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Abstract—Face frontalization is one way to overcome the
pose variation problem, which simplifies multi-view recognition
into one canonical-view recognition. This paper presents a
multi-task learning approach based on the generative ad-
versarial network (GAN) that learns the emotion-preserving
representations in the face frontalization framework. Taking
advantage of adversarial relationship between the generator
and the discriminator in GAN, the generator can frontalize
input non-frontal face images into frontal face images while
preserving the identity and expression characteristics; in the
meantime, it can employ the learnt emotion-preserving repre-
sentations to predict the expression class label from the input
face. The proposed network is optimized by combining both
synthesis and classification objective functions to make the
learnt representations generative and discriminative simultane-
ously. Experimental results demonstrate that the proposed face
frontalization system is very effective for expression recognition
with large head pose variations.

Keywords-face frontalization; facial expression recognition;
pose variation;

I. INTRODUCTION

Recently, due to the emergence of deep learning, signifi-

cant progress has been made in face-related tasks. Mollahos-

sein et al. [12] proposed a deep neural network architecture

inspired by GoogLeNet [19] and AlexNet [8] for developing

a facial expression recognition system, which outperforms

traditional methods based on handcrafted features. Jung et
al. [7] joint fine-tuned two small deep network models, tem-

poral appearance network and temporal geometry network,

to obtain more discriminative features and achieved higher

performance on two public facial expression recognition

databases, i.e., CK+ database [10], Oulu-CASIA database

[25]. However, most of the facial expression recognition

methods focus on analysis of expressions from frontal faces.

Even applying deep learning technologies has made sig-

nificant improvements, pose variation is still a challenging

problem for many realistic face-related applications.

To deal with the problem of head pose variations, increas-

ing massive face images with arbitrary views for training is a

common and easy way to learn pose-robust representations.

However, collecting and labeling a large number of face

images is quite a huge work, and the improvement of recog-

nition is limited. Another intuitive approach is to simplify

the problem of face-related recognition under large pose

Figure 1. The flow chart of the proposed method for multi-task learning.
Given a non-frontal face image, the proposed model would predict its
expression and synthesize its frontal view at the same time.

variations by reducing it to the canonical view recognition,

i.e., automatic synthesis of the corresponding frontal face

image from a non-frontal face image.

Frontalization is to synthesize a frontal face image from a

non-frontal face image. By using deep learning algorithms,

Zhu et al. [28] first developed a simple neural network

to learn identity-preserving pose-invariant features from a

frontalization process, and they obtained great improvement

for non-frontal face recognition. After that, some other face

recognition researches [21], [20], [5] also presented more

complicated deep models, e.g., convolutional neural network

(CNN), generative adversarial network [2], and obtained

better synthesis results and better handled large pose vari-

ations. However, the existing frontalization approaches can

only preserve face identity with neural expression, but they

cannot preserve facial expressions after the frontalization.

Therefore, we aim to develop a face frontalization system

that can preserve the facial expression in this paper.

This paper presents a multi-task learning via generative

adversarial networks for multi-view facial expression recog-

nition. As the example shown in Fig.1, given a profile

face image at an arbitrary head pose and with an arbitrary

expression, the proposed model would generate two kinds

of outputs: the expression class label and synthesized frontal

face image. We design different kinds of objective functions

for learning the emotion-preserving representations during

the frontalization process, which can not only facilitate the

synthesized frontal face image maintaining more expression

characteristics, but also obtain more discriminative pose-

invariant features for the expression recognition under large

poses.
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II. RELATED WORKS

A. Facial Expression Recognition

For deep learning based approaches, the facial expression

recognition systems have been developed very well for

frontal face expressions. Mollahossein et al. [12] exploited

deep neural network architecture to simplify traditional

hand-crafted feature extraction and feature selection meth-

ods, but these methods still outperformed the traditional

handcraft-based methods. In addition, Jung et al. [7] devel-

oped jointly fine-tuned small deep network models, temporal

appearance model and temporal geometric model, which

provide better recognition results than the single deeper net-

work model. However, the existing methods still suffer from

the accuracy degradation under large head pose variations.

To overcome the head pose variation problem, facial

expression recognition methods can be grouped into two

categories: 3D-based and 2D-based approaches. 3D-based

methods typically exploit 3D features or map the 3D data

onto a representation [18]. Since 3D face data is information-

rich by nature, 3D-based methods make them more robust

to pose variation. However, 2D-based studies are used more

often in practice, because 2D data can be easily obtained

and processed with different ways. For 2D-based methods,

the researchers usually focused on developing discrimina-

tive pose-invariant features or handling facial expression

recognition separately on different face views. Zhang et al.
[24] proposed a deep neural network (DNN) model to learn

the relationship between extracted low-level SIFT features

and high-level information. Jampour et al. [6] introduced

a mapping algorithm that maps the features extracted from

non-frontal view to an approximately frontal view feature

space according to the head pose estimation.

B. Face Frontalization

Face frontalization means automatically synthesizing a

frontal face image from a face image at an arbitrary head

pose. There are two ways to accomplish face frontalization:

3D transformation solutions and 2D deep learning-based

solutions.

In 3D transformation solutions, Hassner et al. [4] aligned

2D non-frontal face to 3D reference model points by utiliz-

ing facial landmarks, and then computed projection matrix

to transform the non-frontal face into frontal view. Zhu et al.
[27] not only used facial landmark to align with 3D points,

but also meshed 2D face into 3D object and normalized

facial expression during the frontalization process.

In contrast, 2D deep learning-based solutions do not

need to design algorithms in each step manually; they just

designed a deep network architecture to learn the whole

process of frontalization directly. The first approach [28]

presented the possibility of utilizing deep models to learn

identity-preserving representation during the frontalization.

Yim et al. [21] went on to develop a novel network that

can not only generate frontal face views, but also generate

arbitrary face views of the desired poses. At the same time,

they designed a new multi-task learning strategy that can

recover the generated face back to original face views, in

order to improve the identity preserving ability.

Furthermore, [20], [5] showed that the frontalization re-

sults can be greatly improved when generative adversarial

networks (GAN) [2] replaced the simple deep neural net-

works, and the adversarial loss replaced the simple L2 loss.

Especially the TP-GAN network proposed by Huang et al.
[5] can even deal with 90-degree large pose frontalization.

However, no deep learning-based approaches have put their

interests on preserving facial expression characteristics dur-

ing the frontalization, since they only focused on improving

the performance in face recognition.

III. PROPOSED METHOD

This paper proposes a novel facial expression represen-

tation learning method based on GAN network, which can

not only recognize expressions but also synthesize the cor-

responding frontal face images at the same time. We aim to

synthesize the frontal face images from profile face images

and learn the emotion-preserving representation under the

face frontalization process. Our goal is to train a multi-task

learning network that can generate the emotion-preserving

frontal views to achieve canonical-view facial expression

recognition, and simultaneously recognize expressions in

our network model. Therefore, the proposed GANmodel as

depicted in Figure 2 is not only for improving the face

synthesis quality, but also for better representation learning

on both the generator and the discriminator due to the

adversarial loss in GAN.

Figure 2. The proposed GAN model

A. Network Architecture

Given a pair of corresponding face images {IP, IF}, with

expression class label y, where IP is a profile face with

arbitrary head poses, and IF is the corresponding frontal face

image with its identity and expression the same as those of

the profile image IP. The proposed GAN model contains an
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encoder-decoder structure generator G and a discriminator

D.

Inspired by the existing GAN-based face frontalization

approaches [20], [5] for face recognition fields, our generator

G is designed with an encoder-decoder structure model,

consisting of encoder Genc and decoder Gdec, where Genc
was taken to learn the emotion-preserving representation

from IP, and Gdec was taken to recover the frontal view

of IP as similar as IF from the extracted features. Moreover,

the bottleneck of Genc, the extracted emotion-preserving

features, can be used to recognize expressions directly.

Therefore, we apply an additional fully-connection layer at

the end of the bottleneck layer in Genc to enforce G be

trained for multi-task learning.

For the discriminator D, its main goal is to distinguish the

real images IF from the fake generated images G(IP). The

minimax two-player game lets the generated frontal faces

G(IP) move towards the same distribution as real images IF ,

and makes it really difficult to separate the generated images

from the real images. Furthermore, D as a discriminator,

of course it also can be trained to recognize expression

at the same time. Not only the generative model benefits

from the adversarial relationship between G and D, but also

the representation learning ability, so the design of multi-

task learning for D can make G learn more discriminative

emotion-preserving representations and improve the perfor-

mance for facial expression recognition.

The detailed structures of D and Genc are provided in

Table I. Take Conv1 layer for example, Conv1 is a convolu-

tional layer with filter size 33, stride-1, and its outputs are 32

128128 feature maps, and so on. In addition, FC means fully

connected layer. In D and Genc, we replace common pooling

layers with 2-strided convolutions. Particularly, there are two

branch layers on top of the Conv5 layer. Branch Conv6

is for facial expression recognition, and branch Conv9 is

for distinguishing fake generated images from real images.

Therefore, both D and Genc consist of branch Conv6 for

expression recognition, but only D includes branch Conv9

to judge real/fake. Specifically, Conv8 layer represents the

to-be-learned emotion-preserving features from Genc.

In the proposed GAN model, we use a random vector

to represent some other face variations, except expressions,

for the face synthesis. However, in our experiments without

adding the noise vector, the expression recognition result is

very similar to that with adding the noise vector.

B. Objective Function

This paper adopts different loss functions to optimize the

proposed model, the optimization losses can be grouped into

two categories: synthesis loss and classification loss. The

following sections will describe each individual loss function

included in the total loss function in detail.

1) Adversarial Loss: The basic network structure of GAN

[2] contains a generator G and a discriminator D that com-

Table I
NETWORK ARCHITECTURE FOR D AND Genc .

Layer Filter Size Output Size

Conv1 3×3/1 128×128×32

Conv21 3×3/2 64×64×64

Conv22 3×3/1 64×64×64

Conv23 3×3/1 64×64×64

Conv31 3×3/2 32×32×128

Conv32 3×3/1 32×32×128

Conv33 3×3/1 32×32×128

Conv41 3×3/2 16×16×256

Conv42 3×3/1 16×16×256

Conv43 3×3/1 16×16×256

Conv5 3×3/2 8×8×512

Conv6 3×3/2 4×4×512

Conv7 3×3/2 2×2×512

Conv8 3×3/2 1×1×256

FC1 − class number

for D and Genc

Conv9 3×3/4 2×2×256

for D only

FC2 − 1(real/fake)

for D only

pete with two-player minimax game. D tries to distinguish

the real frontal face images IF from fake generated frontal

faces G(IP), and G tries to generate realistic-like frontal

faces to fool D. The corresponding adversarial losses are

listed below, D is trained to maximize Lad D, and G is trained

to minimize Lad G:

Lad D = E[log(D(IF))]+E[1− log(D(G(IP)))]

Lad G =−E[log(D(G(IP)))]
(1)

As the minimax game formulation introduced in [2], orig-

inally G was optimized by minimizing (1− log?D(G(IP))).
However, since D converges early in learning that G cannot

obtain sufficient gradients to learn well. So it is better

for G to alternatively maximize log?D(G(IP)) (same as

minimizing − logD(G(IP)) ) in practice. Adversarial loss

makes the synthesis images look like the real frontal face

images. It can prevent blurred effects and synthesize high-

fidelity images.

2) Pixel-wise Loss: To speed up the convergence of G
and facilitate the image content consistency, we adopt pixel-

wise L1 loss between the synthesized frontal faces G(IP) and

ground truth frontal faces IF , given by:

Lpixel =
1

W ×H

W

∑
x=1

H

∑
y=1

|G(IP
x,y)− IF

x,y| (2)

where W,H represent the width and height of the image,

and x,y means the position in the image space.

Instead of using L2 loss but L1 loss is because L1 loss

is more robust, and L2 loss is too sensitive to the training

samples and easily influenced by ”outlier”. Although pixel-

wise loss would cause blurred effects, it is still an important
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part for accelerating the optimization speeds and improving

synthesis performance.
3) Symmetry Loss: Due to the self-occlusion on profile

faces, it is quite hard to recover the occluded facial parts

back to frontal face views. Generally, human faces have

symmetrical characteristics that the left and right sides

of face are bilateral symmetry. Therefore, we exploit the

symmetry traits of human face as a prior to solve the self-

occlusion problem slightly on large pose cases and thus may

improve the frontal face synthesis results. The equation of

symmetry loss is given as follows:

Lsym =
1

(W/2)×H

W/2

∑
x=1

H

∑
y=1

|G(IP
x,y)−G(IP

W−(x−1),y)| (3)

However, human faces, especially with expressions, are not

symmetric all the time, so we adjust the weighting for

symmetry loss to reduce the symmetry constraint for face

image synthesis.
4) Feature Loss: In the Improved-GAN [17], they in-

troduced many kinds of improved techniques for training

the GAN model; the feature loss L f eat actually is one of

the improved techniques called feature matching. Feature

matching facilitates the generator to generate the images

that match the probability distribution of real frontal face

images, which is a way to prevent the generator G from

overtraining on the current discriminator. The feature loss

function is given by

L f eat =
1

N

N

∑
i=1

|F(IP
i )−F(IF

i )| (4)

where F represents the features for matching, and N is the

total number of the features.
Originally, improved-GAN trained the generator by L f eat

on an intermediate layer of the discriminator, whereas we

optimize L f eat on emotion-preserving feature vector in Genc.

We compute the feature loss by L1 loss between the features

of profile images IP and the features of truth frontal images

IF , in order to obtain more discriminative features, in

addition to match the probability distribution of real frontal

face images.
5) Classification Loss: Besides the synthesis optimization

functions, we adopt the classification loss to optimize the

performance of facial expression recognition on both G and

D. According to auxiliary classifier GAN (AC-GAN) [14],

every training sample has a class label y, and the discrim-

inator D estimates both the real frontal face probability

distribution and the class label probability distribution. In

other words, D is optimized by the log-likelihood of the

real images Lad D (Section III-B1) and the log-likelihood of

the correct class Lclass (Equation 5). Lclass includes the log-

likelihood of correct class on both real frontal faces D(IF)
and synthesis frontal faces D(G(IP)).

Lclass = E[log(D(IF) = y]+E[log(D(G(IP)) = y)] (5)

Lclass enc = E[log(Genc(IP) = y)] (6)

For the same situation, G is also trained to optimize

Lclass to match real frontal faces probability distribution

and at once learn more discriminative emotion-preserving

representation. Moreover, the proposed G is trained with

an additional classification loss Lclass enc (Equation 6) to

minimize the log-likelihood of the correct class from the

emotion-preserving features in Genc directly, which can

make G be able to deal with multi-task learning.

6) Overall Objection Function: To sum up, the overall

objective function for D is denoted by LθD , and the overall

objective function for G is denoted by LθG , and they are

given as follows:

LθD = μ1Lad D +μ2Lclass, (7)

LθG = Lsynthesis +Lclassi f ication, (8)

Lsynthesis = λ1Lad G +λ2Lpixel +λ3Lsym +λ4L f eat , (9)

Lclassi f ication = λ5Lclass enc +λ6Lclass, (10)

where μ‘s and λ ‘s are parameters for adjusting the weights

for individual loss functions.

The synthesis loss in LθG includes adversarial loss, pixel-

wise loss, symmetry loss, and feature loss. The classification

loss in LθG consists of Lclass enc and Lclass.

IV. EXPERIMENTAL EVALUATION

The proposed method aims at both representation learning

and frontal face synthesis. We quantitatively demonstrate the

representation learning capability of our method for multi-

view facial expression recognition in Sec IV-B, and illustrate

the qualitative frontal face synthesis results in Sec IV-C.

A. Experimental Setting

1) Implementation Details: In pre-processing, we apply

MTCNN [23] to detect human face. According to the

predicted bounding box and five facial landmark points, we

crop the detected face and resize it into a 128×128 grayscale

image, with a setting that the nose would be the center in

x-axis coordinates (left-right). Our network is implemented

on Tensorflow [1]. We use Adam optimizer with learning

rate of 10−4 and momentum of 0.5. We empirically set the

weighting parameters μ1 = 0.5, μ2 = 0.5, λ1 = 10−3, λ2 = 1,

λ3 = 0.3, λ4 = 0.03, λ5 = 0.1, λ6 = 0.05 for all experiments.

Batch size is set to 78 in Multi-PIE database, 60 in BU-3DFE

database.
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Table II
COMPARISON WITH EXISTING METHODS IN MULTI-PIE DATABASE.

Methods Feature Subjects Pose Expression number Accuracy
Moore [13] LBPms 100, 10-fold 7 6 73.98%
Moore [13] LGBP 100, 10-fold 7 6 80.17%

GSRRR [26] LBPu2 100, 5-fold 7 6 81.7%
2D JFDNN [7] Image+landmarks(DNN) 100, 5-fold 7 6 82.9%

Zhang [24] SIFT(DNN) 100, 5-fold 7 6 82.0%
KPSNM [6] HoG+LBP 145, X 13 6 82.55%
KPSNM [6] HoG+LBP 145, X 7 6 83.09%

Ours Genc(IP) Image(GAN) 100, 5-fold 13 6 86.74%

Ours D(Genc(IP)) Image(GAN) 100, 5-fold 13 6 87.08%

Table III
OVERALL ACCURACIES WITH RESPECT TO DIFFERENT VIEWPOINTS IN

MULTI-PIE DATABASE.

Acc. (%) 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg.

D(G(IP)) 90 91.17 89.42 89.92 89 85.83 75.75 87.09
Genc(IP) 90 89.75 90.08 88.67 87.5 85.33 77.58 86.76

2) Databases: The Multi-PIE database [3] contains more

than 750000 images of 337 subjects with four recording

sessions, in which 235 are male, 107 are female. Subjects

were recorded with 15 cameras at different viewpoints and

19 different illumination conditions. In addition, subjects

were asked to perform different expressions in each session.

For each recording session, the participants and recorded

expressions are a bit different. In total, there are six kinds

of expressions recorded, which consist of neutral, smile,

squint, surprise, disgust, and scream. Although there are

337 subjects in the Multi-PIE database, only 100 subjects

presented in all four recording sessions are selected, in

order to balance the training data class labels. 13 face views

are chosen in the experiments, i.e., 0◦, ±15◦, ±30◦, ±45◦,
±60◦, ±75◦, ±90◦ face views are considered.

The BU-3DFE database [22] contains 100 subjects (56%

female, 44% male) with a variety of ethnics, ages. Every

subject was recorded with six standard facial expressions,

i.e., anger (AN), disgust (DI), fear (FE), happiness (HA),

sadness (SA), and surprise (SU), of four levels of intensities.

Therefore, there are 24 instant 3D expression models for

each subject. To study on the multi-view facial expression

recognition fields, we render these 3D expression models

and adjust viewpoints to project them into 2D face images

with specified head poses, i.e., with 0◦, ±30◦, ±45◦, ±60◦,
±90◦ yaw angles.

B. Representation Learning

1) Results on Multi-PIE Database: We compare our

method with the state-of-the-art methods for multi-view

facial expression recognition in Multi-PIE database. We use

5-fold cross validation for the experiments, i.e., we randomly

Table IV
CORRESPONDING ACCURACIES ON DIFFERENT EXPRESSIONS AT

DIFFERENT HEAD POSE ANGLES IN MULTI-PIE DATABASE.

Acc. (%) 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg.

Neutral 92 93 92.5 89.5 90.5 88 70.5 87.69

Smile 95 98.5 99 98 95.5 94.5 83.5 94.85

Squint 80 78.5 78 77.5 74.5 80 74.5 77.38

Surprise 98 96 96.5 97 96.5 90 81.5 93.31

Disgust 78 76 78 74.5 73 67.5 69.5 73.46

Scream 97 96.5 96.5 95.5 95 92 86 93.85

Overall 90 89.75 90.08 88.67 87.5 85.33 77.58 86.76

divide 100 subjects into 80 subjects for training and 20

subjects for testing, and there are no overlap between the

training subjects and the testing subjects.

Table II shows the comparison between our work and

some previous methods. Among these methods, [7], [24]

are deep learning based approaches and the others are

traditional methods using hand-crafted features. Instead of

taking 7 poses (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ yaw angles)

which were used in most of the previous works, we use

13 poses (0◦, ±15◦, ±30◦, ±45◦, ±60◦, ±75◦, ±90◦ yaw

angles) to conduct the experiment, which lead to worse

performance according to the results of [6]. However, our

method outperforms the state-of-the-art methods in this

experiment. Genc(IP) represents the performance of expres-

sion recognition based on the encoder Genc, and D(G(IP))
represents the result that D uses the synthesis image G(IP) to

recognize expressions. As the result, our generated frontal

face images have preserved the expression characteristics

that are effective for the recognition task.

Table III shows the overall accuracies of both Genc(IP) and

D(G(IP)) under different head poses, and Table IV presents

the corresponding accuracies on every expression under

different head poses predicted by Genc. Consequently, the

performance of D(G(IP)) is very similar to Genc(IP). From

Table IV, most of the expressions are easier to recognize

under smaller pose angles.
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Table V
COMPARISON OF DIFFERENT EXPRESSION RECOGNITION METHODS ON BU-3DFE DATABASE.

Methods Feature Subjects Pose Expression number Accuracy
Moore [13] LBPms 100, 10-fold 5 6(4 levels) 65.0%
Moore [13] LGBP 100, 10-fold 5 6(4 levels) 68.0%

GSRRR [26] LBPu2 100, 5-fold 5 6(4 levels) 66.0%
2D JFDNN [7] Image+landmarks(DNN) 100, 5-fold 5 6(4 levels) 72.5%

Zhang [24] SIFT(DNN) 100, 5-fold 5 6(4 levels) 80.1%

Ours Genc(IP) Image(GAN) 100, 5-fold 5 6(4 levels) 73.13%

2) Ablation Study: To demonstrate the contribution of

the loss function proposed in this paper to the final expres-

sion recognition accuracy, we perform an ablation study to

evaluate the model accuracies by incrementally adding the

loss terms. Here, we denote the adversarial loss, pixel-wise

loss, symmetry loss, feature loss, and classification loss by

Lad , Lpixel , Lsym, L f eat , and Lclassi f ication, respectively. The

detailed definitions of these loss terms are defined in the

previous section. The expression classification accuracies

by using the proposed deep network model trained with

different combinations of the loss terms under the same

experimental setting for MULTI-PIE dataset are listed in

Table VI. It is clear to see the incremental improvement

of recognition accuracies by adding the loss terms.

Table VI
RECOGNITION ACCURACIES FOR THE PROPOSED MODEL TRAINED WITH

DIFFERENT COMBINATIONS OF LOSS TERMS FOR THE EXPERIMENTS ON

MULTI-PIE DATABASE.

Loss terms D(G(IP)) Genc(IP)

Lpixel 81.71 N/A

Lpixel +Lad 81.18 N/A

Lpixel +Lad +Lsym 82.21 N/A

Lpixel +Lad +Lsym +Lf eat 82.66 N/A

Lpixel +Lad +Lsym +Lf eat +Lclassi f ication 87.09 86.76

3) Results on BU-3DFE Database: Similar to the setting

in Multi-PIE database, we apply 5-fold cross validation,

and take the 5 head poses (0◦, 30◦, 45◦, 60◦, 90◦) for the

experiment in BU-3DFE database. We also use the images

with four levels of expression intensities to conduct the

experiment. It is challenging for the generator to preserve

much detail of face characteristics (e.g. identity, expression)

and learn discriminative features for expression recognition.
Table V shows the comparison with other previous meth-

ods on BU-3DFE database. Our method outperforms most

of the previous works except [24], which is one of the

deep learning based approach that utilized SIFT features

as their designed deep neural network (DNN) inputs to

learn higher-level representations. This is probably because

the proposed method did not explicitly use detailed local

expression representation, thus making the proposed model

unable to achieve the best expression recognition accuracy

for the BU-3DFE database. However, the proposed model

still can compete with another deep learning based approach

[7] that utilized image feature and landmarks to jointly train

a DNN discriminator.

Table VII
OVERALL ACCURACIES WITH RESPECT TO DIFFERENT VIEWPOINTS IN

BU-3DFE DATABASE.

Acc. (%) 0◦ 30◦ 45◦ 60◦ 90◦ Avg.

Genc(IP) 74.25 74.00 73.38 73.29 70.75 73.13

In Comparison with the results on the Multi-PIE database,

the expressions in BU-3DFE are more difficult to recognize,

even by humans. For example, the difference between Fear,

Sadness, and Anger are very subtle and these expressions are

easily confused with each other. For the experiments on both

BU-3DFE database and Multi-PIE database, the competitive

recognition performance by using D(G(IP)) indicates that

the synthesized frontal face images by using our proposed

network are effective for the expression recognition task.

C. Face Synthesis

1) Synthesis Results on Databases: Table VIII and Table

IX show the frontal face synthesis results on Multi-PIE

database and BU-3DFE database (more synthesis results

are shown in Supplement). Consequently, the learnt rep-

resentations facilitate the synthesized frontal face images

to preserve a certain expression, identity characteristics.

In addition, the advantage of GAN makes the synthesized

faces similar to the corresponding real frontal face IF and

achieves high-quality image synthesis results, even in the

cases with large head poses. Specifically, the details of

facial characteristics like wrinkles and beards are difficult for

our model to reconstruct perfectly, but the learnt emotion-

preserving representations make the generator reconstruct

the corresponding frontal faces with expressions.

2) Comparison of Frontalization Results: To further

demonstrate the image synthesis ability of our work, we

conduct an experiment to compare the synthesis results

with other existing face frontalization methods. For the

consideration that some methods can only handle the pose

smaller than 45 angle, we present the frontalization results

that are under small head poses (Table X). In fact, our

work can synthesize realistic-looking frontal faces under

very large poses.
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Table VIII
SYNTHESIS RESULTS ON MULTI-PIE DATABASE: ROW (A) SHOWS THE

INPUT PROFILE IMAGES IP , AND ROW (B) SHOWS THE SYNTHESIS

RESULTS G(IP) FOR DIFFERENT EXPRESSIONS. THE INPUT IMAGES

UNDER 0◦ ANGLE CAN BE CONSIDERED AS THE REAL FRONTAL FACE

IMAGES IF . EACH COLUMN REPRESENTS THE CORRESPONDING

VIEWPOINTS: 0◦,15◦,30◦,45◦,60◦,75◦,90◦ YAW ANGLES.

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Neutral
(a)

(b)

Disgust
(a)

(b)

Table IX
SYNTHESIS RESULTS ON 3D-BUFE DATABASE: ROW (A) SHOWS THE

INPUT PROFILE IMAGES IP , AND ROW (B) SHOWS THE SYNTHESIS

RESULTS G(IP) FOR DIFFERENT EXPRESSIONS. THE INPUT IMAGES

UNDER 0◦ ANGLE CAN BE CONSIDERED AS THE REAL FRONTAL FACE

IMAGES IF . EACH COLUMN REPRESENTS THE CORRESPONDING

VIEWPOINTS: 0◦,30◦,45◦,60◦,90◦ .

0◦ 90◦ 60◦ 45◦ 30◦

Fear
(a)

(b)

Sad
(a)

(b)

From Table X, [4], [27] are 3D-based frontalization so-

lutions that their results would depend on the precision of

the facial landmarks detector. [4] did not handle well to fill

in the invisible region caused by self-occlusion. Thus, their

results may generate ghosting shadows that may influences

the performance of expression recognition. The results from

[27] are seriously distorted that the facial characteristics,

including expression and identity characteristics, are quite

different from the ground truth frontal faces. In Table X, the

L2 distance between the synthesized image and the target

image is also shown under each synthesized image. It is

clear from the table that the proposed model can provide

visually appealing face frontalization results, though the L2

distance to the ground-truth image is not the smallest among

all methods under comparison.

Table X
THE FIRST ROW GIVES AN EXAMPLE OF A SMILING FACE UNDER 45◦

HEAD POSE, AND THE SECOND ROW DEPICTS AN EXAMPLE OF A

SCREAMING FACE UNDER 30◦ HEAD POSE. THE FIRST COLUMN IS THE

INPUT IMAGE IP , THE LAST COLUMN IS THE GROUND TRUTH FRONTAL

IMAGE IF , AND THE MIDDLE COLUMNS ARE THE FACE FRONTALIZATION

RESULTS BY USING DIFFERENT FACE FRONTALIZATION APPROACHES.
THE L2 DISTANCE BETWEEN THE SYNTHESIZED IMAGE AND THE

TARGET IMAGE IS GIVEN UNDER EACH SYNTHESIZED IMAGE.

Profile IP Ours [28] [4] [27] Frontal IF

711.39 827.21 631.56 920.01 0

594.94 802.04 552.98 886.09 0

V. CONCLUSION

In conclusion, this paper proposed a multi-task GAN-

based network model that learns emotion-preserving repre-

sentation during face frontalization process. The discrimi-

nator is trained to distinguish real/fake and recognize class

labels. The encoder in the generator learns representative

features not only for recognition, but also makes the decoder

capable of reconstructing emotion-preserving and realistic-

looking frontal faces. By combining several different loss

functions, the learnt representations are discriminative for

facial expression recognition under large head pose varia-

tions, and the synthesized frontal face images maintain the

expression characteristics that are effective for recognition

task. Experimental results demonstrate that the proposed

method outperforms the state-of-the-art facial expression

recognition methods on Multi-PIE database.
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