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Abstract. Though many deep learning approaches have significantly
boosted the accuracy for room layout estimation, the existing methods
follow the long-established traditional pipeline. They replace the front-
end model with CNN and still rely heavily on post-processing for layout
reasoning. In this paper, we propose a geometry-aware framework with
pure deep networks to estimate the 2D as well as 3D layout in a row. We
decouple the task of layout estimation into two stages, first estimating
the 2D layout representation and then the parameters for 3D cuboid
layout. Moreover, with such a two-stage formulation, the outputs of deep
networks are explainable and also extensible to other training signals
jointly and separately. Our experiments demonstrate that the proposed
framework can provide not only competitive 2D layout estimation but
also 3D room layout estimation in real time without post-processing.
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1 Introduction

The research on 3D scene understanding dates back to 1960s’ simple Block World
assumption [20], with the vision of reconstructing the global scene with local evi-
dences, and nowadays it has become one of the most pivotal research area in the
era of artificial intelligence and deep learning. The goal for scene understanding
is to know the semantic meaning of each single object and also the environments
constructed the scene. For the case of indoor scene, it is often referred to the
topics like object detection and semantic segmentation at the object-level, and
structure-level information such as spatial layout estimation. The effectiveness
of the indoor layout estimation can be applied to applications such as the indoor
navigation, localization, and the virtual object arrangement in the rooms.

The layout estimation for an interior room from an image can be repre-
sented in several levels of structure with different parameterization; for example,
pixel-wise classification labeling, crossing rays originating from vanishing points,
and the projection of 3D solid geometry models. Many layout estimation works
are based on the underlying assumption of “Manhattan World” proposed by
Coughlan [3] in 1999. It means scenes are composed of three dominant orthog-
onal orientations, and the walls are perpendicular to each other as well as the
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Fig. 1. Difference between our proposed framework versus the previous methods in
terms of system pipeline: (a) previous systems usually require post-processing, and (b)
our end-to-end approach.

ceiling and floor. The cuboid model is applied to represent the room in most of
the cases, in which the room enclosed by four walls, floor and ceiling. The ear-
lier researches with machine learning approach tailored optimization and post-
processing for the geometry reasoning on the hand-crafted features from the
single-view image. In the succeeding methods with deep learning, existed works
still built the framework as a two-tier pipeline with the deep neural networks for
feature discription and the optimization step for the final estimate. These extra
procedures, refining the layout estimation or extracting the 3D representation
for the modeling of layout, usually take considerable amounts of computation
and make them far from real-time applications. On the other hand, the widely
used room layout datasets do not provide appropriate 3D annotated information,
and it makes the problem of 3D modeling more challenging. Furthermore, very
few deep learning models have been proposed for such 3D geometry recovery
problems, and we simplify this with a deep neural network solution (Fig.1).

This is not to deny the astonishing results achieved by the aforementioned
methods. However, the time consumption of post-process rendered these meth-
ods unsuitable for time-efficient applications. And, many deep learning methods
make the layout as the pixel-wise dense representation which is not enough to
describe the 3D structure of layouts. To address these issues, in this paper, we
propose a novel framework for predicting the 2D as well as 3D room layout esti-
mation with efficient deep neural networks in a row. Under this framework, we
will estimate the 2D layout as the intermediate representation, and then predict
the 3D cuboid modeling parameters from the 2D representation. As the result,
our method can estimate the layout in 2D and also 3D space completely through
deep networks and provide the state-of-the-art results in real-time without post-
processing.

The main contributions of this paper are threefold (Fig. 2),
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— We decouple the layout estimation into two neural networks with the explain-
able intermediates separately in conjunction with effective training strategies;

— We believe that we are the first to model the 3D layout estimation task with
two efficient end-to-end networks, and thus achieve real-time estimation;

— We demonstrate how to make good use of the existing datasets with the
limitation of only the 2D layout annotations available to achieve the capability
of 3D layout estimation from a single image.

Intermediate Cuboid
2D Layout 3D Layout
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Fig. 2. An overview of our framework composed of two-stage networks.

2 Related Work

2.1 Room Layout Estimation

With the Manhattan assumption, Hoiem [8] proposed to estimate the outdoor
scene geometry through learning appearance-based models of surfaces at differ-
ent orientations and geometric context [7]. On the other hand, Hoiem [9] made
the concept of geometric context into indoor scenes, and modified the labels
into six classes for the indoor case: left-wall, right-wall, front-wall, ceiling, floor
and objects, and which is also the most common classification modeling for the
indoor layout estimation that inspired many later researches. In [9], they took
features from color, texture, edges and vanishing point cues computed over each
superpixel-segment, and applied a boosted decision tree classifier to estimate the
likelihood of each possible label. Lee [14] alternatively used the orientation maps
for the feature description which takes the layout and the objects oriented with
three orthogonal orientations. In the traditional layout estimation approaches,
the researchers extract several meaningful evidence from images, such as line
segments [20,24], orthogonal orientations of line segment [14], superpixel [21],
and contextual segments [7], or the volume form like geons [2]. However, these
evidences fail in the cases of highly cluttered and occluded scenes containing
less meaningful local features for the structure, and thus, some researched on
inferring estimations through hyper volumetric reasoning [5,6,22].

With the rise of machine learning, structured learning [18] has been developed
for the task, and its goal is to model the environment structure by generating
hypotheses with incomplete low-level local features [5,6,17].
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2.2 Room Layout Estimation with Deep Learning

With the successful modeling in the previous works, many have resorted to the
deep learning approach due to its superior performance in several computer
vision tasks. Some adopted the end-to-end supervised FCN (fully convolutional
network) model [16] to the perspective of room layout estimation as a task of
critical line detection, for instance the estimation of informative edges in [17] and
coarse and fine layout joint prediction in [19]. Dasgupta [4], the winner of LSUN
Room Layout Challenge 2015 [23], tackled the task with a two-tier framework:
segment the planes and walls of the input image with a deep neural network first,
and then optimize the output with the vanishing point estimation. The promising
result of Dasgupta et al. inspired several subsequent works [19,25,26] to follow
their two-tier pipeline, which consists of a FCN-like network for semantic seg-
mentation and a layout optimization technique (e.g., layout hypotheses proposal-
ranking pipeline in [4,17,19,25], and special optimization modules in [26]) for
post-processing. For real-world application, however, the post-processing may be
impractical if it is time-consuming.

2.3 Camera Pose and Geometry Learning

In early works, researchers viewed the locating 6-DoF camera pose task as a
Perspective-N-Point (PnP) problem. For example, Arth [1] estimated pose of the
query camera by solving a modified 3 point perspective (3PP) pose estimation
problem after extracting the epipolar geometry of a query images and its nearby
images. In recent works, researchers tend to estimate the 6-DoF camera pose via
deep learning. PoseNet [12] is the first approach to regress the 6-DoF camera pose
from a single RGB image through an end-to-end CNN. After that, a sequential
works extended the PoseNet. To deal with the uncertainty of output predictions,
Kendall [10] changed the network into a Bayesian model. And in [11], they
notably improved the performance of PoseNet by introducing noval loss functions
according to the geometry and scene reprojection error.

3 Layout Estimation in 2D Space

Our layout estimation framework can be decoupled into two stages, the 2D layout
estimation in Sect.3, and 3D cuboid model representation through projective
parameters estimation in Sect. 4 and these two stage can be applied either jointly
or separately.

3.1 Multi-purpose Layout Network

Under the Manhattan world assumption, we can consider each indoor scene as
being composed of multiple orthogonal planes and the layout of regular room can
be further simplified into the cuboid model. From this perspective, the layout
estimation can also be regarded as a region segmentation problem on each surface



DeepRoom: 3D Room Layout and Pose Estimation 723

of cuboid. To describe the segments of these regions, it can be parameterized by
the densely segmentation, or the borders or the points of these polygons. In the
previous deep learning methods, researchers proposed several representations,
such as planar segment with semantic labels [4,15,19], scoring heatmap on the
layout edges [17,26], and corner heatmaps [13]. From these works, we found that
each representation has its pros and cons for the later usage, i.e. post-process
methods. Consequently, we take the success of Lin [15] for fully convolutional
network adopted ResNet 101 as the back-bone, which is the state-of-the-art lay-
out estimation without post-process. We further advance the estimation for 2D
layout in multiple representations through the multi-stream decoders, including
the forms of corners, edges and the semantic planes simultaneously (Fig. 3).

Planar
Segment

RGB A\ Layout

Image Edge

Layout
Corner

Intermediate
2D Layout

Fig. 3. The 2D layout estimation in multi-task network. The basic component is the
ResNet101 back-bone network for feature extraction, and we make an independent
decoders (up-sampling module) for each distinct targets, for planar segmentation, lay-
out edge, and also layout corners.

Layout Segment. We refer the dense region segment to semantic planar
described in [4] for five classes: front-wall, right-wall, left-wall, ceiling, and floor.
It can then be formed as one semantic segmentation like problem with the labels
on larger structure scale rather than object-level segments.

Layout Corner. RoomNet [13] estimates the corners for each possible layout
structure in nearly fifties-channel heatmaps which is computationally inefficient.
However, the corners labeled in captured scenes are given by two kinds of points,
one is the room corner (inner corner), the other is the intersected points on the
borders of image (outer corner), as illustrated in Fig. 4. In other words, we can
categorize them into two classes rather than abundant channels nor as single
one.

Layout Edge. The layout edge can be represented by the borders of the poly-
gons. The detection of borders is to determine whether the pixel is the edges for
the room layout. And it can be viewed as a binary classification problem.
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Fig. 4. (a) Showing each endpoint of the room cuboid and the projective image plane.
(b) Indicating the projected points of inner and intersected ones.

3.2 Layout-Specific Objective Criterion

As proposed in [15], they find that if directly apply the vanilla semantic segmen-
tation criterion on planar layout estimation, the result often suffers from dis-
tortion or tears apart from the center of planes and also “wavy curves” (rather
than straight lines) mentioned in DeLay [4]. Hence, imposing extra smoothness
criterion is necessary to alleviate the artifacts. The proposed loss function is
given by,

Lseq(z, target) = CE(x,target). (1)

where x is the output of network for each single estimate, a five classes repre-
sentation for semantic planar segmentation. And the smoothness term is given

by,

Lsmooth = U(x,target) = |x — target|;. (2)
Loss of Corner and Edge Detection. The tasks for corner and edge detection
can be viewed as binary classification on pixel-level, and thus the loss function

can be given by the binary cross-entropy to determine whether one pixel belongs
to a layout structure edge,

Leqge(x, target) = BCE(z, target). (3)
Leorner (T, target) = Z BCE(z;,target;). (4)

For the corners, we categorize them into the inner and outer ones, the crite-
rion would be the summed loss across the two-category corner maps.

Overall Loss. The criterion for the planar layout task is,

Eplane = [/seg + Asl:snwothv (5)
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And the overall objective loss criterion for our network is the summation for
these three branches. The overall loss function for model training is given by,

L055N6t2D - Lplane + ‘Cedge + £corne7‘- (6)

4 Layout Beyond Pixels

Most important of all, we further propose the second stage for 3D layout esti-
mation in neural network, the novel approach compared to the existed works,
by making use of those 2D intermediates from previous stage. The common
rooms in the daily scenes are formed by the cuboid models. In the traditional
works [6,14], they considered to model the 3D layout of various room scenes to be
composed by boxes, and generated layout proposals based on 2D hand-craft cues
and also optimization-based pipeline. We found that, however, in computational
geometry, the 2D corners can be considered as the projection of 3D layout when
depth information is reduced to the 2D space. Consequently, the task can then
be converted to reconstruct the layout structure by estimating the projection of
a cuboid, and we can then formulate the parameters for the transformation and
projection. We thus parameterize the 3D layout in Sect. 4.1 with transformations
and corresponding camera pose in the canonical 3D coordinate.

We make one neural network to predict the cuboid representation for the
3D layout in Sect.4.2. However, we have no annotated 3D information for the
supervised network, thus we resort to make use of the synthesized data with the
strategy abstract layout generation, and then deliver the knowledge to the real
case through transfer learning detailed in Sect.4.3. With such formulation, we
can estimates the 3D room layout with the representation of projective param-
eters from the 2D intermediate representation of layout estimated from stage
one. And we now can make the 3D layout estimation framework end-to-end via
deep networks.

4.1 Cuboid Model Parameterization

There are two components for the representation in our cuboid model, the scale
of cuboid and camera pose. The parameters for the camera pose are decomposed
into translation vector 7 and rotation matrix R, in which we need three param-
eters for the position of camera and three parameters for the rotation angles
along three coordinate axes, represented in quaternion. And three more param-
eters for the scaling along three axes of the unit box, template cube placing at
the origin of the canonical space. Let X3p € R3*N denote the 3D coordinates
of eight keypoints (N = 8) belonging to the unit box, and the locations of box
keypoints viewed by a specific camera pose, and Xop € R?*Y denotes the corre-
sponding 2D coordinates in the image space. Thus the relationship between two
coordinates is given by (Fig.5)

XQDEW(X3D|K,P). (7)
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Fig. 5. The training of the regression model with the strategy of random generation of
abstract layout. We can synthesize the paired samples, confident layout edge and the
corresponding ground truth parameters 4.

where K is the camera intrinsic matrix assumed to be given in the camera cali-
bration procedure and P is the projection matrix given by

Jz 0 ¢y

K=10 fyey |, (8)
001

P =[R|T] e R***. (9)

Note that the rotation matrix R € R3*3 and the translation vector 7 € R?
contain the extrinsic parameters for camera pose, and the rotation matrix is
represented by a quaternion vector ¢ as follows:

R = quat2mat(§) € SO (3), (10)

Hence, we can extract the 3D cuboid layout from 2D space by estimating the
projective parameters for the cuboid model.

4.2 Regression Forwarding Network

We formulate the task as one regression task by applying the CNN to learn these
projective transformation parameters ;. Nevertheless, it is a challenge to train
such a regression model since most of the datasets for the layout estimation
do not provide any 3D annotations. The datasets for spatial layout are often
annotated with 2D information such as the shapes of polygon of layout and the
coordinates of the corners. And thus there is no easy way to retrieve 3D signals
for supervised learning as one regression task.

So, we reformulate the problem as follows. The original task is to regress
the model for the target parameters 6; € R? from the input € R¥*W . Under
this configuration, we can resort to the intermediate 2D layout representation
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£ € RE*XW the estimate of 2D layout network in Sect.3.1. The key value for
the task decoupling is that the intermediate layout representation is easy to be
synthesized by projecting the deformed cuboid onto the image plane, and we
call it abstract layout generation. As a result we can acquire lots of reasonable
samples through random generating target parameters 6, as well as the corre-
sponding 2D layout representation input = &, for the regression task, by using
the transformation and projection modules described in Eq. 7.

With such a strategy, we can reform the ill-posed regression task and over-
come the challenge of lacking 3D annotations in the existing datasets. The design
of our regression network is composed of nine compounded layers of strided-
convolutional layer with ReLU non-linearity activation and 1 x 1 convolutional
layer acted as fully connected layers at the end of the network for the target
projective parameters © € R? of the cuboid layout representation.

4.3 End-to-End Learning Network

Besides the synthesized data, we need to make the trained regression model
work on the real signals. under the configuration of our framework, the input
of regression model is generic to the intermediate of previous stage, in the same
space—2D layout representation. Though the estimated layout edge from 2D
layout network is not as perfect as the one generated from ground truth, we can
still make use of transfer learning strategy as Fig. 6 to make an extra network to
learn and fit as close as to the model training on synthesized samples. Finally,
we make an end-to-end framework for the 3D layout estimation via pure deep
networks instead of any optimization or post-processing.

5 Experimental Results

We utilize LSUN Room Layout dataset [23], containing 4,000 training images,
394 validation, and 1,000 testing images, for evaluating 2D semantic planar seg-
mentation and corner estimation results. Since there are no public labels for
the testing set, we evaluate our method on the validation set with LSUN Room
Layout official toolkit like the previous works. In addition, we evaluate the gener-
alization capability of our model on the Hedau dataset [6], which is a challenging
dataset due to its strict labeling. We can not evaluate any 3D accuracy metrics
for our 3D layout estimation, for these two commonly used datasets do not con-
tain any 3D annotations for the layout estimation. Instead, we also evaluate the
3D layout estimation results with 2D metrics on the re-projection of 3D layout.

Note that we only train our model on the training split of LSUN Room Layout
and directly test on the testing split of Hedau dataset without fine-tuning on its
training data. During the training, we apply random color jittering for slightly
changing in the lightness and contrast of color images to increase the diversity
of scenes. In addition, the time efficiency of our approach and other methods is
also reported in our experiment.
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Fig. 6. The transfer learning pipeline for the 3D cuboid parameters estimate on real
outputs of network.

5.1 Quantitative Results

We measure the performance of the proposed approach in 2D and 3D layout esti-
mation through the following experimental evaluations: 2D pixel-wise accuracy
for semantic planar segmentation in the single task and multi-task networks,
2D corner prediction accuracy for the keypoint corner detection, re-projected
accuracy on 2D metrics on the estimated 3D projective parameters, and the
visualization for the 3D cuboid rooms of the estimated parameters.

Pixel-Wise Accuracy of Layout Estimation. The performance of our lay-
out estimation results are shown in Table 1. First, we take DeepRoom 2D for
planar segmentation without any training strategies as our baseline model, and
it can already achieve 9.75% error rate. And, the extended model DeepRoom 2D
multi-task can reduce the error rate to 7.04%, which is 2.71% better than the
baseline. Moreover, the performance of the ones trained with Layout Degenera-
tion are comparable to the state-of-the-art method in the LSUN Challenge and
we achieve 6.73% and 6.25% pixel-wise error rate for the single and multi-task
networks, respectively. Furthermore, if we compare under a more fair condition,
our proposed model can even beat the best performing method ST-PIO [26]
(ST-PIO (2017) w/o optim.) without the extremely high-cost physical-inspired
optimization but with the post-processing for proposal ranking.

We list the results from the direct 2D estimation networks and also the re-
projected performance from the 3D parameter estimation network in Table 1.
For the 3D projective parameters, DeepRoom 3D, which takes the ground truth
generated edge map as input, can achieve similar performance as the 2D network
in the metric of pixel-wise accuracy. Furthermore, the end-to-end approach of our
DeepRoom 2D/8D achieves about 10% error rate, which is about similar level
of the other state-of-the-art methods, LayoutNet [27], without post-processing.
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Table 1. The pixel-wise accuracy performance benchmarking on LSUN Room Layout
dataset for different approaches. Note that the data in the table is extracted from their

papers.

Method Pixel error (%)
Hedau [6] 24.23
DeLay [4] 10.63
CFILE [19] 7.95
RoomNet [13] 9.86
Zhang [25] 12.49
ST-PIO [26] 5.48
ST-PIO w/o optim. [26] 11.28
LayoutNet [27] 11.96
Ours 2D baseline, planar seg| 9.75
Ours 2D multi-task 6.73
Ours 3D re-projected 6.89

5.2 Qualitative Results

First, we want to demonstrate the effects of our proposed layout objective cri-
teria for layout segmentation. We show the visual outputs for our multi-stream
networks with the full training strategies in Fig.7. They mostly contain sharp
but straight edges and strong consistencies in each predicted planar surface; and
the inner-outer corner representation can successfully give the detection for the
two kinds of keypoints in the layout. The detected layout edges are as impressive
as the planar segmentation as they all produced by the same multi-task network.
For the evaluation on the estimated 3D room layout, we visualize the trans-
formed cuboids along with the re-projected results in Fig. 7, in which we can see
that the 3D layout estimation results are quite good only from a single image.

Table 2. The performance benchmarking on Hedau testing set.

Method Pixel error (%)
Hedau [6] 21.20
Mallya [17] 12.83
DeLay [4] 9.73
CFILE [19] 8.67
RoomNet [13] recurrent 3-tier 8.36
Zhang [25] 12.70
ST-PIO [26] 6.60
DeepRoom (ours) 2D 7.41
DeepRoom (ours) 3D re-projected | 9.97
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Fig. 7. (a) Some layout estimation results of the proposed multi-task network. (b) The
representations for 3D cuboid and re-projected layout on LSUN Room.

In addition, we can observe that our model can be applied to different indoor
datasets even without re-training. Table 2 shows that the accuracy of our model
can almost achieve the state-of-the-art result.

5.3 Time Efficiency

Though our result is not overally the best for the 2D layout estimation metrics
in the aforementioned two datasets, however, the most competitive advantage of
our work is its computational efficiency since it is an end-to-end system without
any optimization process or post-processing.

We implement our approach with PyTorch and perform all the experiments
on the machine with single NVIDIA GeForce 1080 GPU and Intel i7-7700K
4.20 GHz CPU. For the analysis of time efficiency, Table 3 shows the consum-
ing time for both network forwarding and post-processing time of the layout
estimation methods. Although we cannot find fully released implementations of
these papers, the listed entries in the column of the post-processing come from
the official papers and cited ones, or the information from their released demo
video. For the time consuming in the network forwarding column, several meth-
ods released their network configuration file for Caffe, and thus we can measure
the time with official Caffe profiling tool and evaluate on our own machine under
a fair competition.
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Table 3. Comparison of time efficiency of the layout estimation methods in forwarding
time and post-processing time (unit: seconds).

Method Forward | Post-process | FPS
DeLay [4] 0.125 About 30 0.01
CFILE [19] 0.060 - -
RoomNet [13] 0.168 - 5.96
Zhang [25] About 180 |-
ST-PIO [26] 0.067 | About 10 0.1
LayoutNet [27] 0.039 0 25.64
DeepRoom (2D) 0.027 0 36.95
DeepRoom (2D/3D) | 0.032 0 31.25

6 Conclusions

We proposed an end-to-end framework that is composed of two explainable net-
works for decoupling the 3D layout estimation task into two sub-tasks. They
can also be jointly used to estimate the 3D cuboid representation of the spa-
tial layout for the indoor scene. To the best of our knowledge, this is the first
work that models the layout estimation as a two-stage deep learning forwarding
pipeline instead of the conventional systems with an additional post-processing
or optimization step. Furthermore, the combination of the two networks relies
on the intermediate representation and it makes our framework pipeline open to
the extensibility with using extra datasets for training and fine-tuning to achieve
better outcomes.
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