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Abstract

Recent image completion researches using deep neural networks approaches have
shown remarkable progress by using generative adversarial networks (GANs). However,
these approaches still have the problems of large model sizes and lack of generality for
various types of corruptions. In addition, the conditional GANs often suffer from the
mode collapse and unstable training problems. In this paper, we overcome these short-
comings in the previous models by proposing a lightweight model of conditional GANs
with integrating a stable way in adversarial training. Moreover, we present a new train-
ing strategy to trigger the model to learn how to complete different types of corruptions
or missing regions in images. Experimental results demonstrate qualitatively and quan-
titatively that the proposed model provides significant improvement over a number of
representative image completion methods on public datasets. In addition, we show that
our model requires much less model parameters to achieve superior results for different
types of unseen corruption masks.

1 Introduction
Image inpainting and completion are classical problems in computer vision and graphics.
The objective is to fill semantic and reasonable contents to the corruptions (missing regions)
in an image. Humans can fill the missing regions by the empirical knowledge to the diverse
object structures from the real world. Nevertheless, it is not easy for machines to learn a
wide variety of structures in natural images and predict what to fill in unknown missing-data
regions in images. Thus, it is crucial to know how to learn an image transformation from a
corrupted image with missing data to a completed image.

In the past, vision-based methods [5, 9, 12, 13, 16, 17, 29, 32] mainly focus on utilizing
existing patterns and structure information from non-corrupted regions to fill in the corrupted
part in a copy-paste manner or optimizing a specific cost function. Such approaches perform
well for the cases where surrounding contexts share similar patterns and colors. Nonetheless,
previous approaches are quite limited to complete various kinds of corrupted images since
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image contents are quite complicated and usually come with distinct structures. Retrieving
image contents for filling the missing regions from the remaining completed images or mil-
lions of images [11] cannot not serve as a general or semantically meaningful solution in
most cases. Recently, researchers try to apply deep learning methodologies to reconstruct an
semantic image by learning image statistics for the image completion problem.

Recent deep network researches have brought great improvements on various computer
vision problems. Moreover, generative adversarial training technique[10] can produce stun-
ning results on image generation[27], and other tasks that condition on images, such as
super-resolutions[18], style transfers/texture synthesis[19], image completion[20, 26, 33],
and other image translation problems[14]. The advantage is that these conditional GANs
models can learn the latent representations of images, and can reconstruct the desired im-
ages in a min-max optimization of generator and discriminator. Nevertheless, these type of
deep-network based models often suffer from requiring large training parameters, and un-
stable condition caused by adversarial training. Recently, there are several newly designed
adversarial training strategies[4, 6, 23] that can improve such issues on image generation
tasks, but how to combine with conditional GANs still remains undiscovered. In the image
completion problems, most deep-network based methods[26, 33] can only be applied to im-
age completion with a specific corrupted mask, and the model needs to be retrained for a
different type of corruptions.

To address the aforementioned issue, we aim to transform corrupted images with differ-
ent types of missing regions to completed images that look as natural as possible (as in Figure
1). We propose a new training strategy and a lightweight conditional generative adversarial
model that can effectively resume various corrupted images to flawless and realistic images.
In the experiments, we demonstrate that the proposed model provides the best performance
among vision-based and deep-network based methods on multiple datasets. Furthermore, the
proposed method can be applied to real-world images (high resolution) with unseen missing
regions. After cautious validations, we summarize our contributions as:

• We build a lightweight conditional GANs that first adapt more stable adversarial learn-
ing from LSGAN[23]. Our experiments show the proposed model requires less train-
ing parameters and outperform other deep models on wide range datasets.

• We propose a new training strategy that generates four representative types of corrup-
tions to enhance learning generalization that can complete various types of corrupted
images. Different from other methods, the proposed method can deal with corrupted
masks that are different in terms of shapes or locations in the images.

2 Proposed Model

In this section, we will present how the proposed model accomplishes image completion
tasks. Figure 2 gives an overview of our model. First, we show the details of our network
architecture composed of an autoencoder G (containing two parts: semantic feature extractor
and a simple generator), and a discriminator D. Then, we introduce an objective function
minimizing unrealistic content error, and training strategies that are applied to solve various
types of corruptions in image completion problems. In the testing phase, the semantic feature
extractor and simple generator (combined as G) are only needed to recover corrupted images.
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Figure 1: A teaser result from the proposed deep image completion model. We can apply
our trained model on any resolution public images with user-defined corruption masks. The
corrupted parts are visualized in white dots, black drawings and texts (in the left image).
The right image depicts the completed images by using our model. The size of image is
640×1280. The images and corruption materials are from [1, 2]

2.1 Network Architecture

Semantic Feature Extractor: Given a corrupted image I with size H×W as input, we
use a part of layers (before conv4-1) from VGG19 [30] architecture as our semantic feature
extractor (encoder) to obtain a high-level and semantic feature patch. To preserve image
details, we replace all the pooling layer with strided convolutions as the pooling layer has
been proved[14, 26] that it tends to lose some image information in the reconstruction based
networks. Also, we decrease the filter numbers of each layer to reduce the total model size.
Each convolution is followed by ELU activation [7] that enhances the performance of the
autoencoder.

Simple Generator: Common deep encoder-decoder networks use symmetric structure
that extracts features and generates outcome through the same number of layers. However,
if the layer goes deeper, it would be difficult to train on GPUs efficiently due to explosion of
parameters and memory usage. In addition, the deeper structure in the decoder, the harder
to propagate learned feature information from the encoder. Therefore, we construct a simple
generator (or decoder) that takes the semantic feature patch as input and then reconstructs a
complete image in a short path. Our simple generator only contains two modules, and each
is formed of (convolution, fraction-strided convolution, ELU). Then, one convolution and
fraction-strided convolution is added at the end of the modules to produce the desired image.
Although our generator is short and simple, we can still obtain very good image reconstruc-
tion as long as we learn high-level and semantic feature patches through the encoder.

Feature Skip Connections: In image completion problems, corrupted images and out-
put images share a certain amount of low-level features, like prominent information of non-
corrupted regions, luminance and resolutions. However, deep network based methods with
bottleneck layer often lose details of images when propagating feature maps in the training
stage. Moreover, one may suffer from the vanishing gradient problem as the network layer
goes deeper. To shuttle the image information through the networks and reduce the training
burden, we apply the skip connections strategy that is similar to [14, 22, 28]. Particularly, we
only add two skip connections that just simply concatenate the channels of the output from
our semantic feature extractor and that from our simple generator.

Discriminator In GANs related works, it often requires several tricks to train a gener-
ator and discriminator jointly. Otherwise, we can easily confront mode collapse and obtain
unstable results. So, we follow the same discriminator architecture from [26] that outputs a
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Figure 2: An overview of the proposed model. The training stage requires paired corruption
masks and ground truth images from our training strategy for G to learn the image completion
transformation, and the discriminator D plays a supervised role to distinguish generated
samples and ground truth as real or fake. Only G is needed in the testing stage and real world
applications.

value of realism for a given input image. In order to obtain more stable and reasonable in-
painting results, we use the newly introduced adversarial loss that prevents the discriminator
from crash. Details will be described in Section 2.2.

2.2 Objective Function
Our model aims to regress the corrupted image I to the ground truth image Ig. Normally,
this can be achieved by using l2 or l1 norm (reconstruction loss) as the objective function
in the deep autoencoder structures. Nowadays, many conditional GANs related researches
showed that the essence of generating realistic results is to combine an adversarial loss and
a reconstruction loss to the objective function. If one only minimizes the reconstruction
loss (l2 or l1), it will encourage the networks to produce "averaged" and "smooth" results.
Therefore, we apply the same way of combination of loss as the objective of our model .

For the reconstruction loss, we explored that minimizing l1 norm can generate less blurry
result than minimizing l2 norm. The same finding is also mentioned in [14]. Hence, in our
optimization of G, we calculate the pixel-wise l1 norm as the reconstruction loss (denoted as
Lrec) between the generated image G(I) from our autoencoder model and its corresponding
ground truth Ig. Note that H and W indicate the image size, and x, y represent the image
coordinates:

Lrec =
1

H×W ∑
x∈H

∑
y∈W
‖ Ig(x,y)−G(I)(x,y) ‖1 (1)
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Similar to others, we adapt adversarial training to our deep autoencoder G and discrim-
inator D. Our D is dedicated to distinguish the generated images G(I) (fake) from ground
truth image Ig (real) while our G is used to generate images that are real enough to deceiveD.
However, conventional adversarial loss that calculates binary cross entropy (BCE) between
real/fake label often makes network suffer from unstable training. To alleviate this issue, we
apply the LSGAN [23] strategy that has proved substituting least square minimization for
BCE can improve the stability of GAN models, and obtain more realistic results. In practice,
our D minimizes the loss term Ladv_d to classify ground truth Ig as the real label (given as
value 1), and the generated image G(I) as the fake label (given as value 0):

Ladv_d =
1
2
×‖D(Ig)−1‖2 +

1
2
×‖D(G(I))−0‖2 (2)

Meanwhile, in order to trigger G to generate realistic images, we also minimize the error
between D(G(I)) and the real label, which provide the loss gradients when optimizing G,
which is given by

Ladv_g =
1
2
×‖D(G(I))−1‖2 (3)

In summary, we define a joint loss term to optimize our proposed model. For G and D,
the hyper-parameters λG and λD are used to balance the loss effects to the joint optimization.
The overall objective of our deep image completion model G is:

G∗ = argmin
G,D

λGLrec +λDLadv_g +λDLadv_d (4)

2.3 Training
In the training stage, there shall be a way to prompt the deep networks to capture the essential
features in diverse corrupted masks in order to increase generality of deep image completion
model for recovering images from various types of missing regions. In our proposed method,
we first create a mask operator M that can produce four common types of corruptions,
including text(t), line(l), scribble(s), random(r). The details about how M produces each
type of corruptions are given as follows:

• Text(t): We create three huge masks (size 512×512) that contains massive texts and
sentences, and each comes with three different font sizes: 12,18,24. Then. we ran-
domly pick a huge mask and crop a size of 128×128 region as the corruption mask.

• Line(l): We randomly determine the line width ranging from 2 to 4 pixels, and produce
4 to 8 line horizontally and vertically in a mask of size 128×128.

• Scribble(s): Similar to text, we manually draw two huge masks with large and small
size of scribble. The corruption mask is generated from picking a huge mask and then
cropping a size of 128×128 region.

• Random(r): We perform uniform dropout pixels to generate random corruption mask
and the dropout ratio is randomly selected from 0.1 to 0.5 with 0.1 interval.

Then, we can produce the corrupted images I for training data, which can be seen as a set
of processed images by using ourM operator given ground truth images Ig and corruption
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indicator (t, l, s, r) as input (in Eq. 5). Also, we randomly apply rotation 0◦, ±90◦, 180◦

before output ofM to increase variations of corruption masks:

I = {M(Ig, t),M(Ig, l),M(Ig,s),M(Ig,r)} (5)

In the experiments, we will show that our model can learn the generalization to complete
various kinds of corrupted images on different datasets based on this training strategy. For
the testing stage, we also use the same strategy to produce corruptions masks, which means
the masks are not be exactly the same as those in the training data. Please refer to our
supplements for further implementation details.

3 Experimental Evaluation

We carry out experiments to evaluate the generality of different image completion methods
toward diverse datasets quantitative and qualitatively. First, we describe the datasets that are
used for training, validation and testing. Second, we prove that the proposed deep model
takes the least training parameters among all the GANs models used for image completions,
and ablation study on the results of optimizing different loss functions. Then, experimental
comparisons among the proposed method and several image completion methods are shown
and discussed. Finally, we demonstrate how well our model can do when dealing with high-
resolution images and user-given masks that are unseen in training and validation sets. For
the details of experiment settings, please refer to our supplementary materials.

3.1 Datasets

General image datasets include diverse contents and complex structures of objects from dif-
ferent domain. To verify the image completion performance of different methods, we eval-
uate on three different types of image datasets. Two of them, denoted as (Particular), are
featured with one particular type of objects, and the other one, denoted as (Various), contains
various types of objects and scenes.

• Particular: Caltech-UCSD Birds-200-2011[31]. It includes 11,788 bird images with
200 categories. For the model learning, we randomly select 10,982 images for the
training ground truth, 320 for validation and 486 for testing. The appearance of cate-
gories in each set are roughly equal.

• Various: MSCOCO[21]. We use 82,783 general images for the training set. Then,
we randomly pick 200 images from the 40,504 images from MSCOCO validation set,
and distribute 100 images for each validation and testing set.

By applying our data augmentation strategy, the actual training images are four times
the size of the original training data. Furthermore, in our experiments on one dataset, deep-
model based methods are trained on the same data that produced from its original training
set, and then pick their best model through the corresponding validation set for final testing.
Note that no labels or other information related to images are used in our evaluation and all
images are resized to 128×128.

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014



TSENG ET AL.: GENERAL DEEP IMAGE COMPLETION WITH LIGHTWEIGHT CGANS 7

Deep-based methods
Comparison RED-Net[22] CE[26] pix2pix[14] Ours
Adversarial training No Yes Yes Yes
Number of layers 10(G) 12(G) + 4(D) 16(G) + 4(D) 17(G) + 4(D)
Required training parameters 0.3M 71M 57M 1.1M

Table 1: Model comparison on different deep-based methods. The numbers inside the brack-
ets stand for the numbers of layers in its generator G or discriminator D.

3.2 Comparisons and Results

We demonstrate the quantitative and qualitative results of previous and ours image comple-
tion methods on different datasets with four different testing corruptions (text, line, scribble,
random). Previous methods can be roughly categorized into the vision-based[8, 12, 17, 29]
and deep-based[14, 22, 26] approaches. Due to the limited space, please refer to our supple-
mental materials for details and full comparison of the methods on different datasets.

Model Comparison: We compare our deep models with others in Table 1. Even though
adapting parts of VGG[30] can lead to increasing layers, we only require nearly 1.5% train-
ing parameters compare to two deep GANs (CE[26] and pix2pix[14]). Although RED-
Net[22] has the smallest model size, the model without adversarial training gives unpleasant
inpainting results (shown in the later section).

Ablation Study of Loss Functions: We give analysis of loss functions to check the con-
tribution of different loss terms and the improvements using least square (LS) adversarial loss
term. We compare model trained on L1 Loss (Lrec), L1 + BCE (Lrec +Ladv(bce)), L1 + LS
(Lrec +Ladv(ls)). Table 2 shows the evaluation of PSNR/SSIM on four different types of cor-
ruptions from CUB testing dataset. With the adversarial training like L1+BCE and L1+LS,
the completed results can be more realistic and yield higher PSNR/SSIM. Moreover, we can
find that optimizing the proposed loss function (L1+LS) is better than the convention loss
(L1+BCE) in conditional GANs. Although these two optimizations are trying to generate re-
sults that not only resemble to the ground truth but also are as real as possible, our proposed
model (L1+LS) improves the unstable results in (L1+BCE) and our results are closer to the
ground truth pixel-wise and structurally.

Quantitative Results: Table 3 shows testing quantitative results of all models on CUB[31]
and MSCOCO[21] with different corruptions types. We use common metrics PSNR and
SSIM to evaluate image quality. No matter which datasets are used, our model is able
to generate competitive results over other methods, especially outperforming the previous

Optimizing different loss functions in our model
Testing Types Ours (Lrec only) Ours (Lrec +Ladv(bce)) Ours (Lrec +Ladv(ls))
Text 31.84/0.945 32.17/0.951 32.34/0.952
Line 30.32/0.924 30.38/0.926 30.62/0.928
Scribble 28.83/0.913 28.59/0.913 29.01/0.918
Random 33.75/0.952 34.98/0.964 35.15/0.965
Average 31.19/0.933 31.53/0.938 31.78/0.941

Table 2: Quantitative Results under different loss functions of our model on CUB [31]
testing dataset and various corruptions.
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Algorithms
Datasets, types CSH[17] TNNR[12] FoE[29] nans[8] RED-Net[22] CE[26] pix2pix[14] Ours
CUB[31], Text 23.82/0.842 25.90/0.850 31.50/0.953 31.70/0.954 24.38/0.776 26.57/0.836 25.40/0.853 32.25/0.951
CUB[31], Line 22.43/0.806 15.56/0.604 27.96/0.906 29.74/0.927 23.21/0.747 26.37/0.827 26.52/0.825 30.53/0.928
CUB[31], Scribble 20.81/0.761 21.51/0.791 26.92/0.899 27.98/0.914 23.11/0.775 25.72/0.830 24.63/0.820 29.11/0.919
CUB[31], Random 23.08/0.684 32.05/0.905 35.27/0.974 36.24/0.975 21.04/0.546 26.46/0.777 23.40/0.752 35.18/0.964
Average 22.54/0.774 23.76/0.787 30.41/0.933 31.42/0.942 22.94/0.711 26.28/0.818 24.99/0.812 31.78/0.940
MSCOCO[21], Text 22.79/0.843 24.85/0.842 29.09/0.940 29.27/0.937 22.19/0.734 25.50/0.830 23.49/0.763 30.75/0.944
MSCOCO[21], Line 20.66/0.788 15.04/0.610 24.95/0.874 27.18/0.898 21.13/0.703 24.81/0.811 22.19/0.723 28.34/0.909
MSCOCO[21], Scribble 20.67/0.765 20.78/0.788 25.12/0.886 26.28/0.896 20.65/0.727 24.48/0.825 22.31/0.745 27.77/0.911
MSCOCO[21], Random 22.22/0.666 30.22/0.885 32.32/0.962 33.60/0.961 21.88/0.612 25.96/0.776 22.23/0.691 34.09/0.959
Average 21.43/0.765 22.72/0.781 27.87/0.916 29.08/0.923 21.46/0.694 25.19/0.811 22.56/0.730 30.24/0.931

Table 3: Quantitative results from vision-based and deep-based methods on different types
of datasets and corruptions. The higher the (PSNR/SSIM) are, the closer the completed
images are compared to the ground truth images. Bold and under-line indicate the best and
the second best performance, respectively.

deep-based methods. For the experiments on CUB[31], our model may not consistently
provide better PSNR or SSIM compared to FoE[29] and inpaint_nans[8]. This is because a
general image featuring one object contains less complex structures, it can be easier for those
two vision-based methods to find a proper and coherent content distribution from the whole
image or neighboring patches to describe the corrupted regions. This circumstance happens
especially in random corruption type where ones can simply take surrounding non-corrupted
pixels into account to fill the corruption part. For more complex images from MSCOCO[21],
our models can provide the best results among all methods. In summary, this quantitative
results demonstrate that the proposed model achieves the best performance in average, and
our training strategy improve the generalization of the trained deep model that can perform
image completion on various types of corruptions for different complex scenes.

Qualitative Results: According to the quantitative evaluations, we compare the top two
best-performing methods in vision-based and deep-based image completion approaches on
MSCOCO[21] dataset with four different types of corruptions in Figure 3. Our model can
recover these types of missing regions more semantically while others contain blurry regions
and seams in the filled part. When the corrupted regions are bigger and longer, the flaws in
the inpainting results become more obvious, such as in the types of scribble and lines. As
mentioned before, despite the fact that one can produce very nice results dealing with random
corruptions, and also provide very high PSNR/SSIM such that people can not easily perceive
the differences between them, our method can generate more clear results than other deep
learning methods.

3.3 Performances Beyond Model
In this section, we challenge the performances and extensions of image completion methods
and models that are trained on MSCOCO[21] datasets using our training strategy. We first
show that our method can be applied on higher resolution testing sets. Moreover, to test the
capability and generalization of our model, we show some results of recovering user-defined
corrupted images.

Higher-resolution evaluation: We test different methods on 200 images from BSDS500
test set[24], which is composed of general images containing complicated objects, and they
are unrelated to any training and validation set in MSCOCO[21]. The images are resized to
resolutions 320× 320, which is larger than those in our training data and previous experi-
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Figure 3: Qualitative results on MSCOCO[21]. Images from top to the bottom represent
inpainting results for four corruption types (text, line, scribble, random). For visualization,
purple regions indicate corrupted parts.

ments. Table 4 reveals that we also outperform other vision-based and deep-based methods
in PSNR and SSIM for the four types of corruptions. There are qualitative results shown in
Figure 4 comparing our model and the second best method in vision-based and deep-based
approaches. We clearly generate more reasonable results even on higher resolution images,
and the details can be semantically reconstructed back from corruptions.

Results from user specified masks: In order to further examine the general performance
for our model, we invite subjects to manually create interesting corrupted mask on public
high-resolution images, which means the model was not trained on these materials. One
teaser qualitative result is shown in Figure 1. Even though the input images contain complex
corrupted regions, our method can still well recover such images, which indicates that the
proposed method has the potential for real-world applications. For more results, please check
our supplemental materials.

Algorithms
Datasets, types CSH[17] TNNR[12] FoE[29] nans[8] RED-Net[22] CE[26] pix2pix[14] Ours
BSDS500[24], Text 24.62/0.869 27.67/0.863 30.56/0.941 30.73/0.939 22.84/0.721 25.74/0.699 20.98/0.618 32.12/0.946
BSDS500[24], Line 23.91/0.835 16.58/0.663 26.61/0.898 28.83/0.915 22.02/0.726 25.74/0.683 20.21/0.608 30.03/0.924
BSDS500[24], Scribble 22.34/0.795 24.59/0.820 26.78/0.894 27.62/0.901 20.89/0.705 23.89/0.678 21.14/0.630 29.18/0.913
BSDS500[24], Random 22.40/0.569 31.38/0.885 33.32/0.959 34.79/0.961 21.08/0.532 26.48/0.773 19.13/0.477 35.47/0.960
Average 23.32/0.767 25.05/0.808 29.32/0.923 30.49/0.929 21.71/0.670 24.68/0.708 20.37/0.583 31.70/0.935

Table 4: Quantitative results (PSNR/SSIM) from the vision-based and deep-based methods
on different types of corruptions for BSDS500 datasets[24].

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Korman and Avidan} 2011

Citation
Citation
{Hu, Zhang, Ye, Li, and He} 2013

Citation
Citation
{Roth and Black} 2009

Citation
Citation
{D'Errico} 2017

Citation
Citation
{Mao, Shen, and Yang} 2016{}

Citation
Citation
{Pathak, Krahenbuhl, Donahue, Darrell, and Efros} 2016

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001



10 TSENG ET AL.: GENERAL DEEP IMAGE COMPLETION WITH LIGHTWEIGHT CGANS

Figure 4: Qualitative results on BSDS500[24]. Images from top to the bottom represent
inpainting results on four corruption types (text, line, scribble, random). Corrupted part is
presented in purple color for visualization.

4 Conclusion
In this work, we show that our deep completion model and the proposed training strategy
can provide superior image completion performance quantitatively and qualitatively on dif-
ferent datasets. Inspired by the existing conditional GANs and steady adversarial training
techniques, the proposed lightweight deep networks can successfully generate stable and se-
mantic image completion results and outperform previous methods. Besides, we also reveal
the potential of using the proposed model on high-resolution images for real world applica-
tions. In the future, we will further enhance the generalization of our deep model to recover
a wide-variety of image corruptions in practice.
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