9

stagNet-attention [27] (PRO/GT) 87.6/89.3

PC-TDM [38] (GT) 87.7

SPA [30] (GT) 90.7

ours (collective PMH, Resnet-18) (EST) 84.6

ours (collective map, Resnet-18) (EST/GT) 77.3/92.7

ours (fusion) (EST/GT) 87.7/95.4

5 Conclusion

In this paper, we proposed two novel representations: pose motion history and
collective map to represent the spatio-temporal dynamics of multi-person joints
and the integration among individuals in a group scene. Based on these two rep-
resentations, we developed a CNN based architecture without the need of any
human identity association mechanisms, achieving superior performance on the
challenging Volleyball dataset for the group activity recognition task. Future
work would be to fuse pose estimation networks into an end-to-end model,
and also to compensate the camera motion when constructing the pose motion
history.

References

1. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene under-
standing: end-to-end multi-person action localization and collective activity recog-
nition. In: CVPR (2017)

2. Biswas, S., Gall, J.: Structural recurrent neural network (SRNN) for group activity
analysis. In: WACV (2018)

3. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal
templates. TPAMI 23(3), 257–267 (2001)

4. Cao, C., Zhang, Y., Zhang, C., Lu, H.: Action recognition with joints-pooled 3D
deep convolutional descriptors. In: IJCAI (2016)

5. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estima-
tion using part affinity fields. In: CVPR (2017)
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