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Abstract

This paper presents SegmentedFusion, a method pos-
sessing the capability of reconstructing non-rigid 3D mod-
els of a human body by using a single depth camera with
skeleton information. Our method estimates a dense vol-
umetric 6D motion field that warps the integrated model
into the live frame by segmenting a human body into dif-
ferent parts and building a canonical space for each part.
The key feature of this work is that a deformed and con-
nected canonical volume for each part is created, and it
is used to integrate data. The dense volumetric warp field
of one volume is represented efficiently by blending a few
rigid transformations. Overall, SegmentedFusion is able to
scan a non-rigidly deformed human surface as well as to
estimate the dense motion field by using a consumer-grade
depth camera. The experimental results demonstrate that
SegmentedFusion is robust against fast inter-frame motion
and topological changes. Since our method does not re-
quire prior assumption, SegmentedFusion can be applied
to a wide range of human motions.

1. Introduction
3D reconstruction using consumer-grade RGB-D cam-

eras (also called RGB-D SLAM) has been extensively
researched in the past decades in the computer vision,
robotics, and computer graphics communities. The recon-
structed 3D models can be used in many applications, such
as animation, game, and AR/VR. In general the RGB-D
SLAM procedure is composed of two main steps: (1) (non-
rigid) motion tracking and (2) data integration.

A popular strategy used in many RGB-D SLAM tech-
niques is to match points in the built 3D model with points
on the input depth image to estimate camera pose and 3D
model deformation. With a good estimate of the (non-rigid)
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Figure 1. An illustration of inputs, intermediate results, and out-

puts of SegmentedFusion.

transformation that aligns the 3D model to the input RGB-D
image, depth measurements can be integrated into the built
3D model using the running average strategy. Volumetric
depth fusion methods for static and dynamic scene recon-
struction have been proposed in [15, 16], and have attracted
considerable attentions from both academia and industry.

Recent work has used dense key-points [13, 14] or semi-
dense key-points [9] to implement the tracking step and has
achieved static scene reconstruction in real time. However,
it is still extremely difficult to reconstruct the non-rigidly
deforming scene because of the drastic increase in degree
of freedom of the motion compared with the static scene. In
[8, 15], warping strategies or energy functions are proposed
to solve these issues. However, they are still restricted to
limited topological change and slow motion.

Reconstruction techniques for a dynamically moving
scene need to estimate a dense non-rigid warp field. By
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matching points on the model with a live depth image, the
transformation of a sparse set of control points is computed
to obtain a dense warping field through interpolation [15].
However, this strategy is limited to well-controlled slow
motion with no topological changes. Using skeleton infor-
mation was proposed [22] to handle fast motions, but the
problem of topological change was ignored. Motion-based
segmentation to separate different objects was also pro-
posed [17], where each object is tracked and reconstructed
independently. We use this concept in our work to seg-
ment a human body into several body parts, to track each
part’s motion to build the warp field, and to fuse them into
a 3D model independently. By deforming each body part
correctly, our proposed method stitches all the parts and fi-
nally obtains a complete human body model. Our proposed
method is capable of handling both fast motion and topo-
logical changes.

Our proposed method, SegmentedFusion, reconstructs
non-rigid 3D models of the human body by using connected
and deformed bounding boxes. We build connected bound-
ing boxes, each of which bounds each body part, and we
apply dense volumetric reconstruction to estimate the 3D
model. The deformations of all the bounding boxes are ini-
tialized with the first input frame. Then, the deformations
are tracked at run-time from the skeleton motion. Moreover,
we use a refinement registration technique to reduce noises
on the skeleton data and track the twist motion on the bone.
Figure 1 is an illustration of our input, segmentation, and
output.

The main contribution of this work is to propose con-
nected and deforming bounding boxes representation for
volumetric 3D reconstruction of a moving human body. By
using skeleton information, we can estimate a dense vol-
umetric model-to-frame warp field to fuse depth values of
live frames into our canonical space. The dense warp field
function is defined by blending the rigid transformations
of adjacent bones. Through the interpolation, we find the
3D transformation of each voxel inside each bounding box.
As a result, SegmentedFusion can handle fast human body
motion and topological change as demonstrated in experi-
ments.

2. Related Work

Here we focus on only non-rigid RGB-D SLAM meth-
ods that can be used for dynamic human body 3D recon-
struction.

Several recently proposed methods focus on reconstruct-
ing a dynamic human body using a-priori available infor-
mation such as template meshes. Using captured skele-
tal motion [3, 18, 21] or skeleton model representation,
template-based 3D reconstruction methods have been pro-
posed. Zollhöfer et al. [23] starts by scanning a template
model as the prior. It then performs non-rigid registration to
fit live data with the template and deforms the mesh in real

time. However, this method requires a template beforehand,
which makes it impractical for real-world applications. Fur-
thermore, this method cannot handle topological change.
The template-based methods make the model fixed, and aim
at deforming the model to represent input data, instead of
incrementally integrating the scene. They usually do not
possess the function to refine the reconstructed model using
input data.

Another approach to reconstruction is based on template-
free techniques [8, 10, 15, 19]. DynamicFusion [15] pro-
poses to estimate a dense volumetric warp field between the
canonical frame and a live frame for dynamic scene recon-
struction. By using a motion field, this system non-rigidly
warps the canonical volume into the live frame, and updates
the depth into the canonical model. However, Dynamic-
Fusion has the limitation that it cannot handle fast motion,
splitting objects, and topological change because the model-
update algorithm is based on mesh correspondences. Vol-
umeDeform [10] improves DynamicFusion by using scale-
invariant features. It uses a set of extracted sparse color fea-
tures with a dense depth features for camera tracking and
drastically reduces drifts that the standard model-to-depth
alignment faces. Although VolumeDeform enables to han-
dle faster motion than DynamicFusion, it still cannot prop-
erly recover all free motion. KillingFusion [19] was also
proposed to handle fast inter-frame motion where the level
set evolution instead of explicit correspondence search is
used for non-rigid registration. Using signed distance fields
for tracking and reconstruction, KillingFusion is capable of
handling topological changes, but it may lose some high-
frequency details.

In order to combine the advantages for the template-free
and template-based approaches, BodyFusion [22] proposes
a skeleton-embedded surface fusion. Using skeleton as a
prior enables this method to deal with fast motion. Body-
Fusion estimates a deformation field based on attachments
between graph nodes and bones, and updates the attach-
ments with tracking. However, since the attachments are
computed using the nearest-neighboring node, BodyFusion
cannot deal with large topological change such as human
hand motion. Human hand motion tends to change topol-
ogy: connecting two hands (closed loop) to disconnecting
them (open). Co-Fusion [17], on the other hand, handles
this kind of problem by using motion or semantic cues to
segment the scene into multiple objects and to reconstruct
them separately. But it cannot provide good quality for the
reconstruction.

In our work, we use skeleton as the prior instead of using
a pre-scanned template model to handle fast motion. Also,
similarly to Co-Fusion, our proposed method separates the
human body into several body parts (volumes) while all the
parts are connected to form the final whole human model
stitched well. We use ICP as a refinement step and fuse
up-to-date surface with all depth image data by saving the
values of the truncated signed distance function (TSDF) [7]
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Figure 2. The pipeline of our proposed SegmentedFusion.

in the volumes.

3. Overview of Proposed Method
Our proposed method, called SegmentedFusion, aims to

reconstruct the 3D model of the human body in dynamic
scenes using a single depth camera and its associated skele-
ton data. Figure 2 illustrates the pipeline of our proposed
SegmentedFusion.

Similarly to [15, 22], we represent the 3D model of
the human body using the volumetric TSDF. We warp the
canonical model (i.e., the model in the reference pose) to
non-rigidly align the current 3D model to the input data,
and then fuse depth measurements into the canonical model
using the running average strategy. Our main contributions
and differences from existing work are two fold:

• We represent the 3D model of the human body with
multiple small bounding boxes placed around body
parts. More precisely, using skelton information, we
segment the human body into (almost) rigid parts and
define around each body part, a bounding box to which
the TSDF values are attached. This representation en-
ables us to explicitly handle topological changes, as it
is defined by the skeleton.

• All the bounding boxes (one for each body part) are de-
formed on-line so that (1) no gap exists between them
and (2) no overlap exists between them. More pre-
cisely, the relative orientation of adjacent body parts
defines the deformation of all the bounding boxes.
Thanks to this, when a person moves, the movement
of the skeleton consistently deforms all the bounding
boxes corresponding to the body parts. These defor-
mations allow us to compute the warping field of the
complete canonical TSDF space to non-rigidly align
the 3D model to input measurements and also to fuse
them into the canonical 3D model. This approach has
the advantage that the warping field can be estimated
by optimizing on the bones’ motion only (we can de-
crease the number of unknowns for the estimation).

We use data captured with a Kinect V2 which outputs
color images, depth images, and skeleton information. We
also use [4] to improve the accuracy of the joint detection
on the color image.

Notation and preliminaries. For a point u ∈ R
2 and its

depth value Dt(u) ∈ R at frame t, the back-projection is
expressed by

π−1(u, Dt(u)) = Dt(u)K
−1ũ (∈ R

3), (1)

where π is the perspective projection from R
3 to R

2

(namely, π(p) = (px/pz, py/pz)
� for p = (px, py, pz)

� ∈
R

3), ũ = (u�, 1)�, and K is the camera matrix represent-
ing the intrinsic camera parameters.

Our proposed method uses one TSDF volume for each
body part, which corresponds to a bounding box. For each
body part i, we define the canonical space Si ∈ R

3, and
we encode in each voxel (in the volume) the TSDF value
and the confidence of measurements corresponding to the

3D model, as in [15, 22]. Namely, Vi : Ŝi → R
2, where

Ŝi ∈ N
3 is the discretized canonical volume of Si (a volume

is digitized into voxels).
We use the skeleton information Kt at frame t, and we

have the set of 3D joints {Jt(i)}i∈[1:21] with their tree struc-
ture (Figure 3). The 3D position of the i-th joint at frame t
is denoted by Jt(i) ∈ R

3 (we use the boldface for the 3D
position while the normal-face for the index).

We build the corresponding bones graph (right of Fig-
ure 3). In this graph, the notation i → j means the bone
from the i-th to the j-th joint. One bone corresponds to
one body part (i.e., one bounding box), except for the bone
1 → 2 that is the root bone. This is because the root bone
has no parent, thus no (non-rigid) deformation can be com-
puted for bone 1 → 2. Note also that we dropped bones
21 → 3, 21 → 5, 21 → 9, 1 → 13 and 1 → 17 in the
tree structure to simplify the implementation. Each bone is
indexed with the index of the starting joint. Namely, Bt(i)
is the bone vector from joint Jt(i) to its child joint Jt(c(i)):

Bt(i) = Jt(c(i))− Jt(i). (2)
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Figure 3. The Kinect’s skeleton with joints (colors correspond to

segmentation in body parts), and our proposed bones graph rep-

resentation (right). We represent the skeleton in a tree structure,

where each node is a bone that corresponds to a bounding box

(except for the root node).

Note that Bt(p(i)) denotes the parent bone of the i-th bone.

4. Detailed Description of Each Component
SegmentedFusion incrementally reconstructs the human

body. It first warps the 3D model to fit the input depth-
image, and then fuse depth measurements into the 3D model
before processing the next input depth-image. Segmented-
Fusion is initialized with the first input depth image by seg-
menting the human body into multiple (almost) rigid parts
and creating a canonical space for each body part. After es-
timating the warp-field, we compute the 3D transformation
of each voxel, which is used to integrate the depth image
into the set of TSDF volumes V = {Vi}.

4.1. Body part segmentation

Skeleton information crucially helps the 3D reconstruc-
tion of a moving person. This is because the human body is
made of rigid bones and it is reasonable to assume that each
body part corresponding to a bone is locally deformed in an
almost rigid manner. The main idea in this work is to for-
mulate non-rigid human-body reconstruction as a set of vol-
umetric (almost) rigid 3D reconstruction of each body part.
Then, the issue is how to deal with moving volumes rep-
resenting body parts so that they have neither overlaps nor
gaps between volumes even when a human freely moves. To
tackle this problem, we propose a novel deforming bound-
ing box, i.e., we allow each bounding box to be deformed
depending on the skeleton motion.

We use the skeleton joints given by the Kinect V2 (mid-
dle of Figure 3) to segment the whole body into almost rigid
body parts (Figure 4). More precisely, we use the 2D joint
positions to find the contour of each body part. For each
bone, we compute the 2D bone vector from two 2D joint
positions. Two adjacent bone vectors give us a line that
passes through the joint of the two bones and that bisects
the angle between the two bones. We use the bisector line
of every joint to separate the whole body into body parts.

Each body part attached to a bone i → j is segmented
out by using the extreme joints J(i) and J(j) on the bone.
We use two joints to define the limbs (arms, legs) while we
use only one joint for the hands, the feet, and the head (we
ignored joint 3 of the neck). The trunk part is what remains.
Figure 4 illustrates the segmentation result.

Note that the bilateral filter [16, 20] is applied as the pre-
processing on the raw depth image to reduce noise while
preserving edges in the depth image. The segmentation al-
gorithm, however, is not robust under all situations. The
area near the feet is segmented incorrectly: the segmented
feet is sometimes touching the floor. To reduce the influ-
ence caused by such an incorrect segment, we limit the size
of each body part to be within a specific distance from the
bone. That is why we see circles around the feet in Figure 4.

4.2. Stitched bounding boxes
The 3D model is represented with a set of volumes,

each of which is uniformly discretized into voxels hav-
ing TSDF values. A marching-cube algorithm [12] com-
putes the 3D meshes from each body part given the cur-
rent TSDF field. For a volume with size (X,Y, Z), the
canonical space of a body part is simply the 3D space(
[−X

2 : X
2 ], [−Y

2 : Y
2 ], [−Z

2 : Z
2 ]
) ⊂ R

3.

If we use a rigid bounding-box to represent each volume
for a body part, then bounding-boxes may have overlaps
or gaps along with human motion as shown in Figure 4.
To prevent such a problem, we introduce the deforming
bounding box, which tightly stitch all the bounding boxes
together.

In their canonical space, all body parts are aligned and
superimposed (as illustrated in Figure 4). Given the skele-
ton pose in the first input frame, we compute, for each body
part, the rigid transformation Tloc→glo(i) that transforms
the i-th body part from its canonical space to the coordinate
system of the first frame.

Tloc→glo(i) =

[
R(i) c(i)
0 1

]
, (3)

R(i) = [r1(i), r2(i), r3(i)] ∈ SO(3), (4)

where r1(i), r2(i), r3(i) ∈ R
3 are the normalized princi-

pal orthogonal vectors of the body part i, and c(i) ∈ R
3 is

the 3D position of the center of the body part i. As illus-
trated in Figure 4, depending on the pose of the skeleton,
the rigid transformation Tloc→glo(i) creates holes and over-
laps, which will cause unpleasant visual artifacts after 3D
reconstruction.

Each bone in our tree representation (right of Figure 3)
has its unique parent (except for the root bone, which is not
attached to any body part). Therefore, for the i-th body part
we define an initial rotation matrix Rinit(i):

Rinit(i) = I3 + [s]× + [s]2×
1

1 + τ
, (5)
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Figure 4. The results of the body part segmentation and illustration of the initial bounding box deformation. We took as an example three

bones on the right arm: bone 5 → 6, bone 6 → 7 and bone 7 → 8. In their canonical space, all bone are aligned and their bounding boxes

are superimposed. After applying the rigid transformations Tloc→glo, all bounding boxes become aligned with the skeleton in the pose of

the first input frame. But holes and overlaps appear between the rigid bounding boxes. Using the initial warp Tinit, all bounding boxes are

deformed so that they connect smoothly and tightly with the bounding box of their parent body part.

where I3 is the 3×3 identity matrix, s = B1(i)×B1(p(i)),
τ = B1(i) · B1(p(i)). [s]× is the skew-symmetric matrix
defined by s:

[s]× ≡
⎡
⎣ 0 −s3 s2

s3 0 −s1
−s2 s1 0

⎤
⎦ . (6)

For body part i, we also define the radial-based weight
wi(p) : R

3 → R that defines the Gaussian distance be-
tween the 3D point p and the plane on the bounding box
passing through the joint Jt(c(i)). Namely, with variance
σ,

wi(p) =
1√
2πσ

exp

{
−1

2

(
(p− J1(c(i))) ·B1(i)

σ

)2
}
.

(7)
The stitching of the bounding box given the skeleton

pose in the first frame is then obtained by applying the non-
rigid transformation W init

i (p) to all 3D points in the canon-
ical space:

W init
i (p) =

S (wi(p)qid + (1− wi(p))qinit(i)) Tloc→glo(i), (8)

where S converts a dual-quaternion to its corresponding
transformation matrix in SE3, qid is the dual-quaternion of
the 4×4 identity transformation and qinit(i) is the unit dual-
quaternion of the deformation transform Tinit(i), with

Tinit(i) =

[
Rinit(i) 0

0 1

]
. (9)

Figure 5 illustrates the comparison between the results
with and without using the stitching. The model without the
stitching possesses unnatural deformation near the bound-
ary. Thanks to this stitching, we can reconstruct a complete

(a) (b)

Figure 5. The comparison of the mesh with and without initial

warping. (a) Final lower arm models in canonical space. The left

one use the initial deformation in warp field, and the right doesn’t;

(b) final whole models in the last frame without fusion step.

3D model of the human body without any hole and with
smooth connections between all the body parts. Also note
that because of the initial stitching, the 3D models in their
canonical space are actually deformed (but un-deformed af-
ter warping them into the initial frame coordinate system).

4.3. Warp field

For each voxel in a volume corresponding to a body
part, we compute a warp function that non-rigidly trans-
forms the voxel from its canonical space to its correspond-
ing point in the current input depth image. The warping
field Wt

i : Si → SE3 for a body part i at frame t is de-
fined by combining the initial warp W init

i with the current
non-rigid motion tracking estimated using the input skele-
ton data. More precisely, at each new input frame at t, a
body part i is first rigidly transformed to its pose in the first
frame using Tloc→glo(i). Then the motions of each bone
from the first frame to the current frame are computed us-
ing skeleton information. For the body part i the motion of
the parent bone is composed with the initial warp to obtain a
new transformation for the parent bone, with respect to the
i-th body part. Then, the transformation of each voxel in the
bounding box is obtained by applying the dual quaternion
blending of the bone motion and the new transformation of
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its parent bone. This initial deformation is further refined
using ICP to obtain the final warp field Wt

i . The concrete
form is given in Equation 16.

4.3.1 Bone motion

We assume that the transformation of each body part is
nearly rigid following the bone motion. Given the 3D skele-
ton information of two successive frames, the transforma-
tion of each body part from one frame to another can be
computed. For the i-th body part, we use the bone vectors
Bt−1(i) and Bt(i) in two successive frames to compute the
bone’s global transformation:

T t
t−1(i) =

[
Rt

t−1(i) ttt−1(i)
0 1

]
. (10)

The rotation matrix Rt
t−1(i) of the bone is computed with

Bt−1(i) × Bt(i) and Bt−1(i) · Bt(i) (Equation 5). The
translation of the bone, on the other hand, is given by

tt−1
t (i) = Bt(i)−Bt−1(i). (11)

In this way, we obtain a 6 DOF transformation of one bone.
Note that we have the fixed-scale assumption (i.e., a bone is
assumed to be able to neither stretch nor shrink).

4.3.2 Deformation around joints

Given the skeleton pose in two successive frames, we can
estimate the transformation of each body part from one
frame to another using the bones’ motion. The whole hu-
man body model, however, is not well stitched because the
vertices near the border between two body parts are influ-
enced by the transformation associated with the two bones.
In order to keep consistent stitching of the different body
parts through any body motion, we need to interpolate the
motions between adjacent bones. Therefore, we use the
dual-quaternion blending [11] to represent the surface mo-
tion:

Dt
i(p) = wi(p) q

t
i + (1− wi(p)) q

t
p(i), (12)

where qt
i ∈ R

8 is the unit dual-quaternion of the i-th bone’s
motion T t

t−1(i)...T
3
2 (i)T

2
1 (i), and wi(p) is the radial-based

weight of point p. Note that p(i) is the parent of the i-th
bone.

4.3.3 Refinement

The bones’ motions alone are insufficient to track the twist
motion. Our goal here is to refine the bones’ motions to
track even such motions. Our refinement procedure takes
two point clouds as its input: one is the segmented input 3D
data and the other is our reconstructed surface composed
of multiple body parts. We then define an energy func-
tion to be minimized for each body part for the refinement.

We deform our surface and use the Iterative-Closest-Point
(ICP [2]) for this minimization. This is because ICP cor-
rects wrong estimates of translation caused by the noise in
the skeleton data. We optimize the deformation parameters
of all body parts turn by turn and run several iterations of
the full optimization. At each iteration, each body part and
its corresponding segment in the input 3D cloud of point
are centered around their own gravity-center. After the op-
timization, for each body part we obtain our complete bone
motion by combining the obtained rotation with the transla-
tion that is defined as the displacement between the gravity-
centers of the two (segmented) point clouds.

The energy function is defined by the distance between
the two point clouds and a regularization term to penalize
non-smooth motion in the spatio-temporal domain: with a
weight λ,

E = Edata + λEreg. (13)

Our data term is the cost of the point-to-plane registra-
tion error:

Edata =
∑
k

∥∥n̂�
k (uk − v̂k)

∥∥ , (14)

where v̂k = Wt
i (vk)vk is the prediction of point vk in a

body part i from the canonical space to the live frame at t,
n̂k is its corresponding normal vector, and uk is the clos-
est 3D point to v̂k. Given two point clouds, we use the
k-nearest neighbors algorithm (k-NN) [6] to find the corre-
spondences and to estimate the distance.

Since the body parts are connected, the neighboring body
parts should have similar motion. Also, the difference be-
tween the estimated rotation and initial one should be small
to avoid matching the mesh to another body part. Accord-
ingly, the regularization term is defined as follows:

Ereg =
∑
j

∥∥q̂j − qp(j)

∥∥
2
+ ‖q̂j − qj‖2 , (15)

where qj denotes the dual-quaternion of the initial rotation
of the bone j, and q̂j is its refined one. The translation part
of q̂j is replaced by the displacement vector between the
gravity-centers of the two (segmented) input point clouds
that correspond to the j-th body part.

Finally, we obtain the dense warp field and compute the
deformation of all points from the first frame to another with
tracking body motion an camera motion through transfor-
mation parameters for each body part. The dense warp field
for the body part i at frame t is given by

Wt
i (p) =

S
(
wi(p)q̂

t
i + (1− wi(p)) q̂

t
p(i) ◦ qinit(i)

)
Tloc→glo(i),

(16)

where qinit(i) is the unit dual-quaternion of the transforma-
tion Tinit(i), q̂

t
i is the dual-quaternion of the refined trans-

formation at frame t, and ◦ denotes the multiplication of
two dual-quaternions.
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4.4. Fusion
Using the depth image with the skeleton data, we de-

fine a canonical bounding-box with the per-frame volumet-
ric warp field for each body part. We non-rigidly integrate
live depth data into the volumes in the canonical coordi-
nate. The voxel ratio parameter decides the resolution of
the built 3D model, and trades the computational efficiency
against the mesh quality. For a body part i, we sample a
voxel x ∈ Si and store in the voxel, its TSDF value v(x)
and weight value ω(x):

Vi(x) = [v(x), ω(x)]. (17)

We used the standard TSDF and the running average
technique to fuse depth measurements into our canonical
volumetric model. The marching cube algorithm [12] is
used to identify the zero-level set surface in the triangu-
lated representation as the output from the TSDF volumetric
representation. We remark that our method uses a volume
for each body part locally to efficiently use the memory re-
source. In contrast, the existing methods set a large volume
to cover the whole human body or scene, and a lot of voxels
in the volume are useless in practice because they are empty.
We can expect that our method consumes significantly less
amount of memory.

5. Experimental Results
We demonstrate the effectiveness of our proposed

method on several dynamic scene scenarios. In our exper-
iments, we used the parameter values as follows: the vari-
ance in the radial-based weight wi = 0.02 for all i, the
weight in the energy function λ = 0.5, the number of iter-
ations in minimization is 15, and the voxel size is 0.3mm.
Note that all the 3D model results below are snapshotted
from MeshLab system [5].

We captured more than 10 sequences with different hu-
man motions using a Kinect V2. They include a variety of
challenging motion such as fast inter-frame motion or mo-
tion with topological change. On average, one sequence
persists around 2 seconds, producing 34 frames. In Fig-
ure 8, for example, the person raises her hand from bottom
to the upper position in about 1 second, which is considered
a fast motion (this cannot be handled by the state-of-the-art
methods [17] and [10]). We remark that we used [4] to ob-
tain the skeleton data by aligning the color images to the
depth data captured with Kinect SDK. This is because the
skeleton tracking by the Kinect is easily failed when fast
inter-frame motion or occluded regions arises.

Figure 6 shows some examples of reconstruction results
obtained with our proposed method. We see that our method
successfully reconstructed the human body in motion. Al-
though we observe some large deformation of the body
through all sequences, we observe neither any holes be-
tween different body parts, nor significant visual artifacts.
This is because our estimated warp field efficiently stitched

Figure 6. The reconstruction results obtained with SegmentedFu-

sion, demonstrating that our proposed method can handle a variety

of human motion.

Figure 7. Results obtained with our method in different motion

scenarios:a scenario with slow body and camera motion (1st row),

a scenario with large frame-to-frame motion (2nd row), and a sce-

nario with motion in topological change (3rd row).

all the body parts together in any body pose. Moreover, our
non-rigid motion tracking using initialization with skele-
ton motion followed by refinement with ICP allowed pre-
cise motion estimation. This enabled us to accurately fuse
depth measurements into the canonical models and recon-
struct detailed 3D models.

Figure 7 gives us a close look at reconstruction results
for specific motion scenarios, showing the effectiveness of
our proposed method. The first row shows the results in a
simpler case of slow body and camera motion. We see that
our method correctly tracks the deformation of the body
and succeeds in reconstructing a detailed and smooth 3D
model. The second row shows the case of fast body motion.
Thanks to segmenting the human body into multiple parts
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Figure 8. Comparison of the results obtained with our method and

with Co-fusion [17], VolumeDeform [10] for two cases with fast

motion. Co-Fusion fails in tracking the fast human motion and

builds an uncompleted 3D model, while VolumeDeform fails in

building a 3D model when motion with topological change ap-

pears. In contrast, our method successfully reconstructs a 3D

model in any motion.

attached to the skeleton bones, the reconstructed 3D model
efficiently adapts to fast body motion. The third row, on the
other hand, shows that our method properly handles topo-
logical changes in motion. This is because the topology of
the human body is identical with that of the skeleton, and,
thus, our 3D model can easily adapt to topological changes
by following the motion of the skeleton. The videos of these
reconstruction results are available at [1] for better visual-
ization.

We compared our method with Co-Fusion (the most
closest work) [17] and VolumeDeform [10], which is shown
in Figure 8. We used the publicly available code for results
by Co-Fusion while the results by VolumeDeform were ob-
tained by the author’s experiment on our data (the authors of
VolumeDeform kindly run their code on our data). Note that
since the dataset used in [10] is not publicly available, we
could not perform quantitative comparisons on the results in

Figure 9. A failure case example: some twist motions could not be

reconstructed by our method.

[10]. Overall, our method outperforms the other methods.
If we closely look at Figure 8, we see that though Co-Fusion
successfully segments different motions, it failed in recon-
structing the whole 3D model. We also see that VolumeDe-
form fails in reconstruction when motion brings topological
change (indeed, we observe topological change between the
right arm and the trunk in (a)). Our proposed method, in
contrast, always tracks the deformation of the human body
and successfully reconstructs a complete dense 3D model of
the body even when topological change appears. We note
that Co-Fusion needs several static images to build the back-
ground model while our method does not.

5.1. Limitations
Although our proposed method can handle fast motions

and topological changes, we observed through our experi-
ments the following limitations. (1) We cannot reconstruct
twist motions of the arms (Figure 9). This is because (a)
skeleton information is not accurate enough and (b) suffi-
cient salient geometric features are not available for the ICP
algorithm. Using visual features is a possible way to over-
come this problem, and we leave this task for future work.
(2) Our proposed method fails in the case where large oc-
clusions exist such as when crouching. This is because the
segmentation of the body easily fails due to occlusions. We
need a more robust method for human body segmentation.
(3) In the upper part of Figure 8 we observe some gaps ap-
pearing in the armpit. Even though we deform the bound-
ing boxes to minimize these gaps, the weights that blend
the transformation of parent and child bones produce some
collapse of the 3D model. Introducing weights for better
deformation blending is required.

6. Conclusion
This paper presented SegmentedFusion, a system that re-

constructs non-rigid human model by using a single depth
camera with skeleton data. Our system segments the hu-
man body into multiple nearly rigid parts and builds the
canonical bounding box for each part. Our system uses only
bone motions to estimate a volumetric 6D motion field of
each body part that warps the integrated model into the live
frame. Our experiments show that SegmentedFusion is able
to effectively handle fast motions and topological changes.
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