
 

 

Abstract- Tempo is the intuitive attribute of audio music, since 

people could feel fast or slow expressively and detect salient pulses 

to form perceived tempo value naturally. Nonetheless, for some 

audio, the tempo value could be ambiguous due to complex 

metrical level, different composing habit and creating style. Even 

though most of audio have the predominant tempo with consensus 

between the listeners, the others could have two dominant tempi. 

The challenge and goal of tempo estimation is to discriminate the 

salient tempi, mostly one or two tempos, related to the metric level 

by analyzing the audio signal directly. In this study, we propose 

the rhythm patterns of long-term periodicity curve derived from 

tempogram to improve the saliency detection. Besides, the data 

augmentation method is also invented to conquer the deficiency 

and representative of the three training datasets. The performance 

is evaluated on three public datasets in which the accuracy of 

“GiantSteps” dataset even outperforms the state-of-the-art tempo 

estimator of convolutional neural network implementation.  

 

I. INTRODUCTION 

 

Tempo of audio music could be described roughly in the 

sense of speed, fast or slow. Without argument, if tempo is 

expressed by beats per minute (BPM), the information 

attributed to the audio could be more useful. For examples, 

the attribute could be utilized as the building block feature in 

for music information retrieval (MIR) systems, to name a few, 

the beat tracking algorithm, mood and genre classification, 

the application of optical music recognition system [1]. Many 

interesting studies also reveal the close relation between 

music of various tempi and human status, for example 

psychology, mood of purchasing and drinking and exercising, 

and healing of human spirits.  

People usually feel rhythmic information by sensing pulses 

comprising of onsets to form periodical beat streams 

described by tempo globally. Music is composed with the 

different rhythmic levels such as measure, beat, and tatum. 

Those complex structures influence human perception of 

tempi. Therefore, different persons could conclude different 

temp. Although most of tempo annotation of music excerpt is 

just one value. There are previous research [2] [3] which have 

annotated two tempi derived from the highest two peaks of 

the distribution of the perceptual tempi of different persons 

and a strength value (less than one) to represent the relative 

frequency between the two tempi. However, those 

annotations are not public, even the audio of the work [2] are 

not public.  

In traditional evaluation, the performance of tempo 

estimation is indicated by two accuracy metrics: Accuarcy1 

and Accuracy2. Where the Acurracy1 is the percentage of 

correct tempi, in BPM, within 4% tolerance of groundtruth, 

while Accuracy2 is not only the percentage of correct tempo, 

but also includes the correctness of tempi, which are the duple, 

triple of the groundtruth. Not only for algorithms, the octave 

error, which the estimated tempo is duple or triple of 

groundtruth, is also common in the human perception.  

Since the research effort is focused on musical audio, there 

are different methods proposed. Gouyon et al. [4] made a 

comparison of those pioneer algorithms, which joined the 

contests organized by ISMIR2004. Zapata and Gómez [5] 

compared the researches and categorized some latest 

algorithms by the attributes of algorithmic summaries. 

Among of those compared algorithms, Alonso et al. [6] used 

harmonic + noise decomposition to obtain onset detection 

function. Peeters [7] devised a new onset detection function 

named “reassigned spectral energy flux” avoiding the 

preference of different frame size (long or short for temporal 

and frequency resolution, respectively) and setup a 

meter/beat subdivision probabilistic model to handle the 

time-varying tempo. Ellis [8] summed up weighting ACF 

values with duple/triple indexes and decided the final tempo 

based on the larger value. Cemgil et al. [9] modeled the 

estimation process as a stochastic dynamic system in which 

the tempi were treated as a hidden state variable estimated by 

a Kalman filter operated on a tempogram. Chordia and Rae 

[10] used probabilistic latent component analysis (PLCA) to 

conduct source separation. The study treated each source as 

analyzed component to obtain the tempo candidates. 

Moreover, the method clustered the different components 

with the pulse clarity information to perform final tempo 

estimation. Gkiokas at al. [11] approved that the metrical 

information is useful and attempted to improve accuracy by 

the percussion/harmonic separation. 

In the study of rhythm patterns, Matthew and Plumbley [12] 

used 1-NN classifier to categorize the rhythmic information 

of excerpts of dance music to improve accuracy of tempo 

estimation. Eronen and Klapuri [13] utilized a k-NN 

regression with a resampling step for periodicity vectors of 

training data, which then was screened in the training process 

to remove outliers to improve accuracy. Krebs [14] learn the 

rhythm pattern within bar from data of “ballroom” dataset. 

Beside learning rhythm pattern by genre, the Hidden Markov 

Model based on bar-point model has the states to model beat, 

metrical level, downbeat.  
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Recently, Schreiber and Mü ller [15] have designed  a 

convolutional neural network(CNN) and utilized three public 

datasets to train the CNN with data augmentation on mel-

spectrogram of music audio. The architecture use CNN as the 

role of onset detection with short time span and three layers 

of CNN, and periodicity analysis which includes six time-

span filters. Especially, the pooling mechanism is along 

frequency dimension to account for the summaries of 

different bands. The total trainable parameters reach almost 3 

million, so it demands high computation and memory power 

On the other hand, in the study we use the same training 

set with data “prune and augmentation” of music audio by a 

phase vocoder with the same quantity of training set excerpt 

count. Therefore, the augmented training excerpt count is 

much less than that of the CNN. The study evokes the 

downsizing request of the training set for efficacy in machine 

learning. Another difference is that we utilize signal 

processing method, Fourier Transfer, in front end to generate 

tempogram, some kind of periodicity distribution and make a 

summary along time. Then the machine leaning method is 

applied to pick up saliency. 

The purpose of the study has two folds: 1. to explore the 

effectiveness and dimensionality of the rhythm pattern 

vectors; 2. to approve the method of dataset pruning and 

augmentation. The remainder of this paper is organized as 

follows. Section 2 briefs the tempo estimation method. 

Section 3 detail the features including the rhythm pattern 

vector and the extended tempogram shape feature for 

discrimination of the predominant tempo. Section 4 

illustrates and formulates the procedure of data pruning and 

augmentation. Section 5 shows the experiments and discusses 

the results. Section 6 presents conclusions and future work. 

 

II. TEMPO ESTIMATION METHOD 

 

The tempo estimation method is comprised of two stages, 

whereas more facets could be found in the literature [16]. In 

first stage, a tempo-pair estimator based on tempogram 

predicts two dominant tempi; in second stage, a predominant 

tempo identifier, implemented by a classifier with 

predominant tempo vector (dtv) feature, discriminate the 

dominant tempo from the tempo pair. 

Figure 1 shows the flowchart of the method. In the block 

“Tempo Pair Estimator”, the audio passes through onset 

detection processing to obtain onset detection function (ODF), 

or named as novelty curve. The ODF could be post-processed 

further, for example Gaussian smoothing and subtracting, to 

obtain clearly periodic ODF. Then, ODF is processed by 

short time Fourier transform (STFT) to generate so-call 

tempogram. Finally, the tempogram is evaluated by the 

tempo pair model to estimate the most likely tempo pair. We 

will detail the tempo pair model in the subsection. 

In the block “Predominant Tempo Identifier”, tempogram 

stripes are extracted around the tempo pair. The statistical 

features of the tempogram and tempogram strips are extracted 

as tempogram shape vector(tsv), linear-tsv, and rhythm 

pattern vector(rpv) comprising dtv. Finally, a classifier is 

adopted to predict the predominant tempo. We will detail the 

features for the predominant tempo identifier in the following 

chapter. 

 

A. Tempo Pair Estimator 

 

The processes of tempo pair estimator undergo as the 

following. The audio is added to be single channel, if there 

are two channels, and resampled at the sample rate of 16 kHz. 

Then, the ODF is derived by the detection function borrowed 

from the complex-domain function devised by Duxbury et al. 

[17]. After that, the raw onsets are post-processing by 

Gaussian low pass filter and subtracted by local mean to 

reduce the impact of amplitude change. The post-processed 

 

Figure 1.  Flowchart of the proposed method 

Tempo Pair Estimator

Audio

Tempogram

Onset 

Detection  
Post 

Processing

STFT

Tempogram 

Construction

Tempo 

Pair 

Modeling

Tempogram 

Strips 

Extractor

Tempo Pair

Predominant 

Tempo

ODF Post-processed 

ODF

Predominant Tempo  Identifier

Extract 

Statistical 

Features

Classifier

tsv

Tempogram

Stripes

Training

Model

Feature

Selection

 
Figure 2. (a) Post-processed onset detection function (b) tempogram (c) 
Long-term periodicity (LTP) curve of tempogram (normalized to be the 

probability mass function) 
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ODF in Figure 2 (a) are processed by STFT to obtain 

tempogram as Figure 2 (b) to explore the periodicity, which 

implies the perceptual tempi of music audio.  

A tempo pair model is to deduce the most salient tempo 

pair. The modeling processes proceed as follows: we 

obtained the most likely tempo candidates, which are the 

local maximum tempi of the long-time periodicity (LTP) 

curve in Figure 2 (c), which is obtained by summing over the 

time axis of tempogram and is normalized to be probability 

mass function (pmf). Then, for all the tempo candidates, we 

combined every two of them to form the tempo pairs, 

attributed with the probability being the sum of the individual 

probability of LTP. The tolerance to define the pair relation 

is 4% tolerance. All the tempo pairs are categorized to one of 

the classes {‘duple’, ‘triple’, ‘3⁄2’, ‘4/3’, ’5/4’, ‘other’} to 

indicate the relationship between the two tempi in the tempo 

pair: 

 ‘duple’: One tempo is two times of the other. 

 ‘triple’: One tempo is three times of the other. 

 ‘3⁄2’: The tempo ratio is 2/3 or 3/2. 

 ‘4⁄3’: The tempo ratio is 3/4 or 4/3. 

 ‘5⁄4’: The tempo ratio is 4/5 or 5/4. 

 ‘other’: None of the above. 

Therefore, we sort the probability values within the same 

class to pick up the tempo pair candidates with the maximum 

probabilities. Therefore there are six tempo pairs for six 

classes and form the six-dimensional feature vector  𝑡𝑝𝑣, in 

which each element is the maximum probability value 

initially and is normalized to unity finally. 

 
III. FEATURE VECTOR FOR DISCRIMINATING 

PREDOMINANT TEMPO 

 

The goal of the predominant tempo vector(dtv) is to 

discriminate dominant tempo from the tempo pair. In the 

previous work, we devise a compact tsv vector. In this work, 

we add the linear-tsv for the linear spectrogram of audio to 

derive novelty curve, different from the mel-scale 

spectrogram for tsv. Besides, the rhythm pattern derived from 

LTP curve is defined. Finally, all these features are integrated 

to be dtv. 

 

A. tsv Feature of Previous Work 

 

After obtaining tempo pair, denoted as tempo1 (lower tempo) 

and tempo2 (higher tempo), the predominant tempo needs to 

be discriminated within the pair. In the previous work [18], 

we proposed the 𝑡𝑠𝑣 , which comprises of two kinds of 

tempogram statistics. The first is five dimensions of the 

statistics  Ticviiii ,,,,  of tempogram intensity. Where the 

symbols  cv,,,,  denote skewness, kurtosis, means, 

standard deviation, and coefficient of variation, respectively, 

and the subscript ‘i’ represents intensity. Those features 

indicate the global intensity characteristic of the whole 

tempogram as shown in Figure 3 (a).  

Another kind of the statistics are obtained from the 

probability mass function (pmf) of the tempogram strips as 

shown in Figure 3 (b-e). The pmf is derived from normalizing 

sum of the tempogram intensity to be one. The sample space 

is the tempo range in the tempogram stripe. Then, we extract 

the statistical quantities of the pmf: skewness ( sγ ), and 

kurtosis ( sκ ), means ( sμ ), standard deviation ( ), 

coefficient of variation ( scv ), where the subscript ‘s’ 

represents the shape of the tempogram strip LTP pmf. 

Therefore, the 𝑡𝑠𝑣 is 15-element vector is compried as the 

following:  

 Tscvscvssssssssicviiiitsv 2,1,2,1,2,1,2,1,2,1,,,,,  (1) 

 

, where the number 1 and 2 denote statistics for tempo1 and 

tempo2, respectively.  

 

B. Linear Spectrogram Feature 

 

For the feature, the novelty curve is derived from the linear 

spectrogram of audio. The reasoning behind this is to variate 

the spectrum to cover more periodicity information coming 

from other characteritic of the audio. The linear spcecgrom is 

also used in speech processing. Then the linear tempogram 

for the novelty curve is computed. By using the same tempo 

pairs of mel-scale spectrogram and the tempo strip extracting 

procedure as the previous mel-scale tsv, the similar vecor is 

derived and named as linear-tsv.  
T
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C. Rhythm Pattern Feature 

 

By obseving Figure 4 (a), the horizontal axis is the index of 

training set sorted in tempo from low to high and the vertical 

axis is the rhythm pattern, that is, LTP pattern composed of 

the maximum pooling of LTP within the specific tempo 

sσ

 
Figure 3. LTP derivation of tempogram strip: (a) Tempogram; (b) 
tempogram strip around tempo2 (c) tempogram strip around tempo1 (d) 

pmf of normalized LTP of tempo2 tempogram strip (e) pmf of 
normalized LTP of tempo1 tempogram strip. 
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range for each diemension. We could see the close tempi 

have quite simliar pattern and the curve of the whiter shapes 

along the excerpt index are highly corelated to the ground 

truth curve in Figure 4 (b). Therefore, the rhythm pattern 

implies a global signature for audio with the specific tempo 

and metrical periodicity. That means the audio with similar 

tempo amd metric structure could have similar LPT pattern. 

More specificly, the feature is pooled from the LPT with the 

specific dimensionaly of N. Each elemenent of the vector is 

the maximum pooling value of equally spaced N segment of 

LTP. The feature vector is formulated as below. Denoting 

the rhythm pattern feature as rhythm pattern vector(rpv), the 

jth element [rpv]i = pooling of segment si of LTP with the 

boundary of [i1 i2]. Where the subscript i means jth equal-

space segment, and the i1 and i2 are are lower bound and 

upper bound, respectively. The element of the rpv is 

summarized as the following. 

 

[𝑟𝑝𝑣]𝑖 = 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝑜𝑓 𝐿𝑃𝑇𝑖1

𝑖2  , 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ {1. . 𝑁}  (3) 

  

The width of segment is length of LPT divided by N with 

round off, and the lower j is from the low-tempo end and 

dropping the unused segment in the high-tempo end. 

 

D. Dominant Tempo Vector and Classifier 

 

The dtv vector is cascaded of the three feature vectors,a tsv, 

linear-tsv and rpv. The vector is denoted as the following.  

 

 Trpvtsvlineartsv ,,dtv                            (4) 

 

Finally, we take all of training vectors and make each 

dimension normalized to be zero mean and unity variance. 

    Although utilizing k-NN classifier in previous works, we 

try to access “classification learner” of MATLAB APPS. By 

using tenths of classifiers, for example decision tree, 

discriminant analysis, logistic regression, SVM, and nearest 

neighborhood and ensemble, in “All Quick-To-Train”, we 

found the best classifier type are SVM and Ensemble with 

recognition rate difference within 2 % on training set.  

Although, the Ensemble is a little bit better than SVM, we 

decide to use SVM based on the experiment data on test set. 

 

IV. DATA AUGMENTATION IN TERM OF TEMPO 

DISTRIBUTION 

 

The goal of the data augmentation is to keep the dominant 

distribution of the training dataset and augment the minority 

of tempi, for example as shown in the Figure 5. We adopt the 

strategy to estimate and plan the distribution of Gaussian 

filtering for the modified training dataset and to install a 

minimum base count for each tempo. Then, based on the 

Gaussian distribution, if the excerpt count of a specific tempo 

in the histogram is higher than the value of the Gaussian curve, 

we scale the tempi of those excerpts by phase vocoder to 

increase the count of minor tempo.  The scale factor is based 

on the ratio of the groundtruth of the excerpt and the target 

tempo. The augmentation processing is summarized as the 

following steps. 

 

1. Calculate the excess or deficit count (eCount and dCount 

in short) for all the tempo, which is the difference 

 
Figure 4. (a) Rhythm pattern with 60 dimension vs. excerpt index sorted in order of tempo value from high to low (b) groundtruth vs. excerpt index 
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between the histogram of training dataset (blue in Figure 

5) and the Gaussian distribution (red in Figure 5). 

2. From low to high tempo, accumulate the eCount excerpts 

by random sampling and add in the tempo-ordered 

augmentation list for tempo scaling. 

3. Allocate the dCount excerpts from the augmentation list 

to the deficit tempo from low tempo end into the scale 

list, which is keeping the record of excerpt name and 

scale factor. 

4. Scale the audio excerpts based on the scale list by phase 

vocoder. 

 

V. EXPERIMENTAL RESULTS 

 

First, the datasets are introduced. Second, the influence of rpv 

dimension is evaluated. Then the result of the dataset 

augmentation in term of tempo coverage is illustrated. Finally, 

we discuss the experiments and future improvement. 

 

A. Datasets Description 

 

This study utilized the combined training dataset of “LMD 

Tempo”, “MTG Tempo” and “Extended Ballroom” and the 

test datasets of “AcmMirum”, “ Giantsteps”, and 

“Ballroom” [15] which could be explained by training set 

and “1141”, ”661”, and “661”excerpts, respectively. The 

traing  excerpt count is 8594 exclusive two excerpt tempo is 

hard to be decided and mark as zero by the annotator. The 

tempo histogram of the combined training set is shown in the 

Figure 5 with the legend  ‘Real’. We could see the distribution 

is quite unbalance, where some counts of the tempi are few 

and even empty, and the others have counts close to 800, 

almost reaching 10 % of the training set.  

 

B. Dimension Evaluation of rpv Feature 

 

The options of rpv dimension are tested in the set {8 15 30 60 

120}. The accuracy is shown in the Table 1 with the column 

title as the set. We could observe the best dimension of 

accuracy is 60 and have at least 11% gain compared to those 

of 8. Below dimension 60, the acc1(as the shorthand of 

Accuracy 1) is almost decreasing monotonically for 

“Ballroom” and “Giantsteps”. 

 

C. Data Augmentation 

 

For the training set, the histogram is as the Figure 5 with the 

legend ‘Real’. We tried the minimum base excerpt count for 

the number below 20. And the parameter of Gaussian filtering 

is to minimize difference between total eCount and dCoount 

of excerpts. Finally, the base count is settled to be 15; the 

eCount is equal to 3348; the dCount is equal to 3330. 

The new histogram after data augmentation is shown as in the 

Figure 6. The histogram is quite matched to the planned 

distribution as the Figure 5 with the legend ‘Desired’. By 

using the augmented training dataset, the evaluated result is 

Table 1. Accuracy approached by the different dimension of rhythm pattern (rpv) and data augmentation, and comparison with the state-of-the-art 

Dataset  8 15 30 60 120 Aug60 Schr Böck Schr-CNN 

 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2 

AcmMirum 69.6 95.2 70.7 94.9 70.3 95.1 66.9 94.8 66.4 94.6 69.6 94.8 72.3 97.3 74 97.7 79.5 97.4 

Ballroom 74.8 98.1 78.9 98.1 82.1 98.1 85.4 98.1 83.5 98.1 84.2 98.1 64.6 97 84 98.7 92 98.4 

GiantSteps 66.3 90.3 69.1 90.3 74.6 90.2 78.1 90.3 77.3 89.9 78.4 90.3 63.1 88.7 58.9 86.4 73 89.3 

Dataset 
Average 

70.2 94.5 72.9 94.4 75.7 94.5 76.8 94.4 75.7 94.2 77.4 94.4 66.7 94.3 72.3 94.3 81.5 95 

Combined 70.1 94.8 72.4 94.6 74.3 94.7 74.2 94.6 73.3 94.4 75.4 94.6 68.2 95.2 72.9 95.2 81.1 95.7 

 

 
Figure 5. Illustration of data augmentation in term of tempo 

distribution, legend “real” is the dataset real count, “desired” is 
planned distribution by Gaussian and installed with minimum base 

count for each tempo 

 
Figure 6. Tempo histogram of training set after data augmentation 
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shown in the Table 1 with the algorithm label “aug60”. We 

could see the acc1 of “Gaintsteps” reach the new high and 

acc1 of “AcmMirum” is par with that of the best dimension 

for original training set. 

 

D. Discussion and Future Improvement 

 

We also compare the performance with the state-of-the-art 

algorithm in the Table 1, in which the bold numbers indicate 

top1 for all the algorithm and rpv dimension parameter. By 

observing the data, the “aug60” is par with the best algorithm 

of “Böck”, accuracy data from [15], in the literature with the 

proprietary training set which may not include dataset could 

explain “GiantSteps”. Especially, our training set is the same 

as the Schreiber [15]. The acc1 of “Giantsteps” even 

outperforms 5.3 % compared with the computation-intensive 

and memory-hungry CNN implementation (“Schr-CNN”), 

although the performance is inferior to the CNN method for 

the other test datasets. The inferiority could come from the 

more complex architecture of CNN which addresses the onset 

types and periodicity analysis of various time frames. 

Observing the trend of accuracy curve, we believe the 

performance will be improved further by grid search of 

dimension of rhythm pattern. Besides, the aspects of data 

augmentation are not fully explored by the initial try. 

Therefore, we could try to increase the data size and to 

explore other tempo distribution strategy or rhythm patterns 

augmentation for emulating different genres. 

 

VI. CONCLUSIONS AND FUTURE WORK 

 

The study approves the LTP rhythm pattern and the data 

augmentation, which actually is pruning and augmenting, in 

the two-stage tempo estimation method for the public training 

datasets. In the experiments of rhythm pattern, we have 

justified the effectiveness on “Ballroom” and “GaintSteps” 

dataset with over 11% gain of accuracy. The innovative 

augmentation method keeps the same training size, augments 

the audio by phase vocoder, and makes the larger 

improvement for “AcmMirum” dataset for the initial try. The 

rhythm pattern and data augmentation are closely related to 

the deep learning architecture and could enlighten the 

architecture definition in the future work.  
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