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Abstract—With the popularity of the hand devices and in-
telligent agents, many aimed to explore machine’s potential in
interacting with reality. Scene understanding, among the many
facets of reality interaction, has gained much attention for its
relevance in applications such as augmented reality (AR). Scene
understanding can be partitioned into several subtasks (i.e.,
layout estimation, scene classification, saliency prediction, etc).
In this paper, we propose a deep learning-based approach for
estimating the layout of a given indoor image in real-time.
Our method consists of a deep fully convolutional network,
a novel layout-degeneration augmentation method, and a new
training pipeline which integrate an adaptive edge penalty and
smoothness terms into the training process. Unlike previous
deep learning-based methods that depend on post-processing
refinement (e.g., proposal ranking and optimization), our method
motivates the generalization ability of the network and the
smoothness of estimated layout edges without deploying post-
processing techniques. Moreover, the proposed approach is time-
efficient since it only takes the model one forward pass to render
accurate layouts. We evaluate our method on LSUN Room Layout
and Hedau dataset and obtain estimation results comparable with
the state-of-the-art methods.

I. INTRODUCTION

Recent demands for reality interaction originated from
associated applications have brought researchers’ recognition
for scene understanding to new height. Through recognizing
scene structure with algorithms, we can easily interact with
the environment and provide crucial information for tasks
like intelligent home, augmented reality, and robot navigation.
Although the research on 3D scene understanding dates back
to 1960s’ simple Block World assumption [1], with the vision
of reconstructing the global indoor layout with local evidences,
it has become one of the most pivotal research area in the era
of artificial intelligent and deep learning.

In early computer vision methods, a variety of indoor
scene estimation methods have been proposed. Line segment
extraction, which was the basis for layout estimation, [1], [2]
was achieved through volume form like geons [3], edge feature
extraction [4], superpixels [5] and segments [6]. However,
these methods mostly failed in cases where room structures are
occluded by objects. Since it is very difficult to estimate the
layout with only local evidences, some researched on inferring
estimations through hyper volumetric reasoning [7], [8], [9].
Later on, with the rise of machine learning, structured learning
[10] has been developed for layout estimation, and its goal is

Fig. 1. Overview of the proposed planar semantic layout method and training
strategy. Previous methods shown in (a); our end-to-end approach in (b).

to model the environment structure by generating hypotheses
with incomplete low-level local features [7], [11], [8].

The said traditional structure inference methods heavily re-
lied on hand-craft feature extraction and were developed under
numerous assumptions. Like previous works, we develop our
method under the Manhattan world assumption [12], in which
we consider a room to be composed of orthogonal planes and
taking room layout as the cuboid structure. From a different
perspective, layout estimation can also be regarded as a region
segmentation problem on each surface of cuboid.

Recently, deep learning approaches have outperformed tra-
ditional methods in several computer vision tasks, including
semantic segmentation. Long et al. [13] proposed the first end-
to-end supervised FCN (fully convolutional network) model
for object semantic segmentation and reached state-of-the-art
performance. Some thus adopted the perspective of seeing lay-
out estimation as a task of critical line detection, for instance
the estimation of informative edges in [11] and coarse layout
prediction in [14]. Mallya et al.[11] was the first to apply
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Fig. 2. Full view of our end-to-end layout estimation pipeline of ResNet101-FCN network.

the segmentation network to the layout estimation task by
detecting informative edges. Dasgupta et al. [15], the winner
of LSUN Room Layout Challenge 2015, tackled the task with
a two-stage framework: 1) segment the planes and walls of
the input image with a deep neural network, 2) optimize the
output with vanishing point estimation. The promising result of
Dasqupta et, al inspired several subsequent works [16], [17] to
follow their two-stage pipeline, which consists of a FCN-like
network for semantic segmentation and a layout optimization
technique (e.g., layout hypotheses proposal-ranking pipeline
in [11], [15], [14], [16], and special optimization modules in
[17]) for post-processing.

This is not to deny the astonishing results achieved by the
aforementioned methods, however, the extra time consumption
of post-process techniques rendered these methods unsuitable
for applications where time efficient plays a crucial role. We
thus propose a single-stage pipeline as a solution to the time
consumption-based problem. The main contributions of this
paper are listed as follows,

• We propose a single-stage pipeline to train an end-to-end
neural network for indoor layout estimation.

• We propose a novel layout structure degeneration method
to augment data and compensate the imbalanced distri-
bution problem in the existing dataset.

• Our method can infer the spatial layout with only one
network and provide the state-of-the-art results in real-
time without any post-processing.

II. PROPOSED APPROACH

A. Overview
In this section we first provide detail description of the

network design and the tailored training criterion in which
edge/surface information are integrated in dense pixel-wise
prediction process. An additional training strategy (i.e., layout
structure degeneration), designed to alleviate the data imbal-
ance problem, will be covered in the second segment.

B. Planar Semantic Segmentation
Under the Manhattan world assumption [12], we can con-

sider each scene is composed of multiple planar segments

and hence there are limited types of layouts captured at
different viewpoints. We refer these layouts to planar semantic
representations as described in [15], and the planes are labeled
as frontal-wall, right-wall, left-wall, ceiling, and floor. We can
thus model the spatial layout estimation problem as surface
labeling or planar semantic segmentation.

Our model design is inspired by the recent works in
layout estimation with FCN. Ren et al.[14] use the similar
configuration of original FCN, VGG-16 as the base network,
to predict coarse layout and semantic surface; while[15] apply
dilated-convolutional version of FCN with CRF refinement,
and[17] resort to deeper network with dilated-convolutional
version of ResNet101 that pre-trained on large datasets for
semantic segmentation and then fine-tuned to transfer the
semantic features for layout estimation for much better results.

Thus, we choose the deeper network, the vanilla ResNet101,
as our feature extractor and adopt the layout representation
proposed in DeLay et al. [15] in which the layout estimation
can be regarded as a five-class planar semantic segmentation
problem. The full view of our network is shown in Fig-
ure 2. We replace the last average-pooling layer in original
ResNet101 with max-pooling and replace the fully-connected
layer with 1×1 convolutional layer, and append three follow-
ing transposed convolutional layers to upsample the feature
maps with skipped connection from previous layer. To make
the consistent in dimension of feature maps, the additional
convolutional layers are inserted before forward to upsample
module. Moreover, for the trunk in network, there are two extra
dropout and batch-norm layers before conv-classifier block to
prevent over-fitting on such specific task.

C. Layout Structure Degeneration

We mainly train and evaluate our approach on LSUN Room
Layout dataset. Although the performance of our model can
compete with several existing methods at 9.75% error rate
(the entry Ours w/o degeneration in Table I). The room type
distribution in the existing dataset (Figure 4, shown in green
bars and the third column of Table II) is very imbalanced,
and we observe from the results that the room types containing
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Fig. 3. The definitions of each room type and the degenerative relations graph
in LSUN Room Layout dataset.

fewer training images result in higher error rates, especially
for the room types composed of fewer surfaces (Table I). In
other words, it means the model cannot handle these rare cases
well, and the most common solution is to augment the original
dataset in training phase. However, general augmentation tech-
niques such as random cropping and random rotation are not
suitable for our case in which we want to reserve the semantic
meaning of surfaces, cropping may corrupt one side of the
scene and corrupt the semantic relationship among left-wall,
frontal-wall, right-wall. Thus, we propose the layout structure
degeneration to generate and compensate the imbalanced
distribution of different room types.

We observe that the room type with more surfaces, higher
degree of surfaces, can be degenerated into lower degree of
surfaces by appropriate transformations. Take the room type0
in LSUN Room Layout for example, it can be degenerated
into type1 by removing ceiling, into type2 by removing floor,
and into type5 by removing one of left or right wall (need re-
label to reserve the left-frontal-right semantic meanings). We
can accordingly build the relations among 11 room types in
LSUN Room Layout as a DAG (directed acyclic graph) shown
in the Figure 3, and all of the non-leaf nodes are degenerative
into lower degree of surfaces.

With depth-first searching, we can enumerate the degen-
erative paths and thus augment the image of specific room
type into other types to compensate the insufficient sample
of some types. Applying layout degeneration on those room
types containing fewer images, such as type2, type3, type7 and
type8, can make the distribution of each type much balanced.
In Figure 4, yellow bars mean the number of newly generated
data with only one step degeneration from degenerative nodes
and the red ones mean more aggressive degeneration with
more steps, and it means there will be more data for those
types constructed by lower degree of surfaces with more
degeneration steps.

Our proposed augmentation strategy can effectively improve
the performance and generalization ability of the model by
extending the scene variations of the existed dataset with
more complex transformation rather than cropping or rotation.
Furthermore, it can successfully reduce the error rate from
9.75% to 6.25% (the entry Ours in Table II), which can

Fig. 4. The distribution of all room types in LSUN Room Layout dataset
(green) and the distribution of single degeneration augmentation (orange),
only degenerating one step from each node in the relation graph, and the full
version of degeneration augmentation (red).

TABLE I
THE PERFORMANCE ANALYSIS ON EACH ROOM TYPE OF LSUN

VALIDATION SET AND ITS CORRESPONDING NUMBER OF TRAINING DATA.

Room Type Pixel Error (%) Training samples
type0 9.34 651
type1 17.95 166
type2 - 2
type3 16.47 27
type4 9.01 1002
type5 6.17 1808
type6 25.26 77
type7 - 5
type8 - 4
type9 24.85 212

type10 31.13 46

compete with the state-of-the-art methods, by just using twice
or fourth times extra augmented data samples (yellow bars
and red bars in Figure 4, respectively) in training. In contrast
to plainly applying random augmentation for tens of times
training data in previous methods, we can achieve better
performance with much fewer data in training.

D. Layout Criterion

Semantic segmentation task is a pixel-wise classification
problem, and the original objective function is the cross-
entropy loss Lseg on every pixel. From the results of planar
semantic segmentation, we find that it often suffers from
distortion or tears apart from the center of planes and also
”wavy curves” (rather than straight lines) mentioned in [15].
Figure 6 (a) depicts an example which is far away from
boxy projection onto 2D images. Hence, we introduce the
adaptive edge penalty and smoothness terms to alleviate these
artifacts. With these tailored criterion, we can enforce the
layout prediction results more smooth and much straight on
the edges, and thus get the better qualitative layout estimation.

Smoothness Term: It minimizes the pixel-wise L2 distance
Lsmooth between ground truth label and segmented layout to
enhance the consistency inside each planar plane and impose
smoothness constraint on the prediction.

Adaptive Edge Penalty: The distribution of edges is often
distorted and not straight enough as the cues of the layout.
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Fig. 5. Edge maps: the upper shows the generation of ground truth edge map,
and the lower illustrates the maps with the adaptive edge constraint.

Thus, we calculate the edge map of the predicted layout
and use the binary cross-entropy loss Ledge to minimize the
difference from the ground truth. Furthermore, the criterion
is adaptive by setting it loose at the beginning and tighter
as training iterations increase (Figure 5). With this adaptive
strategy, the results converge better than the fixed-width edge
constraint.

The overall loss function for training the deep neural
network model is given by

Loss = Lseg + λeLedge + λlLsmooth,

and
Lsmooth = ‖Mgt −Mpred‖2,

Ledge = BCE(Egt, 1− exp(
−‖grad(M∗

pred)‖
σ

)),

where M denotes the output heatmap of the network and E
denotes the edge map, the edge map for the predicted one
is generated by calculating the gradient on M∗ denoting the
final segmented layout prediction, and the lower annotations
gt and pred denote the ground truth and prediction output,
respectively.

The results in Figure 6 (b) shows the visual effect of
applying these two constraints. Although there is not much
improvement in quantitative measure (decreasing error rate
performance at about 1%), the overall visualization (see Fig-
ure 7) demonstrates the constraints can effectively smooth out
and suppress the noisy and artificial prediction in surface of
cluttered scene, as well as straighten the contours of layout
from distortion.

III. EXPERIMENTAL RESULTS

For the evaluation of planar semantic segmentation, we use
LSUN Room Layout Estimation dataset containing 4,000 im-
ages for training, 394 images for validation, and 1,000 images
for testing. During training, we apply random color jittering
such as slightly change the lightness and contrast of input
images to increase the diversity of scenes. Besides the layout
Degeneration augmentation, we further introduce a semantic

Fig. 6. Comparison of the layout estimation results for model training (a,
before) without and (b, after) with edge constraint and smoothness terms.

Fig. 7. Validation results under edge constraints and smoothness criterion
in LSUN Room Layout. (Left) input image, (Middle) ground truth label,
and (right) predicted layout. Note that the colors between ground truth and
prediction are the same, labeling range is 1 to 5 and 0 to 4 respectively.
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TABLE II
THE PERFORMANCE BENCHMARKING ON LSUN ROOM LAYOUT OFFICIAL

LEADERBOARD FOR DIFFERENT TECHNIQUES, MOSTLY WITH
POST-PROCESSING.

Method Pixel Error (%) Post-process

Hedau et al. (2009)[7] 24.23 (*)
Mallya et al. (2015)[11] 16.71 proposal-ranking regression
DeLay (2016)[15] 10.63 layout optimization
CFILE (2016)[14] 7.57 proposal-ranking
Zhang (2017) et al. [16] 6.58 proposal-ranking
ST-PIO (2017) [17] 5.29 physical-inspired opt.

Ours w/o degeneration 9.75 No
Ours with degeneration 6.25 No

random horizontal flipping by exchanging the semantic labels
in left and right side for more effective augmentation.

Since there are no public ground truth label for the testing
set, we evaluate our method on validation set with LSUN
Room Layout official toolkit like that in previous work [14].
First, we want to demonstrate the effects of our proposed
criterion terms. Under the supervision of edge penalty and
additional smooth term, the predictions become smoother and
alleviate the artifacts, as shown in Figure 6 (b). Figure 7
depicts some layout estimation results in the validation set
after adding the additional smoothness term and adaptive edge
constraint into the training criterion.

We further demonstrate the improved results both quan-
titatively and qualitatively for the model trained under the
proposed layout degeneration augmentation strategy. Figure 8
are the visual outputs under our full strategy, and they all have
very sharp but straight edges and strong consistencies in each
predicted surface. The accuracy of our approach is comparable
to the best-performing methods on the official learderboard of
LSUN Challenge and it achieves 6.25% pixel-wise error rate.

Besides the LSUN Room Layout dataset, we also evaluate
the generalization capability of our model by applying directly
on testing set of Hedau dataset without using its training
data to fine-tune. From the performance on accuracy and
visualization results, we can observe that our model can be
applied to different indoor datasets even without re-training.
Figure 9 depicts some examples of the high-quality layout
estimation results in Hedau testing dataset, and Table IV shows
that the accuracy of our model can almost achieve the state-
of-the-art result.

We implement our approach with PyTorch and perform
all the experiments on the machine with single NVIDIA
GeForce 1080 GPU and Intel i7-7700K 4.20GHz CPU. For the
analysis of time efficiency, the Table III shows the consuming
time for both network forwarding and post-processing time
of exited methods. Because we can’t find any released full
implementation of these papers, we list the official reported
record from their paper or the information from their released
demo video for the statistics of the post-processing column.
For the time consuming in network forwarding column, several
methods are implemented with Caffe and also release their

TABLE III
THE TIME EFFICIENCY OF EACH METHOD IN FORWARDING TIME AND

POST-PROCESSING TIME.

Method Forward (sec) Post-process (sec)

DeLay (2016)[15] 0.125 about 30
CFILE (2016)[14] 0.060 (not reported)
Zhang (2017) et al. [16] (not reported) about 179
ST-PIO (2017) [17] 0.067 about 10

Ours 0.023 0

TABLE IV
THE PERFORMANCE BENCHMARKING ON HEDAU TESTING SET.

Method Pixel Error (%)

Hedau et al. (2009)[7] 21.20
Mallya et al. (2015)[11] 12.83
Zhang (2017) et al. [16] 12.70
DeLay (2016)[15] 9.73
CFILE (2016)[14] 8.67
ST-PIO (2017) [17] 6.60

Ours 7.41

network configuration file, so we can measure with Caffe
official profiling tool and evaluate on our own machine in a
fair competition.

Consequently, we propose a single network for layout esti-
mation, and the model can give much impressive visual results
with the proposed structure criterion constraint. Besides, the
layout structure degeneration augmentation can effectively
alleviate the data imbalance problem and further improve
the layout estimation accuracy. Furthermore, our end-to-end
network method predicts the room layout directly without any
post-processing, hence it can efficiently predict the layout from
an image in real-time.

IV. CONCLUSION

We propose an end-to-end deep neural network model
that can estimate the room layout by enforcing the smooth
constraint on edge information as well as overall smoothness.
Also, we introduce a novel augmentation approach to further
improve the layout estimation accuracy and the generalization
capability of the model. Our real-time approach can reach the
state-of-the-art without using any post-processing, we can also
port the layout estimation model onto a mobile device that
captures temporal images from the real world. However, we
find that the temporal inconsistency of the layout estimation
results is an issue to be resolved since many real-world
applications require robust temporal layout estimation on a
video. Hence, our future work will focus on improving the
robustness of the layout estimation on a video.

ACKNOWLEDGMENTS

This research work was partly supported by Institute for
Information Industry, Taiwan, and Ministry of Science and
Technology, Taiwan, under the grant 107-2634-F-007 -003.

846

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on January 16,2023 at 07:52:45 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. The visualization results of layout estimation in LSUN Room Layout
validation set. The first and the third columns are ground truth images with
ground truth label masks; the second and the fourth columns are predicted
layouts shown in grayscale label.
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